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Abstract

In this paper, we tackle the problem of vehicle re-

identification, which has extensive applications in traffic

analysis such as anomaly detection, congestion pricing and

tolling. While previous methods extract visual features from

the images and then use spatio-temporal regularization to

further refine the results, our method focuses on extract-

ing purely visual features from vehicle images and then fur-

ther employs a re-ranking technique to improve results. We

evaluate the proposed pipeline on the VeRi and CityFlow

(NVIDIA AI City Challenge 2019) datasets. Experiments

show that our pipeline achieves state of the art performance

on the VeRi dataset. We also perform extensive analysis on

each step of the pipeline and demonstrate how they increase

overall performance.

1. Introduction

Vehicle re-identification (Re-ID), deals with associating

the image of a vehicle obtained from one camera with the

images of the same vehicle as it re-appears in the same or

different non-overlapping cameras. These cameras may be

situated at completely different geographical locations and

the algorithm tracks the vehicle across different cameras.

The task of Re-ID is very similar to that of image retrieval,

as it deals with matching a queried object against a set of

objects in the image gallery. The algorithm, which is used

for retrieval, works by ranking the gallery images in the as-

cending order of their distances from the query image. The

images which are ranked higher are expected to be the cor-

rect matches. There are several use-cases of Re-ID in crowd
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Figure 1: Challenges in vehicle Re-ID:- (a) A scenario

where the same car looks different due to varying illumi-

nation, viewpoints and partial occlusions. (b) The effect of

shadows and sunlight causing the change in the perceived

color. (c) A scenario where four distinct cars look very sim-

ilar from a common viewpoint.

monitoring and anomaly detection, but more recently it has

found widespread adoption in traffic analysis and monitor-

ing. When compared to person Re-ID, vehicle Re-ID is

much more challenging as demonstrated by Zhou et al. [21]

and in Figure (1). This is primarily because in person Re-

ID, there are several distinctive features available for the

model - e.g. the color of the upper and lower clothing. The

model can consider various features like the color combina-

tion of clothing, the texture of clothes, features attributed to

a person, and so on. These features are noticeable and quite

distinctive regardless of the pose of the person, as shown

Figure (2).

When it comes to vehicle re-identification, there is a no-

ticeable similarity between different aspects of two vehi-

cles, apart from colors. Hence, it is difficult to differentiate

between cars of the same make and color. A straightforward

approach is to implement a robust number plate recognition

system as it would provide us with a unique identity for

every vehicle. Previous contributions [5, 13] have demon-

strated that automatic recognition of license plates as a glob-
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Figure 2: In the task of person Re-identification, the view-

point or pose of a person in an image does not have any

major influence on the model inference. It can be observed

that the color combination of discernible attributes (shirt,

trousers, accessories) are prominently visible in different

views (Image courtesy: Zheng et al. [18])

ally unique identifier provide state-of-the-art performance

in vehicle identification. However, in practice it is not al-

ways feasible to extract the number plate information from

all vehicles due to occlusions, variation in lighting, shadows

and/or poor image quality. Thus, it is necessary to develop

methods that can extract and process visual features of a

vehicle in order to implement Re-ID for practical scenarios.

Figure (1) highlights some real-world obstacles faced by

vehicle Re-ID. The two major ones are:

• The same vehicle, when in a different orientation/pose

or viewed from different viewpoints looks consider-

ably different.

• Different vehicles look similar from the same view-

point, especially when the two vehicles are of the same

model and color (e.g.: two different black colored

sedans).

Taking these variations into consideration, our objective

is to develop a model which can generate an embedding

that is not only unique for each vehicle, but also invariant

to illumination and the pose of the vehicle. Previous works

by Zhou et al. [21] and Wang et al. [15] attempt to tackle

the problem of pose variation. Zhu et al. [22] proposed an

unconventional and novel way to pool features in order to

make the embedding generated by a vehicle pose invariant.

