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Abstract

Vehicle re-identification (Re-ID) aims to search a spe-

cific vehicle instance across non-overlapping camera views.

The main challenge of vehicle Re-ID is that the visual ap-

pearance of vehicles may drastically changes according to

diverse viewpoints and illumination. Most existing vehicle

Re-ID models cannot make full use of various complemen-

tary vehicle information, e.g. vehicle type and orientation.

In this paper, we propose a novel Multi-Task Mutual Learn-

ing (MTML) deep model to learn discriminative features si-

multaneously from multiple branches. Specifically, we de-

sign a consensus learning loss function by fusing features

from the final convolutional feature maps from all branches.

Extensive comparative evaluations demonstrate the effec-

tiveness of our proposed MTML method in comparison to

the state-of-the-art vehicle Re-ID techniques on a large-

scale benchmark dataset, VeRi-776. We also yield compet-

itive performance on the NVIDIA 2019 AI City Challenge

Track 2.

1. Introduction

With the development of autonomous driving and smart

city applications, the need to accurately analyze vehicles

on urban streets via multiple computer vision tasks such

as detection, classification and pose estimation, as well as

re-identification, is ever-increasing. Specially, vehicle re-

identification has attracted increasing attention in the re-

search community [15, 16, 16, 26, 26, 35], as it can play

an important role in intelligent transportation systems and

public safety.

Vehicle re-identification (Re-ID) aims to search a spe-

cific vehicle instance across non-overlapping camera views.

Due to the fact that the license plate is often not visible in a

number of view angles (which are generally uncontrolled),

vehicle Re-ID by visual appearance alone is of great prac-

tical value in real-world applications such as smart cities.

This task is similar to a more popular task: person re-

identification [7, 5, 13, 28, 12, 27, 22, 3, 18, 31, 19, 23],

but with more challenges: (1) Unlike person Re-ID, the

pose/orientation of vehicles results in occlusion and dras-

tic visual geometry changes, since the vehicle is a kind of

rigid body. This means that is difficult to infer the same

identity from any given pose/orientation of a vehicle. (2)

Even in the same orientation, vehicles of different identities

may look very similar due to the being of the same, or sim-

ilar, vehicle model. This requires vehicle Re-ID models to

have a more discriminative fine-grained recognition ability.

Most previously proposed vehicle Re-ID methods [15,

16, 20, 35] focus on using a single branch to learn an

embedded feature representation for vehicle instance re-

identification from the original information (e.g. the origi-

nal whole vehicle image). Due to the previously mentioned

challenges for vehicle re-identification, this single branch

structure can not take advantage of the diversity of vehicles.

Moreover, most existing works [15, 16] train their vehicle

Re-ID deep learning model using a single supervisory sig-

nal (e.g. vehicle ID). However, we argue that vehicle ID

label alone can not differentiate the differences between ve-

hicles due to the issues we raised above. But additionally

we can make use of the fact that the orientation of a ve-

hicle alters its view in a predictable manner. As a result,

we suggest that imposing multiple and different supervisory

signals simultaneously (e.g. the vehicle ID and vehicle ori-

entation) allows the model to learn this variation in a more

well-defined manner, and is thus more effective for learning

the fine-grained discriminative features necessary for vehi-

cle Re-ID. As orientation labels were provided by Wang et

al. [26] for the VeRi dataset [16], is is possible to make use

of these multiple signals for this purpose. Examples of the

orientation labels provided by this paper can be seen in Fig-

ure 1.

In this work, we propose a novel Multi-Task Mutual

Learning (MTML) based network architecture, that aims

to simultaneously learn a number of recognition tasks from

different supervisory signals, plus a consensus loss func-

tion, to build an improved representation for the purpose of

vehicle re-identification.

We make two contributions in this work as follows: (1)

We formulate a novel Multi-Task Mutual Learning (MTML)

deep learning model by building each individual branch for
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Index Orientation Colour

0 front red

1 rear -

2 left -

3 left front cyan

4 left rear yellow

5 right -

6 right front green

7 right rear black

Figure 1: Examples from the VeRi-776 dataset with the orientation labels provided in [26] (best viewed in colour).

a different recognition task relevant to vehicle Re-ID and by

taking into consideration four different tasks: vehicle ID,

multi-scale, grayscale, and orientation. Our model aims to

discover and capture concurrently the complementary dis-

criminative information. (2) We introduce a mutual learn-

ing mechanism for improving multi-task learning robust-

ness. Our model benefits from multiple supervisory signals

in order to enhance model learning of more discrimative

features for vehicle Re-ID. Extensive comparative evalua-

tions demonstrate the effectiveness of the proposed MTML

method in comparison to the state-of-the-art vehicle Re-ID

techniques on the a large-scale benchmark VeRi-776 [16].

