
Multiview Vehicle Tracking by Graph Matching Model

Minye Wu, Guli Zhang, Ning Bi, Ling Xie, Yuanquan Hu

ShanghaiTech University

{wumy, zhanggl, bining, xieling, huyq}@shanghaitech.edu.cn

Zhiru Shi

Yoke Intelligence

zhiru.shi@yo-ke.com

Abstract

Using multiple visual cameras to sensing traffic, espe-

cially tracking of vehicles, is a challenging task because of

the large number of vehicle models, non-overlapping views,

occlusion, view change and time-consuming algorithms. All

of them remain obstacles in real world deployment. In

this work, we propose a novel and flexible vehicle tracking

framework, which formulates matching problem as a graph

matching problem and solve it from the bottom up. In our

framework, many restrictions can be added into the graph

uniformly and simply. Moreover, we introduced an iterative

Graph Matching Solver algorithm which can divide and re-

duce the graph matching problem’s scale efficiently. Addi-

tionally, We also take the advantage of geographic infor-

mation and make a combination with deep ReID features,

motion and temporal information. The result shows that

our algorithm achieves a 9th place at the AI City Challenge

2019.

1. Introduction

Nowadays, cross-view vehicle tracking not only con-

tribute to Intelligent Transportation System (ITS) problems,

but also facilitates multiple Traffic Flow Analysis tasks es-

pecially for safety purpose. As more and more cameras are

deployed, these accumulated data gives great potential to

data-driven methods to understand Traffic Flow Analysis.

While the real scenario is complicated, cameras may suffer

from poor resolutions and varying lighting conditions and

vehicles are occluded occasionally.

The multiview vehicle tracking (MVT) is a typical a

bottom up multiple-stage task, the performance of over-

all pipeline depends on the collaborative work of different

parts, namely Detection, Tracking and Matching. There

are detectors like [4, 11, 9] give fare reasonable object de-

tection results. And quite a few trackers like [19, 1] perform

stable object tracking. For matching, which usually finding

the nearest neighbor with respect to specific distance metric

and combining different features. We get plenty of choices

on feature extractors[10, 5] while the matching strategy re-

Figure 1. Matching pipeline. First, tracklets are generated from

videos. Each small rectangle in the figure represents a tracklet

instance. Each color represents a specific vehicle. T-Graphs are

built from Tracklet sets of different intersections. Applying graph

matching solver (GMS) on T-Graphs can obtain tracklet groups.

Tracklet groups can build a G-Graph. Then the final result can be

calculated by GMS.

mains as the bottle neck.

In this paper, we propose a complete and flexible frame-

work to settle MVT problem. In this framework, detector,

tracker and feature extractors are collaborating with graph

based match solver. We formulate the matching problem

as graph clique finding problem. Hence, with offering fea-

tures, we apply a bottom up process, matching within local

nearby camera views then extending to global matching to

rediscover the instances traveling between crossroads, and

propose an iterative matching solver which solves the prob-

lem in an approximated way with lower running time. We

test our approaches on the AI city 2019 dataset [14].

2. Related Work

2.1. Multi­object Tracking

Multi-object tracking has been extensively studied in

recent years.Thanks to the considerable progress in ob-

ject detection [4, 11], the tracking-by-detection pipeline

[2] attracts wide-spreaded attentions and acquires impres-

sive results. [6] formulates instances as connected compo-

nent model to solve NP-hard multi-dimensional assignment

29

Figure 2. (a) The overview of our reconstructed city model. Red rectangle marks the position of intersection demonstrated in this figure.

(b) Top is the closeup view of red rectangle in (a), bottom is a frame capture by camera ’c003’. The red-labeled 3D points in top image

and red-labeled 2D pixels in bottom image are our selected 2D-3D pairs to align camera to the model. (c) The image re-projection of the

camera view in city model. (d) Bottom shows the trajectory of the gray car and the top shows the corresponding 3D trajectory.

