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Abstract

Recently, many approaches have been addressed to re-

alize Multi-Target Multi-Camera(MTMC) vehicle tracking,

which is critical in intelligent transportation system (ITS).

Continuous improvements of MTMC have been limited by

two modules - trajectory feature representation and feature

metric in the city-scale camera condition. In this paper,

we propose a spatio-temporal consistency and hierarchi-

cal matching method to overcome the challenges. As first

step, a popular object detection and object tracking method

are implemented to detect vehicles and track them in single

camera, thus achieved high performance. The smoothness

of trajectory and slice direction of movement make spatio-

temporal consistency more confident. As second step, a

bottom-up hierarchical match strategy is used to match tar-

gets in different cameras. Top performance in City-Scale

Multi-Camera Vehicle Tracking task at the NVIDIA AI City

Challenge 2019 demonstrated the advantage of our meth-

ods.

1. Introduction

In recent years, the research on intelligent transporta-

tion system(ITS) has attracted much attention in academia

and industry. Video data collected by fixed multi-camera

are of great significance for traffic feature estimation, traffic

anomaly detection, multi-camera tracking and other appli-

cations. General object recognition/detection/tracking/re-

identification(ReID) has been extensively studied in the

past. But the image features of vehicles in traffic environ-

ment are obviously different from those of general objects,

so we can not directly reuse the algorithm modeled for gen-

eral object to the vehicles in traffic video scenario. The dif-

ficulty of vehicle tracking is that the similarity between dif-

ferent vehicles is very small, so sometimes the same vehicle

under different perspectives of the image will be very dis-

tinctive. High traffic density is and the serious occlusion

phenomenon bring great challenges to the multi-target and

cross-camera vehicles tracking.

In the past, a large number of excellent multi-target sin-

gle camera tracking(SCT) algorithms have emerged, how-

ever, the single-camera tracking of vehicles is still very

challenging, because many factors seriously interfere with

the performance of the tracking algorithm including real

traffic conditions, vehicle, aspect ratio, the image of the

scale of the local distortion, illumination changes and noise

interference and image fuzzy, and the shade between vehi-

cles and so on. Although the literature proposed a solution

to ease the occlusion, it still needs to develop robust single

camera tracking algorithm to accurately capture the vehicle.

Multi-camera tracking(MCT), sometimes interpreted as

re-identification, has been extensively studied in recent

years in the field of pedestrian tracking. The main idea is to

use the deep neural network as the feature extractor to calcu-

late the metric of the features and optimize the entire ReID

model pipeline, so as to achieve the state-of-the-art perfor-

mance. Pedestrian image is relatively simple compared with

the characteristics of the vehicle image, and the vehicle un-

der different perspective to observe with completely differ-

ent image characteristics, it brought great difficulties to the

vehicle ReID task, the scarce research on vehicle ReID is a

embarrassing situation, how to build a robust vehicle ReID

model for the whole process of MTMC used is also very

important. Besides, GPS information is significant com-

plement to MCT result, how to combine video information

with GPS location is a problem remain unsolved. The orga-

nization of our paper is described as follows: Section 2 in-

troduces several related works about single-camera tracking

and vehicle ReID, Section 3 describes our whole pipeline,

Section 4 shows our experimental results and we conclude

our paper in Section 5.
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Figure 1. Our whole pipeline consists of two parts: SCT and MTMC. Two critical methods in SCT function realization

are Object Localization and Tracking. In Object Localization, two algorithms, which are FPN detector and mapping from

bounding box to GPS location, are combined. GPS-based feature, as output of Object Localization, combined with image-

based feature achieved Tracking. MTMC module hierarchically matched Tracks from SCT, using fusion of ReID feature,

spatio-temporal feature and GPS-trajectory feature.

2. Related Works

2.1. Detection

Object detector is usually based on proposal. R-CNN[5]

is among the first CNN-based detection approach, which

generates proposal by selective search method [19]. Then

Fast R-CNN [4] is introduced to enable CNN feature map

to be shared in network. Faster R-CNN [16] further intro-

duce a Region Proposal Network(RPN) to improve proposal

quality, which greatly improves the detection performance.