We also yield competitive performance on the CityFlow

[25] benchmark at the NVIDIA 2019 AI City Challenge.

2. Related Work

Vehicle Model Classification One closely related problem

to re-identification is vehicle model classification [14, 30,

21, 10]. The two problems are usually studied indepen-

dently. For example, Yang et al. [30] propose a part at-

tributes driven vehicle model recognition. They also con-

tribute a large comprehensive car dataset named “Comp-

Cars” with model class labels but without vehicle identity

labels. More recently, Hu et al. [10] formulate a deep CNN

framework capable of selecting spatial salient vehicle parts

in order to learn more discriminative model representations

without explicit parts annotations.

Vehicle Re-Identification. A number of deep learning

techniques have been exploited for the purpose vehicle Re-

ID. For instance, Liu et al. [16] explored a deep neural net-

work to estimate the visual similarities between vehicle im-

ages. Liu et al. [15] also designed a Coupled Clusters Loss

(CCL) to boost a multi-branch CNN model for vehicle Re-

ID. All these methods utilize the global appearance features

of vehicle images and ignore local discriminative regions.

To explore local information motivated by the idea of land-

mark alignment [32] in both face recognition [24] and hu-

man body pose estimation [17], Wang et al. [26] consid-

ered 20 vehicle keypoints for learning and aligning local re-

gions of a vehicle for Re-ID. Clearly, this approach comes

with extra cost of exhaustively labelling these keypoints in a

large number of vehicle images, and the implicit assumption

of having sufficient image resolution/details for extracting

these keypoints.

Additionally, space-time contextual knowledge has also

been exploited for vehicle Re-ID subject to structured

scenes [16, 20]. Liu et al. [16] proposed a spatio-temporal

affinity approach for quantifying every pair of images. Shen

et al. [20] further incorporated spatio-temporal path infor-

mation of vehicles. Whilst this method improves the Re-ID

performance on the VeRi-776 dataset, it may not general-

ize to complex scene structures when the number of visual

spatio-temporal path proposals is very large with only weak

contextual knowledge available to facilitate model decision.

Multi-Task Learning. Multi-task learning (MTL) is a

machine learning strategy that learns several related tasks

simultaneously for their mutual benefits [1]. A good MTL

survey with focus on neural networks is provided in [2].

Deep CNNs are well suited for performing MTL as they

are inherently designed to learn joint feature representations

subject to multiple label objectives concurrently in multi-

branch architectures. Joint learning of multiple related tasks

has been proven to be effective in solving computer vision

problems [6, 33]. Critically, our method is uniquely de-
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signed to explore the potential of MTL in combining mul-

tiple diversities (e.g. scale and color) of the vehicle image

and being supervised by multiple kinds of manual labels

(e.g. ID and orientation) with each of them being associ-

ated with an individual branch of a single model.

3. Multi-modal Vehicle Re-identification

In order to perform Re-ID of previously unseen query

vehicles, the aim of our model is to learn a feature embed-

ding that allows for accurate retrivals based on distance (e.g.

L1) from the query image representation. In order to per-

form this task, we utilise training data containing a number

of different labels: identity class labels as well as vehicle

orientation class labels. We assume two sets of training

examples I1 = {Ii}
N
i=1

and I2 = {Ii}
M
i=1

, containing N

and M training images respectively. Both training sets con-

tain the associated identity class labels Y1 = {yi}
N
i=1

and

Y2 = {yi}
M
i=1

, where yi ∈ [1, ..., Nid] for Nid distinct vehi-

cle idenities spanning the two training sets. However, in ad-

dition, I1 also contains orientation labels, O∞ = {oi}
N
i=1

,

where oi ∈ [1, ..., NO] is the orientation (for NO possible

orientations).