(MDA) problem. [17] utilize motion contexts from multiple

objects to maintain stable trajectory sets. While extending

the problem under sets of cameras, tracking multiple objects

in cross-views requires re-identification of instances among

views. In the meanwhile, multi-view structure offers more

constrains which benefits exploring data association.

2.2. Multi­view Object Tracking

In multi-object tracking, data association has two con-

straints: the hard constraint that trajectories must be dis-

joint, and the soft constraint that the appearance and motion

features of one target are stable in a small temporal span.

Multi-view object tracking is usually addressed as a data

association problem across cameras. [7] shows the power

of multi-camera system by adding planar homography con-

strain on calibrated cameras for pedestrains tracking. Stud-

ies in [18, 16] take advantage of variant features from same

instance under different perceptions to construct a stronger

clarification of different objects. All these methods have

certain strong assumptions and thus are restricted to cer-

tain specific scenarios. In this work, we are interested in

a more universal multiview tracking framework that utilize

both geometrical and deep feature constrains to perform a

cross-view, precise, and robust vehicle tracking.

3. Methodology

Our approach can be summarized into three main steps.

The first step is bounding box detection. We use the detec-

tion results from Mask RCNN [4]. and eliminate bounding

boxes which are too small (smaller than 40x40 pixels) and

union ones are overlapping with each other. Next step is

vehicle tracklet generation. We track detected vehicles by

using object tracker to compose tracklets. Thus detected

bounding boxes which belong to a vehicle are strung up to-

gether. The final step is graph based vehicle matching. In

Figure 3. Demonstration of part of reconstructed 3D model. (a)

Model mesh with texture. (b) Rendered depth map of camera

’c011’. (c) The original image of camera view.

this step, we take a tracklet as a unit, and match tracklets by

using Graph Matching Solver iteratively.

A lot of factors and clues are been taken into our consid-

eration. Such as temporal information, vehicle ReID feature

and 3D geometrical constrains. All of these clues offer a lot

of help to the vehicle matching. More details are described

as follows.

3.1. Global Environment Set­up

Beyond the conventional 2D multi-object tracking, we

propose a novel and efficient tracking framework in 3D

which combines geometrical constrains and deep features.

To perform vehicle tracking in 3D, we firstly construct 3D

models for each intersections, then calibrate cameras and

align them into the global model. With given GPS data in

dataset, we manually capture screen shots from 3D Google

Map then apply Structure from Motion(SFM) algorithm on

these images to reconstruct global model of all intersec-

tions with textures. Then we further specify the correspond-

ing points between each camera view image and global 3D

model manually, from which we could calibrate intrinsic

30

K, extrinsic T and distortion parameters κ for each camera.

Consequently, we can render depth maps for cameras. A

example is demonstrated in figure 3.

With these information, we can recover 3D coordinate

for bounding boxes in each view. We choose the center

point of the bottom line of the bounding box. This point

is considered as the contact point with the ground. Let xc

denotes the 2D coordinate of contact point for a bounding

box in camera c. Then the 3D coordinate X of this bound-

ing box can be obtained by following equation.

X = Td(x′

c)K
−1x′

c

x′

c = Θ(xc, κ)
(1)

where Θ(xc, κ) is a undistortion mapping function which

transform a coordinate in distorted image to the one in

undistorted image according to distortion parameters κ;

d(xc) is the depth value located at xc in the depth map of

camera c.
The calibration process is demonstrated in figure 2.

3.2. ReID feature

In the image-based vehicle re-identification part, we

utilize a recent released strong baseline in person re-

identification[10]. We use following training tricks con-

cluded in the origin paper: setting warm-up learning rate[3],

random erasing part of image for data set augmentation[20],

label smoothing[13] to prevent over-fitting, removing the

last stride[12] in backbone for higher spatial resolution,

adding a batch normalization[15] layer after the global fea-

tures from backbone to make the distribution of features that

belong to same identities more compact.

In the training stage, We choose ResNet50 and

ResNet101 as our backbone, which have pre-trained on Im-

ageNet. We firstly train this model in VehicleID [8] dataset.

