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Abstract

Due to the exponential growth of traffic camera net-

works, the need for multi-camera tracking (MCT) for in-

telligent transportation has received more and more at-

tention. The challenges of MCT include similar vehicle

models, significant feature variation in different orienta-

tions, color variation of the same car due to lighting con-

ditions, small object sizes and frequent occlusion, as well

as the varied resolutions of videos. In this work, we pro-

pose an MCT system, which combines single-camera track-

ing (SCT) and inter-camera tracking (ICT) which includes

trajectory-based camera link model and deep feature re-

identification.For SCT, we use a TrackletNet Tracker (TNT),

which effectively generates the moving trajectories of all de-

tected vehicles by exploiting temporal and appearance in-

formation of multiple tracklets that are created by associat-

ing bounding boxes of detected vehicles. The tracklets are

generated based on CNN feature matching and intersection-

over-union (IOU) in every single-camera view. In terms of

deep feature re-identification, we exploit the temporal at-

tention model to extract the most discriminant feature of

each trajectory. In addition, we propose the trajectory-

based camera link models with order constraint to effi-

ciently leverage the spatial and temporal information for

ICT. The proposed method is evaluated on CVPR AI City

Challenge2019 City Flow dataset, achieving IDF1 70.59%,

which outperforms competing methods.

1. Introduction

For traffic flow prediction and analysis purpose, the

demands of multi-camera tracking (MCT), which tracks

multiple detected objects across multiple cameras of

overlapping/non-overlapping views, rapidly increase in re-

Figure 1. Illustration for vehicle MCT task. From a vehicle MCT

dataset (this figure shows the map from [27] dataset), we have

tracked vehicles from different cameras. Given a tracked vehi-

cle in a camera, MCT task is aimed to search from other cameras

with the same vehicle.

cent years. General speaking, MCT includes three parts,

i.e., single-camera tracking (SCT), appearance feature re-

identification (Re-ID) and the trajectory-based camera link

model for spatial and temporal constraints. The goal of

MCT is to generate tracks in every single camera and then

associate the tracks that belong to the same vehicle in dif-

ferent cameras. However, the task is very challenging due
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to several reasons. First, tracking vehicles in a long-time

range is difficult because of heavy occlusion, the different

appearance from different orientations of the same vehi-

cle, similar appearances from different vehicles and vary-

ing lighting conditions, not to mention the frequent noisy

object detections and occlusions. The tracks can be eas-

ily lost or switched in the SCT. Similarly, Re-ID is also a

difficult task because the appearance features of vehicles

may change dramatically on account of varied illuminations

and viewing angles in two different cameras. Moreover, the

trajectory-based camera link models, which are the major

parts of inter-camera tracking (ICT), is also very critical in

the cross-camera matching.

To deal with the problems in SCT, a more efficient

and reliable descriptor of appearance features is critically

needed. With the significant advances of object detections,

many SCT methods follow the tracking-by-detection frame-

work [6, 32], which has been proven effective in many

works of human and vehicle tracking. By taking advan-

tage of well-embedded appearance and temporal relation-

ship, the tracking-by-detection framework can not only use

the similarity measure of features between objects but also

use the locations of corresponding objects to determine if

they are the same object.

To associate the vehicular tracks in different cameras for

ICT, appearance feature based vehicle Re-ID is one of the

most effective approaches. In terms of vehicle re-id, some

works [31, 14, 34] focus on generating discriminant visual

features by deep convolutional neural networks (DCNNs).

Besides, trajectory-based camera links and transition time

among neighboring cameras [13, 28, 27] are also impor-

tant cues in ICT. Based on these spatial and temporal con-

straints, the searching and matching space can be greatly

reduced.

In this paper, we propose an innovative framework for

MCT system for vehicles. The flowchart of our pro-

posed MCT system is shown in Figure 2. First, we use a

TrackletNet Tracker (TNT) [29] in the single camera track-

ing (SCT). Based on the appearance feature similarity and

bounding box intersection-over-union (IOU) between con-

secutive frames, the detection results are associated into

tracklets. For the neighboring tracklets, we estimate their

similarity by a Siamese TrackletNet based on both appear-

ance and temporal information. A graph model is built with

tracklets being treated as vertices and similarities between

two tracklets as measured by the TrackletNet being treated

as edge weights. Then the graph is partitioned into small

groups, where each group can represent a unique vehicle ID

and moving trajectory in each camera. After SCT, a tem-

poral attention model is adopted [5] to extract embedded

features for each trajectory. Cross-entropy loss and triplet

loss are jointly used in training. Finally, based on the fea-

ture similarity and the built trajectory-based camera link

model, we can generate global IDs in MCT. To summarize,

we claim the following contributions,

• An effective TNT tracker is used for the SCT task.