In order to perform accurate Re-ID, we use this data to

build a model constructed from multiple branches, each of

which is tasked with learning a specific aspect of the data

concurrently. The branches of the model are as follows:

A) Identity classification B) Identity classification from a

scaled image C) Identity from grayscale image D) Identity

plus the vehicles’ orienations. These individual branches

then form a consensus prediction on the identity of the train-

ing examples, and this consensus is then employed for reg-

ulation of the individual branches.

3.1. Model Structure and Feature Learning

An overview of our proposed model can be seen in Fig-

ure 2. The model is composed of four sub-branches, each of

which is simultaneously learning a representation to solve

its own task. In addition, there is a single fusion branch,

which allows feature selection to be performed from the en-

tire collection of individual representations. It is the output

from this branch that is taken during deployment. Each sub-

branch will now be described in more detail.

(A) Vehicle Identity The root branch of our model is

tasked with learning the best representation for vehicle iden-

tity discrimination, for both training sets I1 and I2. Here,

we exploit the cross entropy classification loss function in

order to train one branch to predict vehicle identity. Thus

the branch calculates the softmax posterior probability of

the class label yi for a given training image Ii:

pIDi = p(ŷi = yi|Ii) =
exp(ŷi)

∑Nid

k=1
exp(ŷk)

(1)

where ŷk = w
T
k xi, xi is the feature vector for image Ii

given by final layer of the branch, and wk is the prediction

function parameter for identity class k. The loss across a

minibatch of NB images can then be computed as:

LID = −
1

NB

NB
∑

i=1

log pIDi (2)

(B) Identity from Scaled Image Here we exploit the

multi-scale analysis that has previously been shown to be

of benefit for the task of re-identification, both for persons

[4] and vehicles [11]. This is done by including a branch

that is trained via cross entropy loss (Eq. 2) to predict the

class identity from a rescaled version of the input image, in

a similar way to branch A.

(C) Identity from Grayscale Image In order to encour-

age the model to focus on details of the vehicles, that allow

for separation of highly similar identity classes, we ensure

that one branch will be unable to use colour information for

distinguishing between these classes. This is done by giv-

ing as input only the grayscale image, and again training the

branch to predict identity via the cross entropy loss.

(D) Vehicle Orientation This branch is tasked with learn-

ing a representation to simultaneously predict the identity

class and the orientation class when this is known. Both

sets of labels are simultaneously employed in a joint loss

function in order to optimise the branch for prediction of

both identity and orientation. As orientation labels are not

available for all training data, we employ a selective classif-

cation subset loss function, that allows the loss to be calcu-

lated across only the subset of the batch for which orienta-

tion labels are known.

Again, the cross entropy loss is exploited for this task.

Hence, the branch calculates both Eq. (1), as well as the

softmax posterior probability of the orientation label oi for

the images for which the orientation class is known:

pOi = p(ôi = oi|Ii) =
exp(ôi)

∑NO

j=1
exp(ôj)

(3)

where this time ôj = w
T
j xj, and wj is the prediction func-

tion parameter for orientation class j.

The loss for this branch is then calculated across the

minibatch of images as:

LO = −
1

NB

NB
∑

i=1

log pIDi +
1

NS

NB
∑

i=1

qOi (4)

where NS is the size of the subset of the minibatch for

which orientation labels are known, and

qOi =

{

log pOi if oi ∈ O

0 otherwise
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Figure 2: An overview of our proposed model (best viewed in colour). (A) Vehicle identity branch (B) Multi-scale analysis

branch (C) Grayscale analysis branch (D) Vehicle orientation branch (E) Consensus learning through feature fusion. Feed-

forward signals shown in black. Hard target (groundtruth) loss propagation shown in red. Soft target consensus feedback loss

propagation shown in green.

(E) Consensus Learning and Feedback In order to har-

ness the benefit of all branches for the purpose of vehicle re-

identification, we employ consensus learning as proposed

in [4] and previously harnessed for vehicle Re-ID in [11].

This is done via feature fusion of the final convolutional

feature maps from all branches for consensus learning. As

our branches are based on the ResNet50 architecture [8],

these feature maps are formed via an average pooling oper-

ation which result in feature vectors of length 2048. Hence

our fused features are of length 8192. We then add one ad-

ditional fully connected layer, of size 1024, and the output

of this passed to a final identity softmax classification layer,

again employed with cross entropy loss. Hence:

pCi = p(ŷCi = yi|Ii) =
exp(ŷCi )

∑Nid

k=1
exp(ŷCk )

(5)

Additionally, we also utilise a consensus propagation

mechanism, similar to the previously proposed method

[4, 11]. Here the consensus output is taken as ‘soft tar-

gets’ (as opposed to the groundtruth label ‘hard targets’) for

the training data, and used to feedback information about

the predictions made by the entire ensemble of branches.