In the small 800 test set, the mAP reaches 87%. Then we

finetune it in AICity Track 2 dataset.

The dataset track 2 also provide the tracklet information.

Each tracklet contains a series of images from the same ve-

hicle captured by one camera. Ideally, whose id belonging

to the same car should be ranked as neighbours. So taking

this track information should be a strong prior to our query.

Specifically, we compute the average feature of each track-

let instead of feature of one image and use tracklet feature

to match each other. The result with/without tracklet infor-

mation can be seen in section 4.

3.3. Tracklets Generation

Before vehicle matching, we generate tracklets for each

video. The reason why we take a tracklet instead of bound-

ing box as a smallest unit for matching is to reduce the com-

plexity of vehicle tracking problem. We can embed the tem-

poral information of vehicle into tracklets.

Figure 4. Tracklets example at some point. Each tracklet is marked

by different color, with a bounding box which represent current

position and historical trajectory.

Algorithm 1: Tracklet Generation

Input : V: input video;

ξ1: threshold for iou;

ξ2: threshold for ReID feature distance;

ξ3: threshold for tracklet confidence;

Output: Serialized tracklets.

1 R = ∅

2 for each frame f i in V do

3 for each trackerlet r in R do

4 UpdateTracklet(r, f i)

5 end

6 Bd = ObjectionDetection(f i)

7 for each bounding box bd in Bd do

8 flag = True

9 for each tracklet r in R do

10 bt = GetLastBoundingBox(t)
11 iou = IoU between bt and bd
12 dist = ReID feature distance between f i

bd

and f i
bt

13 if iou ≥ ξ1 and dist ≤ ξ2 then

14 UpdateLastBoundingBox(r, bd)

15 flag = False

16 end

17 end

18 if flag = True then

19 r = NewTracklet(bd)

20 R = R ∩{r}

21 end

22 end

23 Serialize and delete tracklet in R that with lower

confidence than ξ3
24 end

25 Serialize and delete tracklets in R

Object detection methods like YoloV3 [11] and Mask R-

CNN [4] show high performance on many datasets, but di-

rectly using those methods to dispose consecutive frames

of a video clip would not present us consistent detection re-

sults due to object occlusion, varying exposure, and motion

blur. In addition, These detectors are not able to provide

31

Figure 5. The demonstration of Graph Matching Solver algorithm.

temporal detection result which can build tracklets. Thus

we adopt a tracking-detecting strategy to associate detected

objects with currently existing tracklets.

When generating tracklets from a video, we run Mask R-

CNN [4] on every frame and delete objects that are severely

occluded by others. For the remaining detected objects, we

determine whether a detected object belong to an existing

tracklet by considering both ReID feature distance between

their cropped image patch and IoU(Intersection over Union)

between their bounding box. If their ReID feature distance

and IoU suffice for prefixed threshold, we assume them to

be the same object instance. Otherwise we take them as dif-

ferent object instance. In this procedure, We take ECO [2]

as our tracker. The whole algorithm is shown in algorithm

1. Fig 4 shows some of our generated tracklets.

3.4. Vehicle Matching

There are thousands of vehicle tracklets in the dataset.

Directly matching among these vehicle tracklets is time-

consuming and results in unreliable matches. We break

down the global matching into pieces to address this prob-

lem. Overlapped cameras are clustered together to form

several sets, so as tracklets under each camera views. Dur-

ing matching, we firstly match tracklets in the same set to

form a tracklet group. Then all tracklet groups are matched

globally to form the final resutls. So our approach has a two-

stage and bottom-up pipeline. Problem’s size is reduced to

accepted range in each stage. As a result, we can solver it

in a efficient way.

Besides, we formulate matching problem as a graph

clique finding problem and further introduce a Graph

Matching Solver (GMS) to optimize the matching. The im-

plementation details are discussed as follows.

