

Abstract

Vehicle re-identification (Re-Id) plays a significant role

in modern life. We found that Vehicle Re-Id and Person
Re-Id are two very similar tasks in the field of Re-Id. To
some extent, the Person Re-Id Networks can be
transplanted to the Vehicle Re-Id tasks. 

In this paper, a Deep Feature Fusion with Multiple
Granularity (DFFMG) method for Vehicle Re-Id is
proposed for integrating discriminative information with
various granularity. DFFMG is based on the Multiple
Granularity Network (MGN), the state-of-the-art method
from Person Re-Id. We pondered on the discrimination
between Vehicle Re-Id and Person Re-Id. And we carefully
designed DFFMG: a multi-branch deep network
architecture which consists of one branch for global
feature representations, two for vertical local feature
representations and other two horizontal ones. Besides,
several re-ranking methods were tested in our experiments
and achieved higher scores. This network is adopted to
train and test on the 2019 NVIDIA AI City Dataset [16].

1. Introduction

With the development of technology, more and more
kinds of vehicles appear in our lives. There is a growing
demand for Vehicle Re-Id. To be specific, Vehicle Re-Id
aims to spot a vehicle from multiple non-overlapping
cameras. The Person Re-Id task is similar to Vehicle Re-Id,
so the design of Vehicle Re-Id network structure takes it
as reference. Based on the perfect performance of various
neural network model used in the Person Re-Id tasks,
many researchers take the available designed model for
the baseline in preparing the initial studies, such as FACT
[4], NuFACT [5], DRDL [6], etc. But persons are different
from vehicles. For the most time, one vehicle captured in
different cameras has dramatically varied visual
appearances.

* This first two authors contributed equally to this paper.
† Corresponding author: Xiying Li and Junzhou Chen.

Figure 1. Classical vehicle samples from the 2019 NVIDIA AI
City Dataset. Each row denotes the same vehicle captured by
different cameras from different viewpoints.

What’s more, two different vehicles of both the same
color and type have a similar appearance from the same
viewpoint, as shown in Fig. 1. Thus, the accuracy in
Vehicle Re-Id falls short and designing a network model
combining efficiency with strong robustness for Vehicle
Re-Id is still a problem. Then it drives researchers to
improve the model structure.

To fulfill the task, the classical method utilized some
well-known deep feature learning architectures to extract
features of vehicles [21]. For instance, AlexNet [1],
GoogleNet [2] and VGGNet [3] are respectively employed
as extractors for FACT, NuFACT and DRDL. Our model
uses the backbone network ResNet50 and adds different
distinct Conv layers after the backbone. Like other neural
network tasks, it requires us to train it based on the
provided data at first. When training the model, we
attempted to assemble different loss functions and
optimizers. Then we used the saved model parameters to
extract features. Finally, different distance functions were
employed to calculate the distance. According to the result,
we sorted distance to find the top-100 most similar images.
Besides, we found the features in a series of the same type
even can be different from each other. Hence, to address
this problem, the deep feature fusion method is proposed

Deep Feature Fusion with Multiple Granularity for Vehicle Re-identification

Peixiang Huang*, Runhui Huang*, Jianjie Huang, Rushi Yangchen, Zongyao He,
 Xiying Li†, Junzhou Chen†

School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, China
{huangpx3, huangrh9, huangjj67, yangchrsh, hezy28}@mail2.sysu.edu.cn,

{stslxy, chenjunzhou}@mail.sysu.edu.cn

80

in our model to increase the interclass variance and
improve the robustness of the model. The deep feature
fusion method uses the feature map extracted by the
backbone and put it into the Branch Part. Branch Part is
employed to get the global feature and local feature. It
consists five branches, one branch for global feature
representations, two branches for vertical local feature
representations and two branches for horizontal local
feature representations. Fusing various directions and sizes
of features supports us with multiple granularity
information to classify accurately.

What’s more, we employed different original
re-ranking methods to improve our performance and it
worked indeed.

In conclusion, our work is innovative. First, we used
both global feature and part feature fusion, partitioned
vehicle images along with two directions, i.e., vertically
and horizontally and integrated discriminative information
with various granularity. It combines advantages of the
state-of-the-art methods for Person Re-Id to fit Vehicle
Re-Id.

