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Abstract

Recently, deep learning based 3D face reconstruction

methods have shown promising results in both quality and

efficiency. However, training deep neural networks typi-

cally requires a large volume of data, whereas face images

with ground-truth 3D face shapes are scarce. In this pa-

per, we propose a novel deep 3D face reconstruction ap-

proach that 1) leverages a robust, hybrid loss function for

weakly-supervised learning which takes into account both

low-level and perception-level information for supervision,

and 2) performs multi-image face reconstruction by exploit-

ing complementary information from different images for

shape aggregation. Our method is fast, accurate, and ro-

bust to occlusion and large pose. We provide comprehen-

sive experiments on MICC Florence and Facewarehouse

datasets, systematically comparing our method with fifteen

recent methods and demonstrating its state-of-the-art per-

formance. Code available at https://github.com/

Microsoft/Deep3DFaceReconstruction

1. Introduction

Faithfully recovering the 3D shapes of human faces from

unconstrained 2D images is a challenging task and has nu-

merous applications such as face recognition [6, 51, 59],

face media manipulation [5, 50], and face animation [10,

23]. Recently, there is a surge of interest in 3D face re-

construction from a single image using deep Convolutional

Neutral Networks (CNN) in lieu of the complex and costly

optimization used by traditional methods [37, 13, 38, 51,

25, 45, 49, 48, 53, 46, 14, 18]. Since ground truth 3D face

data is scarce, many previous approaches resort to synthetic

data or using 3D shapes fitted by traditional methods as sur-

rogate shape labels [37, 57, 45, 31, 14, 18]. However, their

accuracy may be jeopardized by the domain gap issue or the

∗This work was done when Yu Deng was an intern at MSRA.

imperfect training labels.

To circumvent these issues, methods have been proposed

to train networks without shape labels in an unsupervised

or weakly-supervised fashion and promising results have

been obtained [49, 48, 53, 46, 16]. The crux of unsuper-

vised learning is a differentiable image formation procedure

which renders a face image with the network predictions,

and the supervision signal stems from the discrepancy be-

tween the input image and the rendered counterpart. For ex-

ample, Tewari et al. [49] and Sengupta et al. [46] use pixel-

wise photometric difference as training loss. To improve ro-

bustness and expressiveness, Tewari et al. [48] proposed a

two-step reconstruction scheme where the second step pro-

duces a shape and texture correction with a neural network.

Genova et al. [16] proposed to measure face image discrep-

ancy on the perception level by using the distances between

deep features extracted from a face recognition network.

Our goal in this paper is to obtain accurate 3D face re-

construction with weakly-supervised learning. We iden-

tified that using low-level information of pixel-wise color

alone may suffer from local minimum issue where low er-

ror can be obtained with unsatisfactory face shapes. On

the other hand, using only perceptual loss also lead to sub-

optimal results since it ignores the pixel-wise consistency

with raw image signal. In light of this, we propose a hybrid-

level loss function which integrates both of them, giving rise

to accurate results. We also propose a novel skin color based

photometric error attention strategy, granting our method

further robustness to occlusion and other challenging ap-

pearance variations such as beard and heavy make-up. We

train an off-the-shelf deep CNN to predict 3D Morphable

Model (3DMM) [5] coefficients, and accurate reconstruc-

tion is achieved on multiple datasets [1, 11, 56].

With a strong CNN model for single-image 3D face re-

construction, we take a further step and consider the prob-

lem of CNN-based face reconstruction aggregation with a

set of images. Given multiple face images of a subject (e.g.,

from a personal album) captured in the wild under disparate



conditions, it is natural to leverage all the images to build

a better 3D face shape. To apply the deep neural networks

on arbitrary number of images, one solution would be ag-

gregating the single-image reconstruction results, and per-

haps the simplest strategy is naively averaging the recovered

shapes. However, such a native strategy did not consider the

quality of the input images (e.g., if some samples contain

severe occlusion). Nor does it take full advantage of pose

differences to improve the shape prediction.

In this paper, we propose to learn 3D face aggregation

from multiple images, also in an unsupervised fashion. We

train a simple auxiliary network to produce “confidence

scores” of the regressed identity-bearing 3D model coeffi-

cients, and obtain final identity coefficients via confidence-

based aggregation. Despite no explicit confidence label is

used, our method automatically learns to favor high-quality

(especially high-visibility) photos. Moreover, it can exploit

pose difference to better fuse the complementary informa-

tion, learning to more accurate 3D shapes.