Another option is one stage detection network, which pre-

dicts the bounding boxes without proposal generation, so it

can be more quickly. YOLO [14] and YOLOv2[15] regard

object detection as a regression problem, which split im-

age into multiple gird cells and predict the bounding boxes

and associated class probabilities in each grid cell. SSD[11]

predicts the bounding boxes of different scales in different

layers, which improves one stage detector performance in

complex scene. In conclusion, two stage (proposal-based)

detector focus on high accuracy while one stage detector

has advantage in speed.

2.2. Singlecamera tracking (SCT)

The main challenge of Single camera tracking is ob-

ject occlusion, recording frame loss and multi-target match-

ing between frames. In recent years, there have been two

main methods widely used for multi-target tracking. One is

to convert the MOT into a data association problem, such

as,Joint Probabilistic Data Association (JPDA)[3]. The

other is using Deep Neural Network (DNN) that simulta-

neously models association among indefinite number of ob-

jects. Heng et al. give a benchmark in large-scale single

object tracking[2]. Yao[23] et. provide a comprehensive re-

view of the state-of-the-art tracking methods, and classify

these methods into different categories, and identify new

trends.In order to compare diverse object tracking optimiza-

tion strategies, Xu. et. use the Expectation Over Trans-

formation (EOT) algorithm to generate physical adversaries

that fool tracking models[21].

2.3. Multicamera multiobject tracking (MTMC)

With the development of urban intelligence, using traf-

fic cameras as sensors have greatly improved the study of

multi-target multi-camera (MTMC) tracking[[17]]. Liu et.

propose a pipeline for multi-target visual tracking under

multi-camera system which extracts both appearance and

dynamic motion similarities[12]. To tackle loss of tracking

target, Wu et. propose a generic multiview tracking (GMT)

framework which the key point is a cross-camera trajectory

prediction network (TPN)[20].

2.4. Vehicle ReIdentification

Deep neural networks(DNN) benefits greatly to re-

identification. In recent years, many promising results have

been achieved in Person Re-identification. But few works

for car Re-Identifications. Zhtang et al[18]. extend their

work and fuse deep learning features, detected license plate

features and detected car types, for vehicle re-identification

which is selected as the winning method in NVIDIA AI City

Challenge 2017. In [13][1], license-based recognition and

comparison can be used in vehicle re-identification, But low

quality image capturing, low resolution license plate, fake
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license plate may make re-identification failure.

3. Methodology

First, two concepts need to be described, track and GPS-

trajectory. Each track contrains multiple images of the same

vehicle captured by one camera, while GPS-trajectory only

contains GPS coordinates and timestamp of one track.

3.1. Vehicle Detection based on FPN

Feature Pyramid Networks (FPN)[10] uses inherent

multi-scale, pyramidal hierarchy of deep convolutional net-

works to generate high quality feature map by fusing low-

level features with high-level semantic feature maps and

high-level features with rich location information, which

achieves the best performance in our task scene.

3.2. SingleCamera MultiVehicle Tracking

3.2.1 Tracking algorithm

Our tracking algorithm is based on ReId feature, spatio-

temporal feature and GPS information. For bounding box

pair 〈i, j〉 in adjacent frames, we define a tracking loss func-

tion as

losstracking(i, j) =‖ ri − rj ‖2 +λg ‖ gi − gj ‖2 (1)

where ri and rj are ReID feature vector with 2048 dimen-

sions, gi and gj are GPS coordinates with 2 dimensions,

λg is set as 0.05. Hungarian Algorithm[9] is used to find

bounding box pair with minimum loss function value.

3.2.2 Post processing

Lost target in tracking is widespread due to occlusion, to

solve this issue, the matching strategy is determined by two

different thresholds used in short and long term occlusion

respectively. And the thresholds are set based on the mini-

mum distance between tracks, which is defined as the mini-

mum ReID feature distance between the last three boxes of

the former track and the first three boxes of the latter track.

3.3. Vehicle ReIdentification

We use vehicle re-identificaion(ReID) model to achieve

multi-camera object tracking. A robust ReID model re-

quires training data of high quality. In order to obtain

promising performance in multi-camera tracking, we use AI

City Challenge dataset as our training data.