3.4.1 Graph Matching Solver

More specifically, we formulate the matching process as

a graph clique finding problem in an undirected weighted

Figure 6. Visualization of matching tracklet set. Each node in (a)

represents a tracked vehicle at a frame in a time. Only three track-

lets with different colors are demonstrated. Gray lines indicate po-

tential matching relationships; Each tracklet is reduced to a node

in (b). The gray dotted line indicates a pairwise connection. But

it violates constrains of T-Graph. (c) T-Graph prepared for match-

ing.

graph, within which each node represents a single match-

ing component and weighted edges represent correlation be-

tween nodes. Notice that after clustering, nodes in the same

group are considered to be equivalent. A Graph Matching

Solver (GMS) in introduced to find cliques in the graph.

We formulate the matching problem as a graph clique

finding problem. There is an undirected weighted graph

whose edge’s weight responds to the correlation of a node

pair. The goal is to cluster these nodes into groups. Nodes

in a same group are considered to be equivalent. But, as we

known, listing all cliques in a graph is time consuming. It

is almost impossible to apply list clique algorithm directly.

So we propose a Graph Matching Solver (GMS) to solve

this problem and find the result. GMS is an iterative algo-

rithm. In each iteration, algorithm decomposes the graph

into matched node groups and unused nodes. A new graph

contains only unused nodes is then formed and fed to next

32

iteration until all proper cliques are obtained.

In i-th iteration, the inputs of our algorithm are a orig-

inal undirected graph G = {V,E}, and unused node set

Ni−1 which comes from the decomposition of (i − 1)-th
iteration. A threshold ǫ and corresponding minimum clique

size mi are given for filtering edges and select cliques. Af-

ter this step, the graph’s edges should be sparse because of

constrains. Filtering will prune lots of edges whose nodes

are less likely to be relevant in vehicle tracking problem.

Then a new graph G′ = {V′,E′}, where V
′ = Ni−1 and

E
′ = {ex,y | ex,y ∈ E;x, y ∈ Ni−1} is initialized. Then

we break down G′ into strong connected components by

removing edges whose weight is below ǫ in G′. Next, we

obtain all strongly connected components Ci
j using Disjoint

Set Union algorithm on G′. For each Ci
j , we reconnect any

two possible nodes to form a complete graph. The edge’s

weight is assigned as same as edge in G, or zero if corre-

sponding edge does not exist in G. We then recheck the

validity of each edge. We remove the edge from complete

graph if its two nodes violate defined constrains. Modified

connected components form a new graph G′′. In next step,

we select cliques with at least mi nodes from G′′. Nodes

in same chosen clique are considered to be equivalent. The

chosen node group set is denoted as Si. Other nodes which

are not be included in any clique will be unused nodes Ni.

Algorithm detail is shown in algorithm 2 and figure 5.

The termination condition of iteration is Ni = ∅. It can

satisfy this condition by letting mi = 1. The final group set

is S =
⋃n

i=1
Si, where n is the total number of iteration.

3.4.2 Matching in a Tracklet Set

Our goal here is to match tracklets in the tracklet set, in

other words, we group tracklets that belong to the same ve-

hicle into same group. Each tracklet set contains tracklets

under a set of nearby camera views (i.e. cameras locate in

the same crossroads). For vehicles that appear in several

synchronized views, their tracklets should be grouped af-

ter the matching process. We visit each synchronized frame

among these cameras, and select all related tracklets from

tracklet set at that time. Then we calculate score metrics of

each. Score we use here is a linear combination of ReID

score and 3D geometric distance score. If ReID feature is

similar and 3D geometric distance at this moment is close,

the score will be high. Specifically, we treat each tracklet

as a node and let wt
a,b denotes the weight of edge between

node(tracklet) ra and node(tracklet) rb at time t.

wt
a,b =

λ

2
(

f
t
a · f

t
b

‖f ta‖ · ‖f
t
b‖

+ 1) + (1− λ) · φ(ra, rb, t) (2)

where f
t
a denotes the vehicle’s ReID feature at time t in

tracklet ra; λ is the weight parameter for linear combina-

tion; φ(ra, rb, t) is 3D geometric distance score function

Algorithm 2: Graph Matching Solver

Input : G: {V,E}, original graph;

ǫ: threshold for removing edges;

M: a set of mi with a size n;

Output: Node group set S .