• A temporal attention model is exploited to extract the

feature of each trajectory.

• Trajectory-based camera link models are constructed

using spatial and temporal information.

The rest of this paper is organized as follows. We provide

an overview of related works in Section 2 and our proposed

MCT system is introduced in Section 3. The experiments

and evaluations of our method on the CVPR AI City Chal-

lenge 2019 City Flow dataset [27] are shown in Section 4.

Finally, the conclusion is drawn in Section 5.

2. Related Works

Single-Camera Tracking (SCT). Most of the recent

multi-object tracking (MOT) approaches are based on

tracking-by-detection schemes [6, 32], i.e., given detec-

tion results, we would like to associate detections across

frames and estimate object locations when unreliable de-

tections or occlusions occur. Many tracking methods are

based on graph models [26, 15, 28, 25, 10, 11, 3, 24, 30] and

solve the tracking problem by minimizing the total cost. In

[26, 15, 25, 11], the detected objects are treated as the ver-

tices in the graph models, while in [28, 3, 24, 30], the graph

vertices are based on tracklets. For detection-based graph

models, there are two major disadvantages. First, one of

the critical assumptions in graph models is the conditional

independence of the vertices. However, detections are not

conditionally independent from frame to frame; therefore

if we want to track an object in the long run, the tempo-

ral information can be more effectively utilized. Second,

the detection-based graph usually comes with a very high-

dimensional affinity matrix, which makes it very hard to

find the global minimum solution in the optimization. How-

ever, a tracklet-based graph model can better utilize the in-

formation from a short trajectory to measure the relation-

ship between vertices, if the mis-association can be care-

fully handled in the tracklet generation step.

Features are essential in the tracking-by-detection frame-

work. There are two types of features that are used in com-

mon, i.e., appearance features and temporal features. For

appearance features, many works adopt CNN-based fea-

tures for Re-ID tasks [18, 33, 26, 35]. For example, [18]

proposes an adaptive weighted triplet loss for training and

a new technique for hard-identity mining. [33] adopts a

re-ranking technique [35] in calculating the feature simi-

larity. However, histogram-based features, like color his-

tograms, HOG, and LBP, are still powerful if no labeled

training data are provided [28]. As for temporal features,

the location, size, and motion of bounding boxes are com-

monly used. Given the appearance features and temporal
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Figure 2. The flowchart of MCT in Track 1.

features, the tracker can fuse them together to achieve bet-

ter performance [33, 15, 28]. However, it is still empirical

and difficult to determine the weighting of each feature.

Appearance Feature based Re-ID. The feature extrac-

tion methods generally fall into two primary categories, one

is the traditional keypoint-descriptor methods, like SURF

[2], ORB [19], and the other are the deep learning based

feature extractors, like CNN [31, 14, 34]. Comparing with

handcrafted features, CNN feature extractors usually per-

form better because they can extract the features robustly

by supervised learning which jointly extracts the discrimi-

nant feature and estimate the classification/regression mod-

els. However, most of the functional CNN feature extrac-

tors are trained on different types of objects which may

have prominent discriminating features. However, for this

task, we need to distinguish the differences within one sin-

gle class – vehicle. To deal with this problem, we need to

retrain the CNN model, and more importantly, create more

discriminant features for different types of vehicles.

Camera Link Models. To reduce the searching and

matching space in the ICT, some works [13, 28, 27] also

consider spatial-temporal constraints with camera link mod-

els. For example, in [13], bidirectional transition time dis-

tribution is exploited with the camera link models in the

process of estimation with an unsupervised scheme. In

[27, 28], the transition time distribution is built for each

connected pair of cameras by using the estimated vehicle

speed. With a reliable camera link model, the candidate

set for matching becomes much smaller. As a result, the

accuracy of across camera association can be significantly

improved.

3. Proposed Method

3.1. Single­Camera Tracking (SCT)

We adopt the TrackletNet Tracker (TNT) [29] for SCT

in the Track-1 challenge. The tracking system is based on a

tracklet graph-based model, as shown in Figure 3, which has

three key components, 1) tracklet generation, 2) connectiv-

ity measurement, and 3) graph-based clustering. Given the

detection results in each frame, the tracklets are generated

based on the intersection-over-union (IOU) compensated by

the epipolar geometry constraint due to camera motion and

the appearance similarity between two consecutive frames.