The dataset includes 333 different vehicle identities, we

split them to training set and validation set, among which

the training set contain 149 vehicle identities and the vali-

dation set contains 184 vehicle identities. The performance

of the model on the validation set is used to measure the per-

formance of ReID model. During model reasoning, video

Figure 2. ReID model pipeline

frame is extracted and cropped, then fed to ReID model for

inference.

The pipeline of the whole ReID model consists of two

parts, Resnet50[7] backbone network as the feature extrac-

tor and the loss function designed for ReID task. In the

pre-trained Resnet50 model, we follow the work in [22]

which effectively improves our ReID performance by intro-

ducing the bottleneck structure. The loss function includes

two parts: the cross entropy loss for classification and the

triplet loss for metric learning. Since the training set con-

sists of 149 vehicle identities, the output of the model is

the softmax classifier of dimension 149, for unseen vehi-

cle identities, we need features to embbed the same vehicle

identities into same space for different images, we introduce

triplet loss[8] to reduce the distance between the images in

the same class and enlarge the distance between the images

in different classes. In the process of model training, we use

the warmup strategy [6], so that the model can converge to

a better solution.

We pad the input cropped image by 10 pixels in border

replicate method, and resize it to 256 × 256, and feed it

to ReID model. Adam optimizer with a learning rate of

0.00035 is adopted to solve the model parameters. Ran-

dom horizontal flip, an augmented operation, is used in the

training process to obtain more training data. In the sam-

pling process, we set batchsize N = 64, and each batch

contained 4 vehicle identities. Triplet loss was calculated in

each batch for model optimization represented in formula,

xa
i is the anchor sample, xn

i is the farthest sample in the

same class with xa
i and x

p
i is the nearest sample in different

classes with xa
i . The whole loss function is formulated as

lt =

N
∑

i=1

[||f(xa
i )−f(xp

i )||22−||f(xa
i )−f(xn

i )||22+α]+ (2)

lc = −
N
∑

i=1

[
n
∑

j=1

yj log(xij)] (3)

loss(xi, yi) = lt + λ× lc (4)

We simply set λ = 1 here. Finally we get a promising

vehicle ReID model.

After obtaining all the features in the cropped image of

all single tracks, we use minimum distance value as the met-
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ric of two distinct tracks. We will show the ablation ex-

periment result for optimal calculation method for distance

metric in section 4.2.

3.4. GPStrajectory feature extraction

Based on detection and tracking results, we obtained a

large number of trajectories, each belonging to the same ve-

hicle. The trajectory and point in it can be represented as

pi = (id, loni, lati, ti) (5)

Traj = {p1, p2, p3, . . . , pn} (6)

where id identifies the trajectory, ti is timestamp of each

point pi, loni and lati are the longitude and latitude of the

vehicle in ti that we obtained from a transform matrix M

and coordinates in images. In addition, for a vehicle with

bounding box b = (x, y, w, h), we use point c = (x +
1

2
w, y + 4

5
h) to calculate its GPS coordinate, which can be

calculated by

(loni, lati, hi) = M · (cx, cy, 1)T (7)

Besides appearance feature, trajectory also has temporal

feature and 2D spatial feature. An innovative strategy is

employed to improve the matching accuracy and efficiency.

Firstly, we smooth the trajectory to remove outliers that

move too fast, which introduced by detection error or times-

tamp error. Secondly, we fully extract features of trajectory

in the following three aspects: direction of movement, min-

imum distance estimation and trajectory accessibility.

3.4.1 Trajectory smoothing

Since the speed of vehicles cannot change abruptly, we be-

lieve that there should be stability of speed between adja-

cent points. For all trajectories that contain more than three

points, we compare the speed among pi, pi−1, pi−2 with

λspeed to judge the point is outlier or not.Motion vector is

denoted as ~vi,i−1 = (loni − loni−1, lati − lati−1), and the

speed is calculated as

si,i−1 =
‖ ~vi,i−1 ‖2
ti − ti−1

(8)

There are three propositions to represent judgements, Q :
si,i−1 > λspeed, R : si−1,i−2 > λspeed, T : si,i−2 >

λspeed. Hence,we can judge pi is outlier by following nor-

mal form

”pi is a outlier” ⇔ Q ∨ (¬Q ∧R ∧ T ) (9)

λspeed is set as 80 in our experiments. Our outlier deletion

strategy is conservative in order to minimize the influence

of wrong deletion on trajectory matching.