1 S = N0 = ∅

2 for i = 1 to n do

3 Si =Ni =F = ∅

4 G′ = BuildSubgraph(G, Ni−1)

5 G′ = RemoveEdges(G′, ǫ)
6 Ci = FindConnectedComponents(G′)

7 for each Ci
j in Ci do

8 for each ndoe pair (a, b) in Ci
j do

9 if IsValidity(a,b) then

10 if ea,b /∈ E
′ then

11 w = 0

12 if ea,b ∈ E then

13 w = |ea,b|
14 end

15 Add an edge ea,b to G′ with a

weight of w
16 end

17 else

18 if ea,b ∈ E
′ then

19 Remove ea,b from G′

20 end

21 end

22 end

23 G′′ = G′

24 H = ListAllCliques(G′′)

25 Sort H from largest to smallest according to

node size of clique.

26 for each Hj in H do

27 if |Hj | ≥ mi then

28 F = F ∪ {u|u /∈ F ∧ u ∈ Hj}
29 Si = Si + {u|u /∈ F ∧ u ∈ Hj}
30 Ni = Ni ∪ {u|u ∈ F ∧ u ∈ Hj}

31 else

32 Ni = Ni ∪ {u|u ∈ Hj ∧ u /∈ F}
33 end

34 end

35 end

36 end

37 S =
⋃n

i=1
Si

which calculates the 3D distance of vehicles at time t in

tracklet ra and rb.

φ(ra, rb, t) = exp (−
‖ω(ra, t)− ω(rb, t)‖

2

σ2
) (3)

33

where ω(r, t) is the 3D position of tracklet r at time t. So

φ(ra, rb, t) can scale the 3D distance to a range of 0 to 1,

which represents the 3D geometric distance score. we use

σ = 1 and λ = 0.65 in practical.

As a result, we can obtain an time accumulated tracklet

graph as shown in figure 6 (a).

The initial tracklet graph may have too many edges be-

tween two nodes, so graph reduction is applied to eliminate

the burden. We reduce nodes that belongs to a same track-

let into a new single node to represent the tracklet. Further

more, edges between two tracklet are merged into a single

undirected edge assigned the weight as the average weight

of original edges. Average makes the result more robust in

statistics. However, the quality of tracklets does not always

preserve. Sometimes multiple tracklets are miss assigned

to the same vehicle. So, apart from these time accumulated

edges, we also take pairwise relationship of tracklets into

consideration. We calculate the ReID score between each

two non-overlapping compressed tracklets and add it as a

new edge.

Hence, we get an undirected Tracklet Graph(T-Graph)

demonstrated in figure 6 (c).

In order to narrow down the dimension of solution space.

We add some constrains on T-Graph. The validity of a edge

between two tracklets in T-Graph is defined as following:

• Two valid tracklets should not have time period over-

lap under the same camera.

• Two valid tracklets from the same camera should have

similar moving directions.

• For the tracklets without time period overlap, the time

interval between its two presents no longer than 30

frames.

After we have these constrains, we apply our Graph

Matching Solver to cluster tracklets into groups.

3.4.3 Matching among Tracklet Groups

After clustering vehicle tracklets groups under nearby cam-

era views, a global matching is applied to solve the match-

ing between different sets of cameras (i.e. cameras locate

at different intersections) to handle global matching in long

term.