In this paper,

• we experiment with different loss functions and com-

pare their performance on two distinct datasets viz;

VeRi [8] and CityFlow [14] datasets.

• re-ranking [19] is used as a post-processing step to fur-

ther improve the performance.

2. Related Work

Convolutional Neural networks (CNNs) produce state of

the art results on a variety of computer vision and pattern

recognition tasks. Contributions such as Orientation Invari-

ant Feature Embeddings[15] make use of datasets with an-

notated key-points to generate salient regions in an image.

This approach is analogous to attention maps generated in

a CNN, along the lines of making the model pose invari-

ant. According to Wang et al. [15], 20 key-points were ex-

tracted from a vehicle to discriminate it from other vehicles.

Based on the viewpoint of the vehicle, in any given image a

set of key-point based features were extracted to produce a

saliency map. Further, four different models were used for

each of the 4 distinct viewpoints. Each of these four net-

works consist of an hourglass architecture and each of them

determine the various saliency regions in the image. The

feature vectors from each network are weighted based on

the pose of the vehicle. This weighted feature vector is then

passed to a fully connected layer to generate a final single

embedding vector.

Zhou et al. [21] proposed a framework in which a net-

work was trained to classify various vehicle attributes such

as color, model, viewpoint to name a few. Intermediate fea-

tures from the trained network were passed through an at-

tention model in order to obtain the attentive features for

five different views. These attentive features were then

concatenated and trained with an adversarial loss function,

where the generator network was used to generate the fea-

tures of the same vehicle for different viewpoints. Zhou

and Ling [20] develop on their previous work [21] which

deals with predicting the features of unseen views using

bi-directional LSTM. The network was trained to mini-

mize multiple loss functions namely contrastive loss, re-

construction loss and adversarial loss.

Zhu et al. [22] introduced a method for pooling features

(from the penultimate layer of the network) in four different

directions, in order to learn a much better representation of

the data. Instead of Global Average pooling, the features

were pooled along the diagonal, anti-diagonal, horizontal

(rows) and vertical (columns) directions. These extracted

features were then fused together to obtain a single vector

representation of the vehicle. Most models use the triplet

loss or a variant of it to differentiate between similar look-

ing vehicles. To minimize the effects of biased anchors, Liu

et al. [7] proposed a method of replacing the anchor in the

triplet loss with the center of the feature embedding of each

class. They also trained their deep learning model in a hi-

erarchical way, beginning with vehicle model classification

(SUV, Sedan, etc.) followed by vehicle identity classifica-

tion. Bai et al. [1] proposed sub clustering in triplet loss

to handle intra-class variance. Kumar et al. [6] proposed a

weighted triplet loss, where the positive score and the neg-

ative score used in the triplet loss are scaled in a multino-

mial fashion. This aided in achieving state of the art results

on the VeRi dataset. Liu et al. [9] proposed a method to

progressively refine the list of retrieved images for a given
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query. Initially, a ranked list was obtained based on the sim-

ilarity of visual feature embeddings. In order to obtain this

embedding, a Siamese CNN was trained with contrastive

loss. Based on the presence of license plates in the image

the plates are identified and scanned. The list of retrievals

was then refined using the extracted number plates. Addi-

tionally, to make the model more robust, spatio-temporal

information was incorporated into the distance metric in or-

der to enhance the retrievals of visually similar vehicles.

Shen et al. [12] used an LSTM to obtain a path pro-

posal for each query image based on its spatio-temporal in-

formation. Wang et al. [15] enhance their results by mod-

elling the camera transition probabilities using random vari-

ables. However, incorporating spatio-temporal information

requires much more data which is not always available.

Thus, the most simple and sophisticated model would be

based on features extracted visually from an image, as they

can directly be compared against the features extracted from

any other vehicle image.