Figure 3. The left line chart is speed before trajectory

smoothing, the right one is after smoothing.

3.4.2 Direction of movement

After we removed outliers, a roughly smooth trajectory can

be obtained, and the idea of slicing is introduced. For one

trajectory consists of s slices whose length is l, the average

value point of the j-th slice can be defined as

pj = (
1

l

∑j∗l

i=j∗l−l+1
loni,

1

l

∑j∗l

i=j∗l−l+1
lati) (10)

where j = 1, 2, . . . , s and then the motion vector of aver-

age value point in adjacent slices is calculated as ~vj+1,j =
(lonj+1− lonj , latj+1− latj), the sequence of motion vec-

tor is V = {~vj+1,j} , j = 1, 2, . . . , s − 1. For Trajp and

Trajq containing sp and sq slices respectively, whose mo-

tion vector sequences are Vp = {~vi+1,i} , i = 1, 2, . . . , sp−
1 and Vq = {~vj+1,j} , j = 1, 2, . . . , sq − 1, the similarity

sequence of two trajectories can be obtained by computing

cosine similarity in pairs

simp,q =

{

~vp
T
~vq

‖ ~vp ‖
2
‖ ~vq ‖

2

}

(11)

where ~vp ∈ Vp, ~vq ∈ Vq . simp,q represents the similarity of

two trajectories. The length of slice l and λsim are empiri-

cally set as 10 and -0.5 to judge direction consistency.

3.4.3 Minimum distance estimation

With the same slicing idea, the minimum distance between

Trajp and Trajq can be estimated as the minimum dis-

tance between their average value points of each slice, pp =
(lonp, latp) and pq = (lonq, latq). The distance sequence

is given by

Dp,q = {‖ (lonp − lonq, latp − latq ‖2} (12)

We believe that the matching probability is very limited

if the minimum distance between two trajectories is large

enough.
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Figure 4. Trajectory slicing. The red dots and blue dots

represent points belong to adjacent slices, and the green

arrow is motion vector between adjacent slices.

3.4.4 Trajectory accessibility

For Trajp and Trajq , the accessibility that Trajp can ac-

cess Trajq is calculated as following algorithm 1.

Algorithm 1 Accessibility calculation

Input: Dismin, Simmax, vp0,q0 , vmean, S

Dismin and Simmax are minimum distance and maxi-

mum similarity between two trajectories.

vp0,q0 is the motion vector between start points.

vmean is the average motion vector of one trajectory.

S is function to compute similarity between vectors.

Output: σ, the accessibility from one trajectory to the

other one.

1: σ = 1

2: if Dismin>λdis then

3: σ = 0

4: else if Simmax<λsim

or S(Vp0,q0 , Vmean)<λsim then

5: σ = -1

6: end if

7: return σ

σ is 1 represents there is probability one trajectory can

access the other one, and -1 represents there is not, and 0

indicates two trajectories may have some overlapping parts.

λdis is set to 10 in our experiments.

In this part, we smooth the GPS-trajectory, calculate the

movement direction similarity, minimum distance and ac-

cessibility between trajectorie pairs. Our strategy keeps the

results as raw as possible and provides a large index table to

Multi-Target Multi-Camera Tracking.

3.5. MultiTarget MultiCamera Tracking

To improve the accuracy of track matching, we use three

stages operation:

1. Matching tracks based on ReID features.

2. Finetuning Matching tracks based on multi-source in-

formation

3. Post-processing for remaining single track.

3.5.1 Basic Components

Time IoU Two adjacent tracks of the same car usually

have similarities in time. Here we use IoU of two time pe-

riods to judge the similarity of time.

IOUtime =
t1 ∩ t2

t1 ∪ t2
(13)

Due to noise in video transmission, which is common

in real deployed systems, some frames are skipped within

some videos, so reasonable time fluctuations are allowed.

For time period t = (s0, s1) ,we broadened the period to

enhance his fault tolerance t+ = (s0 − δ, s1 + δ).

IOUtime+ =
t1+ ∩ t2

t1+ ∪ t2
(14)

Track Direction Similarity In 3.4 section, we defined

how to calculate the cos value of the angle between two

trajectories. Here, when the angle between two trajectories

is greater than the threshold th, we consider that the two

trajectories are in the same direction.