Each generated tracklet is treated as one node in the graph.

Between every two tracklets, the connectivity is measured

as the edge weight in the graph model, where the connectiv-

ity represents the likelihood of the two tracklets being from

the same object. To calculate the connectivity, a multi-scale

TrackletNet is built as a classifier, which can combine both

temporal and spatial features in the likelihood estimation.

Clustering [28] is then conducted to minimize the total cost
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Figure 3. The TNT framework for the Single-Camera tracking.

Given the detections in different frames, detection association is

computed to generate Tracklets for the Vertex Set V . After that,

every two tracklets are put into the TrackletNet to measure the con-

nectivity, which forms the similarity on the Edge Set E. A graph

model G can be derived from V and E. Finally, the tracklets with

the same ID are grouped into one cluster using the graph partition

approach.

Figure 4. Examples of single-camera tracking (SCT) in different

scenarios. Each color represents a unique ID of tracked vehicle.

The parked vehicles are excluded from the tracking.

on the graph. After clustering, the tracklets from the same

ID can be merged into one group.

The reason we use TNT as our tracking method is due

to its robustness in dealing with occlusions and false de-

tections. More specifically, 1) a TrackletNet focuses on

the continuity of the embedded features along the time. In

other words, the convolution kernels only capture the de-

pendency along time. 2) The network integrates object Re-

ID, temporal ,and spatial dependency as one unified frame-

work. Based on the tracking results from TNT, the contin-

uous trajectory of each object ID across frames can thus be

obtained. Some examples of SCT in different scenarios are

shown in Figure 4.

3.2. Deep Feature Re­ID

Frame-Level Feature Extraction. To reduce noise, all

the images are fed into a Mask-RCNN [7] to remove the

background. The unmasked area is zero-filled if the de-

tected object is classified as a vehicle and its confidence

score is above a certain threshold. The pre-processed

frame features are then extracted from a ResNet50 [8] net-

work that pre-trained on ImageNet. The 2048-dim fully-

connected layer before the classification layer is used to rep-

resent the appearance of the vehicle.

Temporal Attention Model. After we extract the frame-

level features, we combine them into clip-level features us-

ing temporal attention modeling (TA) [5]. The structure of

the temporal attention modeling is shown in Figure 5. The

spatial convolutional network is a 2D convolution operation

and the temporal convolutional network is a 1D convolu-

tion operation. We train these two networks to get more

reliable attention scores for the frames in video clips. After

the weighted average, we can get the clip-level features fc.

Loss Function. Triplet loss is firstly proposed by the

FaceNet [4] to address face verification problem, which is

similar to a vehicle ReID task. In an end-to-end metric

learning paradigm, the input image is projected to an em-

bedding vector space, then the distance of the embedded

features are directly compared and optimized. Given an an-

chor feature a, the projection of a positive feature xp be-

longs to the same vehicle ya is closer to the anchor’s projec-

tion than that of a negative feature xn belonging to another

class yb, by at least a margin m. To train the model more ef-

ficiently, we adopt batch sample (BS) [12] instead of batch

hard (BH) [4] in the triplet generation.

The objective of triplet loss is to maximize the distance

between features of different identity pairs while minimize

that of the same identity [9]. The BS triplet loss in a mini-

batch X is defined as,

LBStri(θ;X ) =
∑

all batches

∑

a∈B

ltriplet(a), (1)

where

ltriplet(a) = [m+
∑

p∈P (a)

wpDap −
∑

n∈N(a)

wnDan]+,

(2)

with wp and wn are the weighting of positive and negative

samples, respectively, Dap and Dan are the distances be-

tween the anchor sample to the positive samples and nega-

tive sample, respectively, and m is the defined margin.

According to BS strategy, the weighting of positive and

negative samples are defined as follows,

wp = P (xp == multinomialx∈P (a){Dax}),

wn = P (xn == multinomialx∈N(a){Dax}),
(3)
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Figure 5. The structure of temporal attention model [5]. The

frame-level features are passed through the spatial and tempo-

ral convolutional networks to obtain the attention score for each

frame, and then calculate the weighted average using the attention

scores to get clip-level features.

where xp and xn are positive and negative samples, respec-

tively.

In addition to BS triplet loss, we also include cross-

entropy (Xent) loss [22] in the training as follows,

LXent = −

P∑

i=1

log (prob(i))q(i), (4)

where q(i) is the one-hot ground truth label, prob(i) is the

probability of the probe vehicle belongs to vehicle i.