3. Methodology

3.1. Data

The model was evaluated on the CityFlow dataset from

the NVIDIA-AI City Challenge track 2. The dataset con-

sists of 56,277 images captured from 40 different cameras

out of which 36,935 images of 333 unique vehicles are pro-

vided with annotations for training. The remaining 18,290

images of other 333 vehicles make up the test set, which

serves as the ‘gallery’ to get the retrievals from. In the

dataset provided by the organizers, a set 1052 images forms

the ‘query’ set.

To find the optimal model and the hyper-parameters as-

sociated with it, the provided training set was split into

training and validation sets. From the set of 333 unique

vehicles in the training set, images corresponding to 266

vehicle identities (29,649 images) were randomly picked to

form the training data. The remaining 7,286 images cor-

responding to 67 identities serves as the validation data for

our model. A query set was made by picking out 67 vehicles

(one from each vehicle identity) from the training set.

To measure the robustness of our model, the model was

tested on the VeRi Dataset [8]. This dataset comprises train-

ing 37,781 images with 576 distinct vehicles. The ‘gallery’

comprises 200 distinct vehicles (13,257 images), while a

cohort of 1678 images representing 200 vehicle ids form

the ‘query’ set.

3.2. CNN Architecture for Vehicle Re­Identification

For the the backbone of our network, we use the

Multi-Layer Factorisation Network (MLFN) as proposed by

Chang et al. [2]. This network consists of several MLFN

blocks; each block consists of multiple Factor Modules

(FM) and a Factor Selection Module (FSM). All the Factor

Modules are identical and consist of a set of convolutional

layers. The FSM is responsible for the selection of the Fac-

tor Modules in a block. In an MLFN block, any number of

Factor Modules can be activated based on the output from

the Factor Selection Module. Figure (3) shows a schematic

of this model.

In the MLFN architecture, Factor Modules which are on

the same level in the MLFN blocks (B1, B2 ....BN ) can be

interpreted as a separate network. Each set of FMs could

be responsible for generating the features corresponding to

a particular view of a vehicle. The Factor Selection Module

in each block selects which FM are important based on the

viewpoint of the vehicle.

We experiment by training the network with the follow-

ing losses -

• Cross-Entropy Loss

• Hard Triplet Loss[4] + Cross Entropy Loss

• Center Loss[17] + Cross Entropy Loss

• Additive Angular Margin Loss[3] + Cross Entropy

Loss

All the losses are fused with Cross Entropy Loss to stabilize

the training process.

3.3. Cross­Entropy

We use conventional cross-entropy loss after the final

softmax layer. The softmax layer outputs the log of prob-

abilities. In Eq.[1], xi ∈ R
d denotes the deep feature of

the ith sample which belongs to the ythi class. Wj ∈ R
d de-

notes the jth column of the weight W ∈ R
d×n and bj ∈ R

n

the bias term. The variables N and n are the batch size and

class number, respectively. A softmax layer followed by a

cross entropy loss is widely used for classification. How-

ever, this approach does not explicitly optimize for the task

of obtaining a good feature embedding.

L = −
1

N

N
∑

i=1

log

(

e
(WT

yi
xi+byi )

∑n

j=1 e
(WT

j
xi+bj)

)

(1)

3.4. Additive Angular Margin Loss (ArcFace)

Deng et al. [3] set the bias term bj to 0 in Eq.1, and

then transform the logit as per ‖Wj‖ ‖xi‖ cos(θj), where

θj is the angle between weight Wj and the feature xi. The

weights Wj and the embedding feature xi were normalized

using l2 normalization. The normalized embedding feature

was then re-scaled to s = 30 (hyperparameter). These nor-

malizations restrict the predictions to depend only on the an-

gle θj between feature vectors and the weights. The learned

embedding features form a distribution on a hypersphere
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Figure 3: Multi-level Factorization Network (MLFN)

with a radius s. This forms the Additive Angular Margin

Loss (ArcFace) shown in Eq. [2].