Second, we employed several original re-ranking
strategies for the retrieval part of the Re-Id evaluation. It’s
our creative work and has brought about a significant
improvement in the mAP.

Through experiments, it has shown that the proposed
approaches can improve Vehicle Re-Id accuracy
significantly.

The rest of this paper is organized as follows. Part 2
introduces the related work. Part 3 describes the proposed
Deep Feature Fusion with Multiple Granularity for
Vehicle Re-Id and what we followed and introduces
re-ranking strategies what we took for experiments. Part 4
briefly analyses the 2019 NVIDIA AI City Dataset,
introduces our implementation details, presents the
experimental results to validate the superiority of the
proposed method by comparative analysis, and identifies
both strengths and weaknesses of the DFFMG. Part 5
makes a summary, then prospects for the future and
concludes this paper.

2. Related Work

By searching for papers about the object identification,
we found that most previous researches were mainly for
either human face or person, which has achieved fruitful
research results in computer vision field [6]. Though the
face and the person identification have been mature and
have popular topics, there is no excellent achievement in
Vehicle Re-Id. The existing Vehicle Re-Id mainly focused
on three aspects: feature extraction, similarity metric and
re-ranking.

Feature extraction. Many Re-Id algorithms mainly
focused on fine-grained classification model for feature
extraction instead of identifying the objects with the same
or different identities.

For Person Re-Id, Ahmed et al. [7] designed a pairwise
verification CNN model, which took a pair of cropped
images as input and employed a binary verification loss
function for training. Zhao et al. [8] came up with a
method that makes use of mid-level features from
automatically discovered hierarchical patch cluster trees
for view invariant and discriminative feature extraction.
Ding et al. [9] and Cheng et al. [10] trained CNN with
triplet samples. They minimized feature distances between
the same person and maximized the distances between
different people.

For Vehicle Re-Id, Dominik et al. [11] utilized 3D
bounding boxes for rectifying car images and then
concatenated color histogram features of pairs of vehicle
images. A binary linear SVM is trained to verify whether a
couple of images have the same identity or not. And Zhu
et al. [12] proposed quadruple directional deep learning
network to extract quadruple directional deep learning
features of vehicle images to perform better. Their ideas
inspired us when we designed our network.

Similarity Metric. Liu et al. [4] proposed FACT, which is
based on feature fusion for Vehicle Re-Id tasks, that
applies the Euclidean or Cosine distance between a vehicle
feature pair which is extracted by the designed network to
measure the similarity. S. Chopra et al. [13] presented a
method for training a similarity metric from data to learn a
function that maps input patterns into target space. It can
be used for recognition or verification applications where
either the number of categories is very large or very small.

In particular, Liu et al. [5] propose the NuFACT which
cannot only learn the discriminative representation of
vehicle appearance from different viewpoints but also
reduce the feature redundancy to guarantee. It adopts a
Null Foley-Sammon Transform (NFST) based metric
learning approach for fusion of multi-level features.

Re-ranking. As we known, re-ranking also proves to be
useful for improving object retrieval accuracy. Li et al. [14]
develop a re-ranking model by analyzing the relevant
information and direct information of near neighbors of
each pair of images.

A popular re-ranking approach is re-ranking with the
k-reciprocal encoding that Zhong et al. [15] proposed. A
k-reciprocal feature is calculated by encoding its
k-reciprocal nearest neighbors into a single vector, which
is used for re-ranking under the Jaccard distance. Then it
combines the original distance with the Jaccard distance as
the final distance to be ranked. Our work is similar to the
idea, and we added some additional functions to make
better performance according to the dataset.

81

3. Deep Feature Fusion with Multiple
Granularity Network

In this section, we describe several frameworks we
used and the modifications we made to get richer features:

(1) We drew on the latest researches about person
re-identification (i.e. PCB and MGN) that perform the
state-of-the-art results in several Person Re-Id data sets.

(2) We compared Vehicle Re-Id with Person Re-Id and
combined the hallmark of these two networks we
mentioned above, proposed the DFFMG fit for the Vehicle
Re-Id.