Similar to T-Graph, we build a Group Graph(G-Graph)

for matching tracklet groups. In this graph, each node rep-

resents a tracklet group. The weight of the edge is ReID

score of two tracklet groups. The edge’s weight between

group(node) a and group(node) b is defined as a scaled co-

sine distant:

wa,b =
1

2
· (

f
a · f b

‖fa‖ · ‖f b‖
+ 1) (4)

where f
i is the feature vector of tracklet group. Specifi-

cally, for each tracklet in a tracklet group, we uniform sam-

ple maximum 10 frames. Then we use Vehicle ReID net-

work to extract feature vectors for these frames and average

them to a vector f ij , where f
i
j donates the averaged feature

for j-th tracklet in i-th tracklet group. The feature vector of

tracklet group is calculated by f
i = 1

Ni

∑Ni

j f
j
i , and N i is

the number of tracklets in i-th tracklet group.

In the meantime, we apply following constrains on G-

Graph.

• Two tracklet groups should not have time period over-

lap.

• The time interval should meet the approximated time

from one cross to the other in the real world.

• Camera sets of two tracklet group should not have in-

tersection. Other wise this scenario should be pro-

cessed in T-Graph.

In tracklet groups matching, we pairwise calculate dis-

tance score for tracklet groups and check its validity. Finally

we obtain a G-Graph. Our Match Graph Solver is applied

to this G-Graph and assign final global ID to each tracklet.

Tracklets with same global ID are regarded as same vehicle.

Figure 7. Results of ReID. The left part of the figure shows the

queried vehicle. The right part shows the top 10 of query result.

4. Experimental Results

To evaluate our approaches, we submit results on AI City

Challenge 2019 evaluation system.

4.1. ReID Result

For Car ReID part, we use a comparatively trivial net-

work as our Reid network, as is attentively discussed in part

above. Tested on the AI city 2019 dataset [14], our best net-

work could achieve mAP at 67.84%. However, the perfor-

mance drops drastically when tested on online submission

site. This might probably due to disparate distribution of

training and test dataset. As showed in table 1, we observed

that the deeper the network goes, the better performance

34

Figure 8. Visualization of some multi-camera vehicle tracking results. Each row shows a grouped tracklet.

Method map(%)

Resnet50 Baseline 20.48

Resnet50 Track query 27.88

Resnet101 Baseline 23.16

Resnet101 Track query 30.90

Table 1. Results of each query. Baseline is queried in the unit of

image. Track query is queried in track unit. The map is calculated

in the submission site of track 2

could be achieved. It claims that features with deeper and

more abstract information could improve the performance.

We only test two backbones as ResNet50 and

ResNet102. In query part, we try to query in the unit of each

track and find out the map would be much higher as showed

in table1. Since images belong to same car ID should be

ranked as closer to each other. Some results are visualized

in figure 7

4.2. Vehicle Tracking Result

ǫ IDF1 IDP IDR Precision Recall

0.75 0.3369 0.3679 0.3107 0.6723 0.5678

0.8 0.3282 0.3964 0.2801 0.6966 0.4923

Table 2. Results on the test dataset of AICity 2019 with different

ǫ.

Our approach got 9-th place in the challenge. Detail re-

sults are shown on table 2. Some visualization of grouped

tracklets are shown in figure 8.

We try different threshold ǫ in Graph Matching

Figure 9. Failure cases of vehicle tracking. The top two images

show that two different vehicles are assigned a same ID mistak-

enly. While the distance score of ReID feature is high. The bot-

tom two images show the scenario that wrong tracklet which cause

wrong vehicle tracking result.

Solver(GMS). Results show that we can control the number

of grouped tracklets by adjusting ǫ. The number of group

will be larger if we set a strict threshold (larger ǫ) and vice

versa. It means that precision will be influenced in the mean

time.

We also do qualitative analysis on our result. There are

two main situations that affect our results. One is wrong

tracklets that not only one vehicle is in a tracklet. This sit-

uation will confuse matching because of its ReID feature.

The other one is from the ReID feature’s performance. It

has the scenario that the distance score would be large even

these two vehicles are totally different. Also, there are some

scenarios that the difference is so small that it can not distin-

35

guish them easily. Some failure cases are shown in figure 9.