L = −
1

N

N
∑

i=1

log

(

escos(θyi )

escos(θyi ) +
∑n

j=1,j 6=yi
e(scosθj)

)

(2)

To increase intra-class compactness, a marginal penalty m

was added to the angle between xi and Wyi
, Eq.[3].

L = −
1

N

N
∑

i=1

log

(

escos(θyi+m)

e(scosθyi+m) +
∑n

j=1,j 6=yi
e(scosθj)

)

(3)

3.5. Center Loss

The idea behind center loss [17] is to pull all the features

of a class together and make them converge at a single point.

Ideally, this is what is required for vehicle Re-ID where the

features of the vehicle should be the same irrespective of the

viewpoint.

Lc =
1

2

N
∑

i=1

‖xi − cyi
‖
2

(4)

In Eq.4, cyi
∈ R

d denotes the center of deep features

corresponding to the ythi class. This formulation is effec-

tive to model the intra class variations. Ideally, cyi
should

be updated once all the samples corresponding to the ythi
class have been passed through the network. However, this

is impractical since all images corresponding to the same

class cannot be sent in a single batch. During implemen-

tation, the centers are updated after each mini batch. Using

Cross Entropy Loss alone results in feature embeddings that

have large intra class variation while using center loss alone

could result in the learnt features and sphere centers even-

tually degrading to zero, i.e., the loss becomes zero without

the model learning the necessary features.

3.6. Hard Triplet Loss

Schroff et al. [11] proposed a modification to the large

margin nearest neighbor loss[16] called the triplet loss. The

hypothesis behind this kind of loss formulation was that the

largest intra class distance in the training samples should be

lower than the smallest inter class distance. However, since

it is not possible for a network to generate extremely similar

features for the same vehicle in drastically different view-

points and scenarios, this loss formulation ensures that the

features of the same car are closer in the embedded vector

space as compared to the features of a different car.

La
tri(a) =

∑

a,p,n

[m+Da,p −Da,n] (5)

Given an anchor point xa, the projection of a positive point

xp (belonging to the same class as the anchor) is closer to

the anchor’s projection, than that of a negative point xn (be-

longing to a different class). Further, the margin m in Eq.[5]

ensures that these two classes are separated by at least a

margin of m. We follow the approach as proposed by Her-

mans et al. [4]. Computing triplet loss is expensive, so it is

important to sample effective data points for the triplet loss.

If the data points given to the model for training are triv-

ial, this would make the algorithm converge faster as it is

easier to satisfy the condition, and make the model perform

poorly on non-trivial data points. On the other hand, train-

ing the model only with hard (non-trivial) samples makes
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it vulnerable to outliers. Thus, it is important to train the

model with a mixture of trivial and non-trivial data-points.

In the context of vehicle Re-ID, the trivial data points would

be those where the same vehicle in the same pose is given as

the positive sample point to the anchor. For a given anchor

xa, a hard positive data point corresponds to images of xa

acquired from different viewpoints.

Hermans et al. [4] construct a training batch by ran-

domly sampling P identities from the training sample, and

then randomly sampling K images for each identity, yield-

ing a batch of (P × K) images. They have demonstrated

the performance of two methods on a batch of images,

Batch Hard and Batch All. In the Batch Hard technique,

only those triplets are formed from a batch, per anchor,

which consist of the hardest positive and the hardest neg-

ative corresponding to that anchor. This way, we will ob-

tain (P ×K) samples per batch. In the Batch All method,

all the possible triplets for every anchor are sampled and

presented to the model. This way we will end up with
(

P ×K × (K − 1)× (PK −K)
)

triplets.

3.7. Training Procedure

We use the network architecture as the one described by

Chang et al. [2]. We stack 16 MLFN blocks with each block

containing 32 Factor Modules. Correspondingly, we get a

32-D Factor Solution Module (FSM) output vector. This re-

sults in a 32 × 16 = 512-dimension Factor Signature. The

embedding feature dimension is set to 1024. The network

was trained for 80 epochs. The learning rate is set to 0.0003
and then reduced by a factor of 10 after 20 and 40 epochs.