3.1. PCB: A Part-based Convolutional Baseline

PCB [17] employs the ResNet50 as the backbone. The
change of the backbone network is the structure. Before
the original global average pooling (GAP) layer, the
structure is maintained. But the GAP and the following
after GAP are eliminated. And the output T of the
remained backbone network is divided into p horizontal
stripes, each stripe undergoes average pooling then
generates p local feature maps g. Afterwards, each g
employs 1x1 Conv to reduce the dimension and generate
corresponding 256-dimension vectors h. Finally, after each
h passes through a fully-connected (FC) layer, it will be
sent into a classifier separately and a softmax layer to
predict the identity of the input. It also follows the idea of
SSD and R-FCN of object detection to remove the
down-sampling of the backbone network to enlarge the
tensor T.

After the partition, the content within each part should
be consistency. But the uniform partition of PCB will
cause many outliers exit in each part. These outliers are
closer to the content in other part, implying within-part
inconsistency. In order to relocate these outliers and
eliminate inconsistency phenomenon, PCB proposed the
refined part pooling.

3.2. RPP: Refined Part Pooling

RPP is proposed in [17]. Uniform partition for PCB is
simple and effective. But it was proved to cause the
inconsistency phenomenon, either. Column vectors f in the
same part of tensor T should be similar to each other and
is dissimilar to other column vectors that represent for
other parts, otherwise the phenomenon of within-part
inconsistency occurs. In order to eliminate this
inconsistency phenomenon and relocate the outliers on the
correct part, RPP applies the re-sampling with the
similarity S between f and g, i.e., the average-pooled
column vector of each stripe. RPP uses a linear layer
followed by a classification S which is a softmax

activation. And each S calculates the similarity between f
and iP :

 � (� ↔ ��) = ������� ������ = ��� ������∑ ������������� (1)

where �(� ↔ ��) means the similarity between f and iP ,
Wi is the trainable weight matrix of the classification. �� = {� (� ↔ ��) × �, ∀� ∈ �} (2)

where F is the complete set of column vectors in tensor T.
The “{}” denotes re-sampling operation.

In the Eq. (2), a column vector f in T and the predicted
probability of f for Pi are given. And Eq. (2) assigns f to
part Pi with S as the confidence and sampling weight.
Meanwhile, each part Pi is sampled from all column
vectors f with S. After the Eq. (2), the previous S is
updated and we keep doing Eq. (2) until convergence.

By doing this, RPP achieves a “soft” and adaptive
partition instead of the original “hard” and uniform
partition. Additionally, RPP replaces the average pooling
from the original network.

3.3. MGN: Multiple Granularity Network

MGN [18] also employs the ResNet50 as the backbone
network and modifies the Conv4_1. As a result of Conv4,
it will develop three branches. The structures of these
branches are similar, but the down-sampling rates are
different.

The first branch is the global branch which employs
down-sampling with a stride-2 Conv in the Conv5_1 block.
Then the global max pooling is used to generate a
2048-dimension feature vector on the feature map that
comes from the last operation. A 1x1 Conv is attached to
Conv5 for reducing the feature vector’s dimension to 256.
The second and the third branch are going to learn the
representations of the local feature. To maintain the proper
receptive field for local feature, these two branches do not
employ the down-sampling. Through dividing the feature
map into N uniform stripes in the horizontal direction,
these N stripes respectively receive the global max pooling
and 1x1 convolution layer to generate the corresponding
local feature.

The bigger N means the greater the granularity is. The
middle branch, N=2, can be understood as dividing the
picture into two parts; the following branch, N=3, can be
understood as dividing the picture into upper, middle and
lower parts. Finally, the global feature vectors from the
first branch and the local feature vectors from the other
two branches will concatenate into a 2048-dimension
feature vector for similarity searching.

82

Figure 3. The DFFMG Network Structure. T presents the transpose operation.

3.3. Triplet Loss

In terms of re-identification, triplet network-based
architectures are widely used because of promising results.
It can learn an embedding space in where features of same
vehicles are pulled closer and features of different vehicles
are pushed far away. The basic theory realization of triplet
loss [6, 20] is intuitively shown in Fig. 2.