This is done concurrently with the training of the individual

branches. Thie method is inspired by the idea of Knowledge

Distillation (KD) [9], but is different in that here we employ

the combined predictions from all the ‘student’ branches as

a virtual teacher model, rather than utilising a pre-trainined

powerful teacher model to provide the soft targets.

Specifically, the feedback mechanism em-

ploys the consensus probability predictions PC
i =

[

pCi,1, ..., p
C
i,j , ..., p

C
i,NID

]

given image Ii, feeding these into

the cross entropy loss between the two distributions to

provide a consensus regularisation loss for the branch:

Hi = H(PC
i , Pi) = −

1

NID

NID
∑

j=1

pcj log pj (6)

The total consensus loss for a particular branch is then:

LC =
1

NB

NB
∑

i=1

Hi (7)

This is added to each individual branch’s loss functions.

In addition, this mechanism provides regularisation of the

whole network by propagating all of the consensus losses

back through the feature fusion layer, which also boosts the

learning of the ensemble.

3.2. Model Training

In order to train our model, we combine both training

sets, I1 and I2, and employ batches that contain both im-
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Algorithm 1 The MTML training algorithm.

Require: Training sets I1 I2, labels Y1 Y2 O1, model M
• Initialise network branches with pre-trained ImageNet

weights

• Initialise output layers of M randomly

for epoch e ∈ (1, E) do

• Feed-forward through model to obtain all branch

identity classification predictions on images in I1 and

I2
• Feed-forward to obtain orientation classification pre-

dictions on I1
• Fuse features and perform consensus identity classi-

fication predictions on both training sets

• Calculate hard and soft losses identity losses for each

branch and backpropagate to update weights

• Calculate orientation losses using labels for I1 and

backpropagate to update weights on the orientation

branch

• Calculate hard and soft identity losses for the con-

sensus branch and backpropagate

end for

ages with and without orientation labelling. The full train-

ing algorithm can be seen in Algorithm 1.

3.3. Vehicle Re­ID deployment

During deployment, we employ the feature fusion layer

from our trained model as the full feature representation in

order to perform vehicle re-identification matching. As we

do not necessarily have camera information about the query

or gallery images, or timestamp information, which would

allow the use of camera distance or time-based analysis, we

use only a generic distance metric - the L2 metric - in order

to match gallery images to the query. Hence, for each of

the query image I
q , and the gallery images {Igi }, we com-

pute our 6400 dimension fused feature representations, xq

and {xg
i } respectively. We then calculate the L2 distance

between the query representation and each of the gallery

images, and rank the latter by increasing distance in order

to calculate the Rank-1 and mAP performance scores.

4. Experiments

We conduct a number of experiments to explore the per-

formance of our method. First we exploit a number of

widely available vehicle ID benchmark datasets in order to

assess the benefit of each of the branches of our model in-

dependently, and altogether. Then we compare the perfor-

mance of our model to other current work by looking at

our performance in the NVIDIA AI City Challenge 2019

Task 2 (Vehicle Re-identification). As our method includes

a branch that predicts vehicle orientation in addition to iden-

tity, our model requires data that contains the orientation la-

bels for training. As a result, we include the VeRI776 [16]

dataset in the training set for all our experiments.

4.1. Datasets

We employ two Vehicle Re-ID datasets in our experi-

ments, in order to train and test our method extensively.

Firstly we conduct experiments on a benchmark dataset,

VeRi-776 [16], which has been widely tested by the ma-

jority of recent works. And secondly we employ the new

CityFlow dataset [25], a challenging dataset that has been

shown to be more difficult than previous publicly available

benchmarks. The VeRi-776 dataset [16] has 37,778 images

of 576 IDs in the training set and 200 IDs in the test set. The

standard probe and gallery sets consist of 1,678 and 11,579

images, respectively. There are also orientation labels, for

8 possible orientations, available for the VeRi-776 dataset,

which were provided by [26]. The CityFlow dataset [25]

has 36,935 images of 333 IDs in the training set and 333

different IDs in the test set. The standard probe and gallery

sets consist of 1,052 and 18,290 images respectively. The

data split statistics of both datasets are summarised in Table

1.