The overall loss function is a weighted combination of

BS triplet loss and cross-entropy loss,

LTotal = λ1LBStri + λ2LXent . (5)

3.3. Trajectory­Based Camera Link Models

Because the movement of a vehicle on the road usually

follows certain driving patterns based on road structures and

traffic rules, we can group them into limited numbers of tra-

jectories. By exploiting the spatial-temporal relationships

between the trajectories in different cameras, we proposed

the trajectory-based camera link models for multi-camera

tracking of vehicles.

Distinguishing Trajectories. To efficiently distinguish

different trajectories within a camera, we define several

zones on the image (Figure 6). The zones can be the inter-

section areas, the turning points of a road or the enter/exit

areas of the camera’s field-of-view, and our goal is to use a

zone list to describe a trajectory uniquely. For example, in

Figure 6, the straight and the right-turn trajectories can be

described using different zone lists they go through.

Figure 6. Examples of using zone lists to describe trajectories. The

straight trajectory (blue) can be described by zone list [5, 2], and

the right-turn trajectory (orange) can be described by zone list [5,

6, 1].

Figure 7. Examples of transitions for camera pairs with

overlapping views (top) and non-overlapping views (bottom).

The colors of the trajectories correspond to different possi-

ble transitions between cameras. For the top camera pair,

from source camera (left) to destination camera (right), tran-

sition blue is ({[1, 3]}, {[5, 2]}), and transition orange is

({[1, 2]}, {[5, 6, 1]}). For the bottom camera pair, from source

camera (left) to destination camera (right), transition blue is

({[3, 4], [3, 7], [3, 5], [3, 2, 6]}, {[1, 2], [5, 4, 2]}), and transition

orange is ({[1, 2], [5, 2], [6, 2], [7, 3, 2]}, {[3, 4], [3, 4, 5]}).

However, due to the viewing angle of the camera, the

bounding boxes of a tracked vehicle of a certain trajectory

may not go through the corresponding zone list perfectly

without touching other zones. Therefore, we defined the

distance between a tracked vehicle and a trajectory as,

dist(tr, t̂r) =
∑

z∈tr∪t̂r

|1(z ∈ tr)− az|, (6)

where tr is the zone list of the trajectory, t̂r is the actual

zones gone through by the tracked vehicle and az is the

overlapping ratio of the vehicle to zone z, i.e., the over-

lapping area divided by the vehicle bounding box area. Be-

sides, the orders of the zones in the zone list and the tracked
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vehicle are also considered. If the order in the tracked vehi-

cle conflicts with the zone list, the distance is set to infinity.

Finally, we can assign the tracked vehicle to the closest tra-

jectory within the camera. An example of computing the

distance is shown in Figure 8.

Transition Between Cameras. To link two cameras to-

gether, we define the transition between the two cameras as

L = (Tsrc, Tdst), where Tsrc = {trsrc1 , trsrc2 , ..., trsrcm}
is the trajectories in the source camera and Tdst =
{trdst1 , trdst2 , ..., trdstn} is the trajectories in the destina-

tion camera. Usually, a camera pair can have more than

one transition due to the bidirectional traffic. Examples of

transition are shown in Figure 7. Note that for the cam-

era pair with overlapping view, Tsrc and Tdst usually con-

sists of a single trajectory, and for the camera pair with non-

overlapping view, Tsrc and Tdst can consist of multiple tra-

jectories.

To apply the temporal constraint on the transition, for

both Tsrc and Tdst, we first define the transition zones zsrc
and zdst such that zsrc ∈ trsrci∀trsrci ∈ Tsrc and zdst ∈
trdsti∀trdsti ∈ Tdst. Then, given a pair of tracked vehicles,

trsrc and trdst, in source camera and destination camera,

we can define the transition time as,

∆t = tsrc − tdst, (7)

where tsrc and tdst are the times the vehicles passing zsrc
and zdst respectively. For each transition L, we define a

time window (∆tmin,∆tmax) so that only the tracked vehi-

cle pair whose transition time is inside the window are con-

sidered as valid. With appropriate time window, the search

space of the re-identification can be greatly reduced.

Note that the source and destination defined here is rela-

tive, and can be different from the vehicle’s driving starting

point and destination. Therefore, we can have ∆t < 0, de-

pending on the definition of source and destination cameras.