Figure 2. Triplet Loss learning process.

To explain it in detail by mathematical formulas,
Marin-Reyes et al. [20] suppose that, the input images are
a batch of triplet units {��, ��, ��}. They represent the
anchor sample, the positive sample whose identity is the
same as the anchor one, and the negative sample whose
identity is different from the anchor one. Following [6, 20],
let the triplet units satisfy the following constraint Eq. (3)
to get ideal features: ‖�(��) − �(��)‖ + � ≤ ‖�(��) − �(��)‖ (3)

It can also be expressed as Eq. (4): ‖�(��) − �(��)‖� + � ≤ ‖�(��) − �(��)‖� (4)

Among them, f (x) is used to denote a mapping function
for feature extracting. And � is a positive constant
parameter we predefined presenting the minimum margin
between matched and mismatched pairs. By deep learning,
it can gradually satisfy Eq. (4) to get better results.

Thus, the triple loss function what we should minimize
when training can be defined as Eq. (5):

� = � max{0, ‖�(��) − �(��)‖� + � − ‖�(��) − �(��)‖�} �
���

(5)

The idea of triplet loss will improve the network
performance to some extent for re-identification tasks.

3.4. The DFFMG Network Structure

Before we proposed our designed network, DFFMG,
we compared and analyzed PCB and MGN. They are kind
of similar in some parts and they all put the network to
focus on the part feature representation. The following
makes a comparative analysis of these two networks and
lists their similarities and differences.

83

Similarities.
(1) They all focus on extracting the part feature and

they all uniformly divided the tensor into several parts to
get the local element.

(2) They all employ the softmax function for these part
feature vectors.

(3) They all remove the down-sampling when
extracting the local feature.

Differences.

(1) PCB only extracts part feature, but MGN not only
does the things similar to PCB but also has two branches
to acquire the local feature vectors. Moreover, MGN has
one more branch for global feature and all branches
consider the global feature. MGN combines these three
branches to get more features.

(2) PCB proposes RPP for the cursory uniform part
feature and eliminate within-part inconsistency. However,
MGN still exits inconsistency phenomenon.

(3) MGN employs the triplet loss for global feature. In
the meantime, the local feature vectors operate the
softmax function.

According to the analysis above, we propose DFFMG

which combines the merits of PCB and MGN.
First of all, we compare the Vehicle Re-Id and Person

Re-Id. Vehicles are more extensive than persons in spatial
size and the spatial scale. It means the features of vehicles
are richer than that of persons. The multiple-branches
local feature extraction is more needed in vehicles Re-Id.
In the meantime, the motorcycle type is diverse which is
not like human only have one outline. Vehicle Re-Id needs
a global feature for helping the classification. Thus, we
keep MGN as the backbone network. Based on MGN, we
add more two branches for getting the vertical feature.
After the dissection of the output tensor of the Conv4_2,
we employ RPP for the excellent discrimination of
image’s local feature.

Loss functions we use in DFFMG are softmax loss and
triplet loss. The softmax loss is employed after each local
feature vectors, and the triplet loss is employed after each
global feature vectors, which are the same as MGN’s
triplet loss.

The overall network structure diagram is shown in Fig.
3 which borrows from MGN.

3.5. Re-ranking

Following the previous research [15, 22, 23, 24], we
adopt the method of calculating the distance between
query image feature and gallery image feature. The
original distance is aggregated with Jaccard distance to
revise the initial ranking list.

Let do denote the original distance and dJ denotes the
Jaccard distance. After that, the original distance between

two vehicles, one from the query dataset (q) and the other
from the gallery dataset (gi), can be measured by
Mahalanobis distance as Eq. (6) shows:

�� = ��� − ��������� − ���� (6)

where �� and ��� represent the feature of query q and
gallery gi, respectively, and M is a positive semidefinite
matrix.

We could have sort the original distance to get a list of
top 100 images which are most similar to the query image.
But it will be closer to what we expect when we combine
with Jaccard distance. Jaccard distance can be calculated
by the Jaccard metric of their k-reciprocal sets as Eq. (7)
shows: �� = 1 − |�∗(�,�)∩�∗(��,�)||�∗(�,�)∪�∗(��,�)| (7)

where | · | denotes the number of candidates in the set, and
R is defined as the k-reciprocal nearest neighbors.