5. Conclusion

In this paper, we introduce our approaches and test re-

sult on the AICity 2019 Dataset. Our flexible graph frame-

work can adopt different metrics and constrains into calcu-

lation. Graph Matching Solver can solver multiview vehi-

cle tracking problem efficiently. Adjusting its threshold can

control the performance of algorithm. However, we do not

know how far it will goes because there are many limitations

can be improved. Such as a better detection and generation

of tracklets and better ReID networks. Our method shows

great potential for Intelligent Transportation System (ITS)

problems.

References

[1] Goutam Bhat, Joakim Johnander, Martin Danelljan, Fahad

Shahbaz Khan, and Michael Felsberg. Unveiling the power

of deep tracking. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 483–498, 2018.

[2] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. Eco: efficient convolution operators

for tracking. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 6638–6646,

2017.

[3] Xing Fan, Wei Jiang, Hao Luo, and Mengjuan Fei. Spher-

ereid: Deep hypersphere manifold embedding for person re-

identification. CoRR, abs/1807.00537, 2018.

[4] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[6] Zhenyu He, Xin Li, Xinge You, Dacheng Tao, and Yuan Yan

Tang. Connected component model for multi-object track-

ing. IEEE transactions on image processing, 25(8):3698–

3711, 2016.

[7] Saad M Khan and Mubarak Shah. A multiview approach to

tracking people in crowded scenes using a planar homogra-

phy constraint. In European Conference on Computer Vision,

pages 133–146. Springer, 2006.

[8] Hongye Liu, Yonghong Tian, Yaowei Wang, Lu Pang, and

Tiejun Huang. Deep relative distance learning: Tell the dif-

ference between similar vehicles. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2167–2175, 2016.

[9] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European con-

ference on computer vision, pages 21–37. Springer, 2016.

[10] Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei

Jiang. Bag of tricks and a strong baseline for deep person

re-identification. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, 2019.

[11] Joseph Redmon and Ali Farhadi. Yolov3: An incremental

improvement. arXiv preprint arXiv:1804.02767, 2018.

[12] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin

Wang. Beyond part models: Person retrieval with refined

part pooling. CoRR, abs/1711.09349, 2017.

[13] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,

Jonathon Shlens, and Zbigniew Wojna. Rethinking

the inception architecture for computer vision. CoRR,

abs/1512.00567, 2015.

[14] Zheng Tang, Milind Naphade, Ming-Yu Liu, Xiaodong

Yang, Stan Birchfield, Shuo Wang, Ratnesh Kumar, David C.

Anastasiu, and Jenq-Neng Hwang. Cityflow: A city-scale

benchmark for multi-target multi-camera vehicle tracking

and re-identification. In CVPR 2019: IEEE Conference on

Computer Vision and Pattern Recognition, 2019.

[15] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A

discriminative feature learning approach for deep face recog-

nition. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max

Welling, editors, Computer Vision – ECCV 2016, pages 499–

515, Cham, 2016. Springer International Publishing.

[16] Minye Wu, Haibin Ling, Ning Bi, Shenghua Gao, Hao

Sheng, and Jingyi Yu. Generic multiview visual tracking.

arXiv preprint arXiv:1904.02553, 2019.

[17] Ju Hong Yoon, Ming-Hsuan Yang, Jongwoo Lim, and Kuk-

Jin Yoon. Bayesian multi-object tracking using motion con-

text from multiple objects. In 2015 IEEE Winter Conference

on Applications of Computer Vision, pages 33–40. IEEE,

2015.

[18] Shunli Zhang, Xin Yu, Yao Sui, Sicong Zhao, and Li Zhang.

Object tracking with multi-view support vector machines.

IEEE Transactions on Multimedia, 17(3):265–278, 2015.

[19] Zizhao Zhang, Yuanpu Xie, Fuyong Xing, Mason McGough,

and Lin Yang. Mdnet: A semantically and visually inter-

pretable medical image diagnosis network. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 6428–6436, 2017.

[20] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and

Yi Yang. Random erasing data augmentation. CoRR,

abs/1708.04896, 2017.

36