Ordered Transition. To further reduce the search space

of the re-identification, we consider the relationship be-

tween different tracked vehicles. For some of the roads, the

order of a series of vehicles does not change much due to the

traffic rules or the road condition. Therefore, we define an

ordered transition which has the following constraint: given

two tracked vehicles trsrc1 and trsrc2 in source camera and

the corresponding vehicles trdst1 and trdst2 in destination

camera,

sign(tsrc1 − tsrc2) = sign(tdst1 − tdst2), (8)

i.e., the orders of the tracked vehicles in source and desti-

nation camera should be the same. With this constraint, the

search space can be further reduced.

Figure 8. Example of distances between tracked vehicle (black)

and trajectories A, B and C (blue, orange, green), given 4 zones

in a camera. Although the tracked vehicle touches zones 4 and

3, but its distance to trajectory A is still much smaller than that to

trajectory B. Besides, its distance to trajectory C is infinity because

of the different zone order.

Figure 9. Example of ordered transition. When performing re-

identification of a sequence of vehicles passing through the source

and destination cameras, after the vehicle pair with smaller dis-

tance (blue) is matched in greedy algorithm, the search space of

its neighbors (gray) is roughly reduced to half due to the order

constraint.

Optimization. To apply the trajectory-based camera link

model on the MCT, we use the greedy algorithm because

it can be seen that after applying the transition time con-

straint, the search space of re-identification becomes min-

imal, and the rank-1 accuracy will be close to 1 for those

high-confidence matches. First, we calculate the pairwise

distance of the features of all the pair of tracked vehicles

whose transition time is valid. Then, we greedily select

the smallest pair-wise distance to match the tracked vehi-

cles. For each ordered transition, we further remove the

pairs which conflict with previously matched pairs (Figure

9). We repeat the process until there is no valid transition

pair or the minimum distance is larger than a threshold.

4. Experiments and Results

Datasets. As given in [1], the benchmark dataset contains

3.25 hours (195.03 minutes) of videos collected from 40

cameras spanning 10 intersections in a mid-sized U.S. city,

in which 58.43 minutes of videos are for training and the

other 136.60 minutes are for testing. The resolution of each

video is at least 960p and the majority of the videos have

a frame rate of 10 FPS. It covers a diverse set of location

types, including intersections, stretches of roadways, and

highways. In total, the dataset contains 229,680 bounding

boxes for 666 distinct annotated vehicle identities that pass

through at least 2 cameras.
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Figure 10. MCT result of cameras with highly overlapping views. Top) car id: 253, bottom) car id: 73.

Figure 11. MCT result of cameras with non-overlapping and partially overlapping views. Car id: 336.

Implementation Details. For training the TNT in SCT,

we use the dataset of AI City Challenge 2018 [16], since

with over 3.3k vehicles, which contains much richer infor-

mation than the training set in the benchmark dataset. To ex-

tract deep embedded features for Re-ID, we use ResNet50

as the backbone network, training with the combination of

Htri loss and Xent loss. For the camera transition time win-

dow, we set the lower bound and upper bound based on the

road channelization information and specific road section

situation [27, 20, 21, 23].

Evaluation and Results. The IDF1 score [17] is used to

rank the performance of each team. IDF1 measures the ratio

of correctly identified detections over the average number

of ground-truth and computed detections. The final ranking

on the testing set is shown in Table 1. We outperforms other
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Rank Team ID Team Name IDF1 Score

1 21 UWIPL 0.7059

2 49 DDashcam 0.6865

3 12 Traffic Brain 0.6653

4 53 Desire 0.6644

5 97 ANU 0.6519

6 59 Zero One 0.5987

7 36 DGRC 0.4924

8 107 IIAI-VOS 0.4504

9 104 Owlish 0.3369

10 52 CUNY-NPU 0.2850

Table 1. The IDF1 score on Track 1. Our team is shown in bold

type.

IDF1 IDP IDR Precision Recall

0.7059 0.6912 0.7211 0.7470 0.7793

Table 2. The evaluation results of our proposed method.

teams in terms of IDF1 score of 0.7059, which shows the ef-

fectiveness of our proposed method. Besides, precision and

recall performance is shown in Table 2. Qualitative results

are shown in Figure 10 (highly overlapping view) and 11

(non-overlapping and partially overlapping views). It shows

that our method is generalized for different scenarios.

5. Conclusion

In this paper, we propose a novel approach for multi-

camera tracking (MCT), which includes single-camera

tracking (SCT), deep appearance feature re-identification

(Re-ID) and also spatial-temporal constraints for the

trajectory-based camera link models. From our experi-

ments, the proposed method is efficient, effective ,and ro-

bust, with achieved IDF1 70.59%, which outperforms other

competing methods in the challenge.
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