Then the final distance is D, as Eq. (8) shows: � = ��� + (1 − �)�� (8)

where α denotes the penalty factor penalizing galleries far
away from the query q, and its value ranges from 0 to 1.
We can ascend sort of the final distance D to obtain the
ranking list.

Besides, we have made use of the track data from the
2019 NVIDIA AI City Dataset, especially for re-ranking.
The track data shows that a series of the same identity
vehicle images shot by a camera in time. This is also the
breakthrough point of our design. We have three ideas to
refine the final ranking list. The followings are our ideas
based on our designed DFFMG network.

Re-ranking_v1. In the dataset, each line in track_id.txt
provides a sequence of ids for the same kind of vehicle.
We name track id for each line in order. And we can know
each vehicle image belongs to which track. For example,
the first line consists of {29, 18199, 6332, …}, then the
NO.29, NO.18199, NO.6332 images belong to the first
line named NO.1 track and these images’ track id is 1.
Base on this, we transform the ranking list {g1, g2, g3, …,
g100} to the track list {t1, t2, t3, …, t100} where each t is
each image’s track id. In the track list, there are many
identical track ids due to some of images in the initial
ranking list are from the same kind. Thus we can count the
frequency of every track's appearance for the following
work.

We set different weights for different intervals, such as
[(0, 1] , (0, 5] , (0, 10] , then we obtain {w(0, 1], w(0, 5],
w(0, 10], w(0, 15], w(0, 20], w(0, 30], w(0, 100]} where w
denotes weight. Reasonable weights help to get better
performance, so we unceasingly revised the weights in our

84

experiments. Meanwhile, for each interval, we count up
the number of each track and rank them in order of
frequency, respectively. Give an example of the method,
for the interval (0, i], the initial ranking list is {g1, g2, …,
gi}, the corresponding track list is {t1, t2, …, ti}. In the
track list, suppose that there are non-repetitive track ids {x,
y, z}, and the numbers of tracks the same as x, y, z are a, b,
c. So the frequencies of x, y, z are expressed as f(0, i]: {x: �� , �: �� , �: ��}. For every interval, we can get different
frequencies of different tracks and the f (0, i] is a dictiona-
ry type storing each track’s frequency in the interval (0, i].
Then we obtain {f (0, 1], f (0, 5], f (0, 10], f (0, 15], f (0,
20], f (0, 30], f (0, 100]} for each non-redundant track id
and each interval. And we multiply each f by each
interval’s weight we set before as Eq. (9) shows, ������ = ∑ �(�|(0, �]) × �(0,�]���� (9)

where T denotes track, �(�|(0, �]) denotes the frequency
of the track T when the interval is (0, �].

The result of Eq. (9) becomes each track’s score. Take
x, y, z referred above for example, the score of the track x
equals: ��� × � (0, 1] + ��� × � (0, 5] + ⋯ + ����� × � (0, 100],
and so on. If the score is higher, the track is more possible
to be the same kind of vehicle set as the query vehicle. So,
we sort the scores in descending order to get a final
non-repeated track list {y, z, x}. Each track has many
images, such as x: {x0, x1, x2, …, xn}, where xi denotes the
image id belonging to the track x. To make use of track
labels, in the new ranking list, we bring all images from
the same track which has higher score forward. Finally,
we constrain it to the end when the number of the ranking
list is 100. It means some images in the previous ranking
list are probably to be abandoned. Then we can obtain the
re-ranking list {y0, y1, y2, …, yn, z0, z1, z2, …, zn, x0, x1,
x2, …, xn}, and the length of list is 100.

Re-ranking_v2. This version is based on the first version.
Similarly, we get a final non-repeated track list {y, z, x}
following above steps at first. The difference is that we do
not abandon any image in the original ranking list in case
the wrong tracks were brought forward. Or it will result in
the decrease of mAP. So we bring images which belong to
a high score track and are in the original ranking list ahead
in the new ranking list. For example, we may get {g30, g22,
g34, …, g23, g12, g4, …, g10, g62, g29}, the length of the list is
100 and {g30, g22, g34, …} belongs to the track y, other two
belong to z, x, respectively.