3.5.2 Multi-Target Multi-Camera Tracking

Algorithm 2 Track matching

Input: AllTracks, th1, th2, th3,D, C, R

AllTracks is all tracks.

thressim is threshold for deep feature similarity.

D, C and R are functions judging movement directions

and camera id consistency, deep feature similarity of

two tracks.

Output: OutputTracks, the fused tracks.

1: for round in (1,2,3) do

2: for 〈Trackp, T rackq〉 in AllTracks do

3: d = D(Trackp, T rackq)

4: c = C(Trackp, T rackq)

5: r = R(Trackp, T rackq)

6: if d is True and c is False and r < thressim then

7: OutputTracks.append(Trackp + Trackq)

8: else

9: OutputTracks.append(Trackp)

10: OutputTracks.append(Trackq)

11: end if

12: end for

13: end for

14:

15: return OutputTracks

stage 1 matching tracks based on ReID features In

this stage, we focus on high precision, mainly using Reid
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Figure 5. Single target recorded using multiple cameras; The figure demonstrated the matching of GPS-trajectory.

features to match, merging tracks with high similarity of

Reid features, two matching tracks are required from dif-

ferent cameras, and can also be matched successfully when

IOUtime+ > 0.

Stage 2 for crossroads scene For crossroads scene, a

same car should be imaged by different cameras at the same

time, and the direction of movement should be consistent.

In addition, we find that for the same car in multi cameras,

the images with the same vehicle orientation has higher sim-

ilarity of deep features, while for the images with different

orientation, we loosen the requirements of matching to im-

prove the recall rate.

stage 2 for arterial road scene In arterial road scene, we

also require consistency in the moving direction. But in this

scene, the car orientation is less important. Because of the

more various camera viewpoints, which leads to a relatively

comprehensive features in orientation. So we reduce the

weight of ReID feature importance, tracks that are tightly

connected in both time and trajectory should be more likely

same vehicle, in this case, we mainly focus on time and

trajectory feature.

stage 3 post-processing for remaining single track For

the final single track, matching requirements will be relaxed

to improve recall. This part of the matching is also opti-

mized for two different scenarios, and the method is the

same as the second stage. The difference is that at this

stage, only those single tracks are processed, and the match-

ing threshold is improved.

3.5.3 Improve Localization Accuracy Based on Bird’s-

eye View

To match more tracks, we used bird’s-eye view to analyze

hard examples as shown in Figure 7. In previous section, we

don’t use overlapped information from different cameras.

Figure 6. We use 3D grids ROI(left) rather than road

ROI(right) because of more accurate GPS location as de-

scribed in official readme file.

Figure 7. We visualize the 3D grid ROI in left and render

real traffic scenarios in ROI in middle image, then we plot

all vehicle trajectory of crossroads scene in right.

But this kind of information is very important for crossroad

scene. In crossroad scene, the same car’s GPS-trajectories

viewed by different cameras, should be highly similar. In

order to get more accurate GPS-trajectory, We have done

three tricks on the GPS trajectory: 1. we choose the bottom

center of the bounding box according to principle of projec-

tion. 2. As is shown in Figure 6, we only use the GPS coor-

dinates in the given 3D grids ROI. 3. As is shown in Figure

8, we only use the trajectory information in the overlap of

multi-camera. With high accurate GPS-trajectories, we can

match the same tracks more easily as shown in Figure 5.
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Figure 8. We can match two tracks with different appear-

ance feature by using trajectory in the overlapping area.

4. Experimental Results

Our proposed methods are submitted for evaluation on

the NVIDIA AI City Challenge 2019, in which we partici-

pate in track1: City-Scale Multi-Camera Vehicle Tracking.

Our team achieves top performance in this track. The visu-

alization of our qualitative performance is shown soon on

our website. Detailed analyses on our performance are as

follows. Experiments of Table 1 to Table 5 is based on the

validation dataset including 184 vehicle identities, while the

result in Table 6 is based on the test dataset including 482

vehicle identities.