4.2. Implementation Details

We employ the ResNet50 [8] network architecture as the

base of our model. We train the model with minibatches

of size 8, using the Adam optimisation technique with a

learning rate of 0.0001, exponential decay rates set as fol-

lows: β1 = 0.9 and β2 = 0.999. The two image sizes used

were standard 224x224 and small (for the scaled branch)

160x160.

We measure the performance of our vehicle re-

identification methods according to the standard Cumula-

tive Matching Characteristic (CMC) and mean Average Pre-

cision (mAP). The CMC is computed on each individual

rank k as the cumulative percentage of correct matches ap-

pearing at ranks ≤ k. The mAP is calculated as the mean

over all query images of the Average Precision, which it-

self is calculated as the precision cut-off at each correct

recalled image position averaged over all possible correct

gallery images.

4.3. Evaluation on Veri776 Dataset

Firstly, we train and test on the VeRi-776 dataset in order

to compare with existing state-of-the-art methods with iden-

tical settings. In order to experiment the benefit of adding

each of the separate branches of our model, we take branch

A (vehicle identity) as our central branch, and all models

have an E consensus branch. We then perform experiments

where we include each of the other branches in turn. So

MTML-S refers to a model built from branches A, B and

E only, MTML-G has branches A, C and E only, and so

on. We then test versions of the model with three branches
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Dataset
Training Probe Gallery

#IDs #Imgs #Orients #IDs #Imgs #IDs #Imgs

VeRi-776 [16] 576 37778 8 200 1678 200 11579

CityFlow [25] 333 36935 - 333 1052 333 18290

Table 1: Details of the datasets employed for train and test.

Method mAP Rank-1 Rank-5

MSVF [11] 49.3 88.6 -

OIFE [26] 51.4 68.3 89.7

S-CNN+P-LSTM [20] 58.3 83.5 90.0

MTCRO [29] 61.6 87.2 94.2

MTCRO (ReRank) [29] 62.6 88.0 94.6

MTML-S 59.4 89.5 94.9

MTML-O 60.8 90.2 95.4

MTML-G 62.8 91.1 95.8

MTML-SG 63.7 90.6 95.8

MTML-OG 63.5 92.0 96.4

MTML-OSG 64.6 92.3 95.7

MTML-OSG (ReRank) 68.3 92.0 94.2

Table 2: Trained/tested on VeRi-776 only

plus E (e.g. MTML-SG includes branches A, B, C and E).

MTML-OSG (branches A, B, C, D and E) is then our full

model, and MTML-OSG (ReRank [34]) the results of the

full model after additional re-ranking. Table 2 shows the

results of this, with all experiments run for 150 epochs of

training. As can be seen, even before re-ranking, our full

model achieves state-of-the-art mAP and Rank-1 scores on

this dataset, of 64.6% and 92.3% respectively. And after re-

ranking the mAP score is increased to an impressive 68.3%.

The mAP results from the experiments also show how

the individual branches contribute to the performance, with

orientation (60.8%) improving over the result of scaled

analysis alone (59.4%), and grayscale doing even better

(62.8%). This demonstrates how allowing the model to

learn about the orientation of the vehicle at the same time as

identity can strengthen the performance. And that removal

of the colour during learning - though obviously a useful

indicator of identity at test time - allows for the model to

focus on the more discriminatory features of the identity

that ultimately boosts the re-id performance.

The combinations of three branches all show improve-

ment over only two, with MTML-SG and MTML-OG

achieving mAPs of 63.7% and 63.5% respectively. How-

ever they are still outperformed by combining all four

branches in the MTML-OSG model. These results show

that combining all the different signals for MTL does in-

deed allow for the overall model to perform better in the

final task of vehicle re-identification.