As thus, we make sure that all the image ids from
re-ranking list are from the initial ranking list and no one
is abandoned, they just change positions with each other.
So not only the CMC of top 100 will not be changed, but
also the mAP will increase.

Re-ranking_v3. Version 3 is based on version 2 to
fine-tune it. The final ranking list this version obtains
abnegates some images which are low-ranking and let
high-ranking images on the front. The idea is also
smoothly comprehensive. First of all, we also get a final
non-repeated track list {y, z, x}, and we bring images
belonging to the top 1 and top 2 track {y, z} to front, and
then the rest images which belong to a high score track
and are in the original ranking list are put after them in the
new ranking list, like what we do in re-ranking_v2.Then
we may get {g30, g22, g34, …, g23, g12, g4, …, g98, g99,
g100}, the length of the list is 100 and {g30, g22, g34, …}
belongs to the track y, {g23, g12, g4, …} belongs to the
track z. And {…, g98, g99, g100} don’t belong to either y or
z, the images in it are rest images reserved in order.

As thus, images from low-score track and are
low-ranking in previous ranking list will be given up, and
more images from the high-score track will appear in the
front of the final ranking list simultaneously.

4. Experiments

4.1. The 2019 NVIDIA AI City Dataset

To better assist different vehicle-related experiments,
this dataset splits into two parts for model training and
testing and one part for the query to check the mAP (mean
average precision) and CMC (cumulative matching
characteristic) . According to CityFlow [16], we know that
the dataset contains 56,277 bounding boxes in total, where
36,935 of them from 333 object identities form the
training set, and the test set consists of 18,290 bounding
boxes from the other 333 identities.

Fig. 4 intuitively shows the exact numbers of each
vehicle model for train dataset and test tracks. The rest of
the 1,052 images are the queries. On average, each vehicle
has 84.50 image signatures from 4.55 camera views. In the
appendix, we can get labels for train and indeed no labels
for a test.

4.2. Implementation details

 In our experiments, we use the popular deep learning
framework “Pytorch” to train and test our network model.
Training data consists of its labels. Specifically, in our
experiments, we were accurately positioning the vehicle in
an image and crop it by Faster-RCNN [25].

The cropped images are the input. Then we transform
every image’s size to (224, 224). We use momentum of µ
= 0.9 and weight decay λ = 1 × 10−5. Batch size is set to
32. We start with a base learning rate of l (0) = 0.01 and
then drops by repeatedly multiplying 0.1 after every 50
epoch iterations.

85

Figure 4. The first figure’s horizontal axis presents vehicle model
labels for train. The second figure’s horizontal axis presents track
ids of gallery. We can easily draw a conclusion that the number
of every gallery track’s images is relatively balanced and as for
train dataset, it shows a little sample unbalanced.

4.3. Results

When we did our tests, we recorded the whole
changing process of loss decreasing as Fig. 5 shows.
Overall, the loss declined regularly.

Moreover, we have fine-tuned and visualized the result.
We let each image shown in a specific size to tile the
interface. The result is illustrated in Fig. 6 and Fig. 7.

In Fig. 6 and Fig. 7, the left is the query image and the
right are the top-30 nearest neighborhoods from the
gallery which are resized to (224, 224). The red box and
the green box correspond to the negatives and the
positives, respectively. These figures show that our
network achieves a good result.

By submitting the results in the online evaluation server,
the CMC curve is shown in Fig. 8. And Tab. 1 displays the
results of the state-of-the-art metric learning method and
our networks for Vehicle Re-Id on our dataset.

Figure 5. Loss changes by the number of iterations.

Figure 6. For the NO.2 query image, our network performs
excellently. It clearly shows that all the matching images are
accurate. It owes to the obvious features and feature fusion with
multiple granularity.

Figure 7. For the NO. 629 query image, our network performs
also well. But a few images are not accurate and all the positives
mostly show the same perspective of the vehicle. It’s challenging
to tell all images of the same type from vehicles similar in brands,
tires, colors and so on.