4.1. SingleCamera Tracking

Method IDF1 IDP IDR

DS+YOLO 78.9% − −
DS+SSD 79.5% − −

DS+FRCNN 78.9% − −
TC+YOLO 79.1% − −
TC+SSD 79.7% − −

TC+FRCNN 78.7% − −
MO+YOLO 77.8% − −
MO+SSD 72.8% − −

MO+FRCNN 75.6% − −
ReID+GPS 82.1% 79.6% 84.8%

ReID+GPS+Post 83.2% 82.4% 84.0%

Table 1. Comparison among various methods with our

MOT approach on the AI city Dataset.

The dataset contains 3.25 hours(195.03 minutes) of

videos collected from 40 cameras spanning 10 intersections

in a mid-sized U.S. city. The resolution of each video is

at least 960p and the majority of the videos have a frame

rate of 10 FPS. The task of each team is to detect and track

targets with multiple cameras. For MTMC tracking, this

track is evaluated based on IDF1 score[17] and rand the

performance. IDF1 measures the ratio of correctly iden-

tified detections over the average number of ground-truth

and computed detections. As shown in Table 1, compared

with state-of-the-art Single-camera tracking algorithm, our

method performs better.

4.2. Trackbased ReID

We evaluate the effects of different strategies on Track-

based ReID, and finally select the minimum feature distance

between two tracks as the measure for Track-based ReID.

Strategy F1 Precision Recall

Average feature distance 46.3% 57.5% 38.8%
Mean of all feature distance 45.5% 55.6% 38.5%
Min of all feature distance 54.1% 67.1% 45.3%

Table 2. Comparison among various features for track-

based ReID task.

4.3. GPStrajectory direction optimization

We experiment on the MTMC task with simple head-tail

directions and slice directions respectively.Our slice method

has improved by 1.6%, and trajectory smoothness is also

helpful to the improvement of results.

Method IDF1 IDP IDR

Head-tail Direction 68.6% 76.53% 62.21%
Slice Direction 70.2% 77.83% 63.97%

Smooth Slice Direction 70.71% 78.42% 64.38%

Table 3. Comparison among various direction features on

the AI city Dataset.

4.4. Track Matching

In this place, we compare two matching strategies. Hi-

erarchical matching consists of three different stages, while

the simple matching only uses the second stage of hierar-

chical matching.

Method IDF1 IDP IDR

Simple Matching 63.72% 78.14% 53.79%
Hierarchical Matching 70.71% 78.42% 64.38%

Table 4. Comparison among various matching pipelines on

the AI city Dataset.

4.5. Ablation Experiments

Ablation experiment result is shown in Table 5. In

baseline, two tracks can be matched only when their

IOUtime+ ≥ 0, but we use different thresholds for

IOUtime+ ≥ 0 and IOUtime+ < 0 respectively, which

is called soft time condition. Soft time condition improves

IDF1 by 1.39%. In addition, we add vehicle orientation as

228



Baseline

Soft Time Condition
√ √ √ √ √

Vehicle Orientation
√ √ √ √

Single Track Matching
√ √ √

Parameter Searching
√ √

Accurate Localization
√

IDF1 65.53% 66.92% 67.78% 68.52% 70.71% 71.71%

Table 5. Ablation experiment result on AI City Challenge.

one of the matching features in crossroads scene, and the

result is further improved. The vehicle orientation is ob-

tained from movement direction in image. Then, parameter

searching is used to search the best super parameter auto-

matically for Algorithm 2. Single track matching and ac-

curate localization have been described in 3.5.2 and 3.5.3.

Finally, we got 71.71% result in this dataset as is shown in

Table 5. There are 22 submissions in total for this track, the

quantitive comparison of IDF1 scores across top ten teams

is presented in Table 6.

Rank Team ID IDF1

1 21 70.59%
2 Ours 68.65%
3 12 66.53%
4 53 66.44%
5 97 65.19%
6 59 59.87%
7 36 49.24%
8 107 45.04%
9 104 33.69%

10 52 28.50%

Table 6. Comparison of performance with other teams.

5. Conclusion

In this paper, we propose a spatio-temporal consistency

and hierarchical matching method for vehicle tracking in

across cameras. Our intuition is to combine the spatial and

time feature for characterizing the targets and leverage a

bottom-up hierarchical matching strategy to compare tar-

gets in different cameras. Our framework includes several

components for city-scale multi-camera vehicle tracking.