4.4. Evaluation on CityFlow Dataset

Method mAP Rank-1 Rank-5

Resnet50 [25] 25.5 41.3 -

MTML-S 17.0 40.4 53.3

MTML-G 19.6 44.5 58.4

MTML-SG 20.6 44.1 55.8

MTML-SG (ReRank) 25.7 43.4 47.2

Table 3: Trained/tested on CityFlow

VeRi-776 CityFlow

Method mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

MTML-S 58.4 88.5 94.6 18.9 40.6 53.3

MTML-O 59.2 89.9 94.9 20.3 44.3 56.0

MTML-G 61.6 89.7 95.1 21.6 46.1 57.5

MTML-SG 62.6 90.8 95.8 22.1 45.8 56.5

MLML-OG 62.0 91.2 95.6 22.9 46.6 58.2

MTML-OSG 62.6 90.6 95.5 23.6 48.9 59.7

MTML-OSG

(ReRank)

66.4 91.5 93.6 29.2 48.8 50.7

Table 4: Trained/tested on CityFlow+VeRi-776

We participated in Task 2 of the NVIDIA AI City Chal-

lenge 2019. The aim of this task was attempt city-scale

multi-camera vehicle re-identification. Multiple cameras

were placed at multiple intersections and no camera infor-

mation was provided about the images.

Two sets of experiments are conducted on CityFlow

benchmark: (1) Training on CityFlow, and (2) Training on

CityFlow and VeRi-776. For the first set of experiments, we

trained MTML-S (branch A, B and E), MTML-G (branch

A, C and E) and MTML-SG model only on CityFlow train-

ing data. Table 3 shows that: (1) MTML-G branch com-

bination is much better than MTML-S branch combination.

The potential reason is that grayscale analysis is more use-

ful than mult-scale in vehicle Re-ID. (2) Joint learning with

MTML-SG is better than any individual one of them on

mAP evaluation. Another interesting observation is that af-

ter re-ranking algorithm, mAP performance improves while

CMC performace drops. The possible reason is that more

similar image vehicles will get close after re-ranking. This

means some false matching images at high rank will “at-
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AP Query - Ranks(1-10)

a)

0.34

0.51

b)

0.19

0.81
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d)
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Figure 3: Qualitative comparison of example query images between experiments with and without inclusion of the orientation

branch. Rank-1 to Rank-10 is shown. Each pair compares MTML-SG (upper) to MTML-OSG (below) trained and tested on

the VeRi-776. AP refers to Average Precision of that query. Correct and incorrect identity matches are shown with green and

red borders around images, respectively.

tract” more false matching images after re-ranking. In such

a case, it will impact CMC performance.

Since the orientation label is only available in VeRi-776,

for training the full MTML model including orientation su-

pervisory signal, we did the second experiment which in-

cluded both this database plus CityFlow. Table 4 shows

that: (1) By adding VeRi-776 training data, with MTML-

S, MTML-G and MTML-SG, we all obtain a better mAP

and CMC performance on CityFlow than the model which

was only trained on CityFlow. Meanwhile, the mAP and

CMC performance is a slightly lower on VeRi-776 than the

model only training on VeRi-776. We suspect this is due to

training for a shorter period of time, as this experiment ran

for only 100 epochs, compared to 150. (2) By adding the

orientation branch, for the MLTML-OSG model, we obtain

the best mAP performance 62.6% and 23.6% on VeRi-776

and CityFlow respectively. This is improved to 66.4% and

29.2% with reranking. This shows that our method of mu-

tual learning between the orientation branch supervised by

orientation labels and the other branches supervised by ID

label is effective.

Qualitative results showing a comparison of rankings

with or without orientation branch are shown in Figure 3.

The advantage of learning both the orientation and ID sig-

nal can be seen in each pair where the MTML-OSG model

is able to rank very different views of the same ID vehi-

cle highly, which compares to the MTML-SG model which

can only find images containing similar viewpoints, many

of which are incorrect IDs (Figure 3(a,b,d)). It can also

be observerd that similar viewpoints are better grouped to-

gether in the ranks (Figure 3(c,d)).

5. Conclusions

Vehicle Re-ID is a difficult problem due to the fact that

the visual appearance of a vehicle instance may drastically

change due to diverse viewpoints and illumination, whilst

different vehicle instances of the same model type may

have a very similar appearance. In this paper, we propose

a novel Multi-Task Mutual Learning (MTML) deep model

to learn discriminative feature simultaeously from multi-

ple branches. Moreover, we design a consensus learning

loss function by fusing feature of the final convolutional
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feature maps from all branches. Extensive comparative

evaluations demonstrate the effectiveness of the proposed

MTML method in comparison to the state-of-the-art vehicle

Re-ID techniques on the a existing large-scale benchmarks

VeRi-776. We also yield a competitive performance on the

NVIDIA 2019 AI City Challenge Track 2.
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