The parameters of the network were updated to minimize

one of the loss functions mentioned in 3.2. For networks

trained with Triplet, Center and ArcFace loss, the loss is

summed with Cross-Entropy loss to stabilize the training

process. The parameters of the network were learned to

minimize the loss function with AMS Grad[10] as the opti-

mizer.

The images were resized to a dimension 224 × 224 us-

ing bilinear interpolation. Further the images were flipped

along the vertical axis. The brightness and contrast of the

images were randomly varied by a factor of ±0.2% and

±0.15% respectively so as to make the model robust to il-

lumination changes. Batch size was set to 128, with 8 in-

stances per id.

3.8. Testing Procedure

During inference, images were resized to 224× 224 and

no further data augmentation techniques were used. The

final classification layer was removed to attain a 1024 di-

mension feature vector. Cosine distance was used as the

similarity metric between two feature vectors. The feature

embeddings were l2 normalized to a unit vector before com-

puting the cosine distance.

Model mAP (lr = 0.0003) mAP (lr = 0.00003)
MLFN-Triplet 57 40.2

MLFN-ArcFace 36.2 19.6

MLFN-Center 40.7 18.5

Table 1: Performance on the AICity held-out dataset. lr

is the learning rate and MLFN stands for Multi-Level Fac-

torisation Net, the backbone network which was trained on

Triplet, ArcFace and Center Loss.

4. Results

4.1. Evaluation Metric

Mean Average Precision was used to evaluate the model.

For each query, we calculate the area under the Precision-

Recall curve, which is known as average precision (AP) for

that query. The mean value of APs of all the queries is the

mean average precision (mAP).

4.2. Hyper­Parameter Optimization

For CNNs learning rate, loss function and the number of

layers are few of the hyperparameters. In this paper, choice

of the learning rate and the loss to be minimized were cho-

sen based on the performance on the “held out data”. Table

1 compares the performance of the network when trained

using different learning rates and various loss functions.

From the table it was observed that the network trained with

a learning rate of 0.0003 with Triplet loss and Cross entropy

as the loss function produced better performance than net-

works trained with other configurations.

Table 2 illustrates the performance of the network on

VeRi dataset when trained with different hyperparameter

settings. Similar to the AI city ‘held out test data’, it was

observed that the model trained with learning rate of 0.0003

with triplet loss and cross entropy as the joint loss function

produced better performance.

4.3. Performance on Challenge Data

The trained network was tested on the CityFlow dataset

which was made available by the organizers of Nvidia AI

City Challenge 2019. The resulting performance metrics

were obtained by uploading our results to the online portal

provided by the AI City Challenge.

It was observed that the post processing technique, i.e.,

re-ranking of the retrieved results aided improved mAP by

4.5%, Table 3. Figure 5 (a),(b) show the results before and

after the post-processing step. Out of 84 teams, the pro-

posed solution was placed 54th.

4.4. Performance on VeRI dataset

To gauge the robustness of the model, the model was

evaluated on the VeRi dataset. On the test data, with mean
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Model mAP (lr = 0.0003) mAP (lr = 0.00003)
MLFN-Triplet 66.1 60.3

MLFN-ArcFace 19.2 35.1

MLFN-Center 34.3 49.42

MLFN-Xent 64.9 –

Table 2: Performance on VeRi dataset. lr is the learning

rate and MLFN stands for Multi-Level Factorisation Net,

the backbone network which was trained on Triplet, Arc-

Face and Center Loss.

Model mAP

MLFN+Triplet 23.1

MLFN+Triplet+Re-Rank 27.6

Table 3: Performance of MLFN trained with Triplet loss on

AICity test dataset with learning rate of 0.0003. Second row

shows the model performance after Re-Ranking the results.