86

Method mAP Rank-1 Rank-5 Rank-10 Rank-15 Rank-20 Rank-30 Rank-100

MoV1+BA[19] 0.313 0.496 0.650 0.712 ---- ---- ---- ----
MoV1+BH[19] 0.320 0.484 0.652 0.714 ---- ---- ---- ----
MoV1+BS[19] 0.313 0.490 0.631 0.709 ---- ---- ---- ----
MoV1+BW[19] 0.308 0.501 0.649 0.714 ---- ---- ---- ----
PCB 0.198 0.425 0.537 0.594 0.646 0.676 0.709 0.773
MGN 0.229 0.377 0.451 0.476 0.499 0.551 0.621 0.688
DFFMG 0.253 0.480 0.600 0.661 0.693 0.726 0.777 0.855
DFFMG+v1 0.353 0.465 0.465 0.465 0.471 0.486 0.560 0.623
DFFMG+v2 0.285 0.482 0.491 0.497 0.505 0.528 0.604 0.709
DFFMG+v3 0.304 0.478 0.478 0.480 0.503 0.556 0.600 0.711

Table 1. These are results of different methods for Vehicle Re-Id with the 2019 NVIDIA AI City Dataset. In the first column, the last
three methods are our DFFMG model with three re-ranking versions.

Figure 8. CMC Curve

From Tab. 1 and Fig. 8 we can learn about that our

model DFFMG has a significant advantage in CMC
compared to any other our models. It proves that the Deep
Feature Fusion with Multiple Granularity indeed helps
Re-Id tasks. However, the result is slightly less than the
state-of-the-art metric learning method. Thus we should
update our model by combining with some metric learning
methods.

Even though, our model DFFMG refined by the first
version of the re-ranking method achieves the highest
mAP [26] among any other approaches, including the
state-of-the-art metric learning method. This is our idea’s
breakthrough and strength.

The other two versions of re-ranking method perform
better than the baseline MGN and original DFFMG, but
not as good as the first version.

Nevertheless, the re-ranking methods also have
apparent shortcomings that it is CMC has declined overall
despite its high mAP. We think that our re-ranking
approaches bring positive result set forward. In this way,

the recall rate will rise, and then on the contrast, the
precision rate will decline. It is challenging to gain both
simultaneously.

5. Conclusions

In this paper, we proposed a Deep Feature Fusion with
Multiple Granularity (DFFMG) model to accomplish a
Vehicle Re-Id task for 2019 AICITY CHALLENGE,
which is a still not well-explored problem. Based on the
baseline, PCB and MGN, we exploited a five-branch
network for feature representations, one branch for the
global feature representation, two branches for vertical
local feature representations and two branches for
horizontal local feature representations to obtain multiple
features so that we could identify more precisely. Besides,
we employed a newly original re-ranking method to get
better performance.

In conclusion, our design has its innovation and
strength. We combined multiple granularity with neoteric
re-ranking methods and achieved good results which are
over baseline and surpasses the state-of-art metric learning
methods. Overall, the results can be improved in the future
because there are still some queries matching wrong. We
will take the essence of the state-of-the-art metric learning
method and discard the dross to refine our model in the
future to rise to the occasion to improve scientific research
in the field of re-identification and promote the maturity
and development of Vehicle Re-Id.

Acknowledgements

This work is supported by National Natural Science
Foundation of China under Grant No. U1611461.

87

References

[1] Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet
classification with deep convolutional neural networks,’’
in Proc. Annu. Conf. Neural Inf. Process. Syst., Stateline,
NV, USA, 2012, pp. 1097–1105.

[2] Szegedy et al., ‘‘Going deeper with convolutions,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Boston,
MA, USA, Jun. 2015, pp. 1–9.

[3] K. Simonyan and A. Zisserman. (2014). ‘‘Very deep
convolutional networks for large-scale image
recognition.’’[Online].Available:https://arxiv.org/abs/140
9.1556

[4] X. Liu, W. Liu, H. Ma, and H. Fu, ‘‘Large-scale vehicle
re-identification in urban surveillance videos,’’ in Proc.
IEEE Int. Conf. Multimedia Expo, Seattle, WA, USA, Jul.
2016, pp. 1–6.