Firstly, we leverage FPN to detect vehicles and object track-

ing methods to track vehicles in single camera. Further-

more, a spatio-temporal consistency method is proposed to

extract features of target vehicle. Finally, a bottom-up hi-

erarchical match strategy is proposed to match targets in

different cameras. Our method is validated in City-Scale

Multi-Camera Vehicle Tracking task at the NVIDIA AI City

Challenge 2019, and the experiment results demonstrate ad-

vantages of our proposed method.

References

[1] Christos-Nikolaos E Anagnostopoulos, Ioannis E Anagnos-

topoulos, Ioannis D Psoroulas, Vassili Loumos, and Elefthe-

rios Kayafas. License plate recognition from still images and

video sequences: A survey. IEEE Transactions on intelligent

transportation systems, 9(3):377–391, 2008. 2

[2] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia

Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.

Lasot: A high-quality benchmark for large-scale single ob-

ject tracking. arXiv preprint arXiv:1809.07845, 2018. 2

[3] Thomas Fortmann, Yaakov Bar-Shalom, and Molly Scheffe.

Sonar tracking of multiple targets using joint probabilistic

data association. IEEE journal of Oceanic Engineering,

8(3):173–184, 1983. 2

[4] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1440–1448,

2015. 2

[5] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

580–587, 2014. 2

[6] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large mini-

batch sgd: Training imagenet in 1 hour. arXiv preprint

arXiv:1706.02677, 2017. 3

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 3

[8] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In de-

fense of the triplet loss for person re-identification. arXiv

preprint arXiv:1703.07737, 2017. 3

[9] Harold W Kuhn. The hungarian method for the assignment

problem. Naval research logistics quarterly, 2(1-2):83–97,

1955. 3

[10] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2117–2125, 2017. 3

[11] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European con-

ference on computer vision, pages 21–37. Springer, 2016. 2

229



[12] Wenqian Liu, Octavia Camps, and Mario Sznaier.

Multi-camera multi-object tracking. arXiv preprint

arXiv:1709.07065, 2017. 2

[13] Xinchen Liu, Wu Liu, Huadong Ma, and Huiyuan Fu. Large-

scale vehicle re-identification in urban surveillance videos.

In 2016 IEEE International Conference on Multimedia and

Expo (ICME), pages 1–6. IEEE, 2016. 2

[14] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016. 2

[15] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,

stronger. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7263–7271, 2017. 2

[16] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 2

[17] Zheng Tang, Milind Naphade, Ming-Yu Liu, Xiaodong

Yang, Stan Birchfield, Shuo Wang, Ratnesh Kumar, David

Anastasiu, and Jenq-Neng Hwang. Cityflow: A city-scale

benchmark for multi-target multi-camera vehicle tracking

and re-identification. arXiv preprint arXiv:1903.09254,

2019. 2, 7

[18] Zheng Tang, Gaoang Wang, Hao Xiao, Aotian Zheng, and

Jenq-Neng Hwang. Single-camera and inter-camera vehicle

tracking and 3d speed estimation based on fusion of visual

and semantic features. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 108–115, 2018. 2

[19] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gev-

ers, and Arnold WM Smeulders. Selective search for ob-

ject recognition. International journal of computer vision,

104(2):154–171, 2013. 2

[20] Peng Wang and Qiang Ji. Robust face tracking via collabo-

ration of generic and specific models. IEEE transactions on

image processing, 17(7):1189–1199, 2008. 2

[21] Rey Reza Wiyatno and Anqi Xu. Physical adversarial

textures that fool visual object tracking. arXiv preprint

arXiv:1904.11042, 2019. 2

[22] Fu Xiong, Yang Xiao, Zhiguo Cao, Kaicheng Gong, Zhi-

wen Fang, and Joey Tianyi Zhou. Towards good prac-

tices on building effective cnn baseline model for person re-

identification. arXiv preprint arXiv:1807.11042, 2018. 3

[23] Rui Yao, Guosheng Lin, Shixiong Xia, Jiaqi Zhao, and Yong

Zhou. Video object segmentation and tracking: A survey.

arXiv preprint arXiv:1904.09172, 2019. 2

230