Method mAP top-1 top-5

Our Method + ReRanking 71.78 92.55 95.173

Batch Sampling[6] 67.55 90.23 96.42

Our Method 66.06 91.78 96.42

GSTE[1] 59.47 96.24 98.97

VAMI[21] 50.13 77.03 90.82

VAMI+ST[21] 61.32 85.92 91.84

OIFE[15] 48.00 89.43 -

OIFE+ST[15] 51.42 92.35 -

PROVID[9] 27.77 61.44 78.78

Path-LSTM[12] 58.27 83.49 90.04

Table 4: Comparing the performance of our approach with

the other proposed approaches on VeRI Dataset

Average Precision as the evaluation metric, it was observed

that the proposed solution achieved state of the art perfor-

mance. Table 4. compares the performance of our model

with the existing state of the art Re-ID techniques.

5. Discussion

Based on our experiments, it was observed that Triplet

loss along with Cross Entropy was the most effective loss

function for the task of vehicle Re-ID. When compared to

other losses, Triplet loss aids in pulling the feature embed-

dings of a class together while pushing apart the feature em-

beddings associated to different classes. On the other hand,

Additive Angular Margin Loss (ArcFace) does not explic-

itly formulate the loss to do this. Center loss reduces the dis-

tance between each class, but fails to push different classes

apart.

Qualitatively it was observed that models trained with

triplet loss produce fewer false positives in top ranks when

Figure 4: Illustrates the effectiveness of triplet loss. (Images

with the red bounding boxes are incorrect retrievals, ones

without a bounding box are correct retrievals)

compared to ArcFace and Center Loss, Figure (4).

Combining Triplet, Center and ArcFace loss would not

result in an effective loss formulation. Center Loss incorpo-

rates the same pull factor which also appears in triplet loss.

ArcFace loss projects the features produced by the CNN

onto a sphere-space and separates the different classes by

an angular margin, while Triplet loss separates the classes

in cosine-distance space. Effectively, Triplet loss provides

all the benefits which the other loss functions provide com-

bined. Re-ranking proves to be an effective post-processing

technique which improves retrieval results by 4.5% mAP

on Cityflow (AICity Challenge 2019) dataset and 5.72%

mAP on VeRI dataset. The idea behind re-ranking is to in-

spect if the actual query image is retrieved when each of the

retrieved images are used as a query image. Such a scenario

implies a high correlation between the two images (query

and retrieved image). This way of refining the retrievals

brings the correct matches to a higher rank in the query-

retrieval set, thereby increasing the mAP value.

Based on our experimental results, it was observed that

CNNs extract features based on the pose of a vehicle along

with other attributes such as color and make of the vehicle.

Other extraneous factors such as lighting conditions, shad-

ows as well as occlusions in the image also contribute to

the extracted features significantly. This issue is illustrated

in Figure (6). For instance, two distinct cars which are rela-

tively similar in appearance (compared to two very different

cars) and in the same pose, will produce features which are

closer in the distance space when compared to the same car

when it is in a different pose. This is an inherent property

of the convolution neural network, as it will produce similar
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(a) Before Re-Ranking

(b) After Re-Ranking

Figure 5: Effect of Re-Ranking. (Images bounded by green box are correct matches whereas images bounded by red box are

incorrect matches.

outputs when the distributions of pixels are comparable.

However, when the color of the queried vehicle is dis-

tinctive, the network is able to retrieve its true matches, re-

gardless of viewpoints or poses as depicted in Figure (7).

A possible explanation for this is the sparsity of such ve-

hicles in the dataset. When compared to CityFlow dataset,

the images in VeRi dataset have less variations along the

lines of illumination, occlusion, perspective and scale. For

the reason stated above, it was observed that our model was

able to achieve state-of-the art results on VeRi dataset, while

achieving comparable results on a much more challenging

CityFlow dataset.
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Figure 6: Cars which look similar to the Query car in the same viewpoint are retrieved before the actual queried car’s images

in other poses. The effect of lighting and illumination conditions can also be seen here.

Figure 7: Better performance is observed for cars with a distinctive color.
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