[5] X. Liu, W. Liu, T. Mei, and H. Ma, ‘‘PROVID:
Progressive and multimodal vehicle reidentification for
large-scale urban surveillance,’’ IEEE Trans. Multimedia,
vol. 20, no. 3, pp. 645–658, Mar. 2018. [6].

[6] H. Liu, Y. Tian, Y. Wang, L. Pang, and T. Huang, ‘‘Deep
relative distance learning: Tell the difference between
similar vehicles,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Las Vegas, NV, USA, Jun. 2016, pp.
2167–2175.

[7] Ahmed, E.; Jones, M.; Marks, T.K. An improved deep
learning architecture for person re-identification. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Hynes Convention Center,
Boston, MA, USA, 7–12 June 2015; pp. 3908–3916.

[8] Zhao, Rui, W. Ouyang, and X. Wang. "Learning Mid-level
Filters for Person Re-identification." 2014 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR) IEEE Computer Society, 2014.

[9] S. Ding, L. Lin, G. Wang, and H. Chao. Deep feature
learning with relative distance comparison for person
reidentification.PR, 2015. 2

[10] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng.
Person Re-identification by multi-channel parts-based cnn
with improved triplet loss function. In CVPR, 2016. 2

[11] Zapletal, Dominik, and A. Herout. " [IEEE 2016 IEEE
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW) - Las Vegas, NV, USA
(2016.6.26-2016.7.1)] 2016 IEEE Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW) - Vehicle Re-identification for Automatic Video
Traffic Surveillance." 2016 IEEE Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW) IEEE Computer Society, 2016:1568-1574.

[12] Zhu, Jianqing, et al. "Vehicle Re-identification Using
Quadruple Directional Deep Learning Features." (2018).

[13] S. Chopra, R. Hadsell and Y. LeCun, "Learning a
similarity metric discriminatively, with application to face
verification," 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), San
Diego, CA, USA, 2005, pp. 539-546.

[14] W. Li, Y. Wu, M. Mukunoki, and M. Minoh.
Common-nearneighbor analysis for person
re-identification. In ICIP, 2012.

[15] Zhong, Zhun, et al. "Re-ranking Person Re-identification
with k-reciprocal Encoding." (2017).

[16] Tang, Zheng, et al. "CityFlow: A City-Scale Benchmark for
Multi-Target Multi-Camera Vehicle Tracking and
Re-identification." (2019).

[17] Sun Y, Zheng L,Yang Y , et al. Beyond Part Models:
Person Retrieval with Refined Part Pooling (and a Strong
Convolutional Baseline)[J]. 2017.

[18] Wang G, Yuan Y, Chen X, et al. Learning Discriminative
Features with Multiple Granularities for Person
Re-identification[C]// 2018 ACM Multimedia Conference.
ACM, 2018.

[19] Ratnesh Kumar, Edwin Weill, Farzin Aghdasi, and
Parthsarathy Sriram. Vehicle Re-identification: An efficient
baseline using triplet embedding. In Proc. IJCNN, 2019. 5, 7,
12

[20] Marin-Reyes, Pedro Antonio, et al. "Unsupervised Vehicle
Re-identification Using Triplet Networks." 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW) IEEE, 2018.

[21] "Joint Feature and Similarity Deep Learning for Vehicle
Re-identification." IEEE Access (2018):1-1.

[22] D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. Van
Gool. Hello neighbor: Accurate object retrieval with
k-reciprocal nearest neighbors. In CVPR, 2011. 1, 2, 3

[23] S. Bai and X. Bai. Sparse contextual activation for efficient
visual re-ranking. IEEE TIP, 2016. 2, 4.

[24] M. Ye, C. Liang, Y. Yu, Z. Wang, Q. Leng, C. Xiao, J.
Chen, and R. Hu. Person Re-identification via ranking
aggregation of similarity pulling and dissimilarity pushing.
IEEE TMM, 2016. 1, 2, 3, 4.

[25] Ren, Shaoqing, et al. "Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks." (2015).

[26] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian.
Scalable person re-identification: A benchmark. ICCV,
pages 1116–1124, 2015.

88