To summarize, this paper makes the following two main

contributions:

• We propose a CNN-based single-image face recon-

struction method which exploits hybrid-level image

information for weakly-supervised learning. Our

loss consists of a robustified image-level loss and a

perception-level loss. We demonstrate the benefit of

combing them, and show the state-of-the-art accuracy

of our method on multiple datasets [1, 11, 56], sig-

nificantly outperforming previous methods trained in

a fully supervised fashion [45, 14, 51]. Moreover, we

show that with a low-dimensional 3DMM subspace,

we are still able to outperform prior art with “unre-

stricted” 3D representations [45, 53, 48, 14] by an ap-

preciable margin.

• We propose a novel shape confidence learning scheme

for multi-image face reconstruction aggregation. Our

confidence prediction subnet is also trained in a

weakly-supervised fashion without ground-truth label.

We show that our method clearly outperforms naive

aggregation (e.g., shape averaging) and some heuristic

strategies [34]. To our knowledge, this is the first at-

tempt towards CNN-based 3D face reconstruction and

aggregation from an unconstrained image set.

2. Related Work

3D face reconstruction has been a longstanding task in

computer vision and computer graphics. In the literature,

3D Morphable Models (3DMM) [5, 33, 7] have played a

paramount role for 3D face modelling. With a 3DMM, re-

construction can be performed by an analysis-by-synthesis

scheme using image intensity [5] and other features such

as edges [39]. More recently, model fitting using facial

landmarks has gained much popularity with the growth of

face alignment techniques [4, 58, 21, 3]. However, sparse

landmarks cannot well capture the dense facial geometry.

Beyond 3DMM, another popular 3D face model is the

multilinear tensor model [54, 10, 9, 43]. A few model-

free single-image reconstruction methods have been pro-

posed [20, 27, 19]; most require some reference 3D face

shapes. For example, [20, 19] estimate image depth by

building correspondences between the input image and one

or a set of reference 3D faces. In [27], a shape-from-shading

approach is proposed with a reference 3D face as prior.

The aforementioned approaches usually involve costly

optimization to recover a quality 3D face. Recently, nu-

merous method are proposed which employ CNNs for ef-

ficient face reconstruction. Some of them apply CNNs to

regress 3DMM coefficients [37, 13, 2, 49, 51, 16], some use

multi-step schemes to add correction or details onto coarse

3DMM predictions [38, 48, 52, 18], while others advocate

direct model-free reconstruction [45, 53, 46, 14].

For all these CNN-based methods, one great hurdle is the

lack of training data. Many methods resort to synthetic data

or using 3D shapes fitted by traditional methods as surrogate

labels [37, 57, 45, 31, 14, 18]. Others have attempted unsu-

pervised or weakly-supervised training [49, 48, 53, 46, 16].

Our method is also based on weakly-supervised learning,

for which our findings in this paper are threefold: 1) the loss

function is important for weakly-supervised learning and

both low-level and perception-level information should be

leveraged; 2) the results obtained with weak supervision can

be significantly better than those trained with synthetic data

or pseudo-ground truth shapes, and 3) somewhat surpris-

ingly, the results confined in the low-dimensional 3DMM

subspace can still be much better than state-of-the-art re-

sults with “unrestricted” representations.

We also studied the problem of reconstruction aggrega-

tion from multiple images. One related work is [34] which

investigated the reconstruction quality measurement clos-

est to human ratings and used it to fuse the reconstructions

obtained with 3DMM fitting. We however show that their

method is deficient in our case. Our method is also related

to traditional methods working on unconstrained photo col-

lections [27, 47, 40, 41]. While excellent results have been

obtained by these methods, they typically consist of multi-

ple steps such as face frontalization, photometric stereo, and

local normal refinement. The whole pipeline is complex

and may break down under severe occlusion and extreme

pose. Our goal in this paper is not to replace these tradi-

tional methods, but to study the shape aggregation problem

(similar to [34]) with a CNN and provide an extremely fast

and robust alternative learned end-to-end.
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Figure 1. Overview of our approach. (a) The framework of our method, which consists of a reconstruction network for end-to-end single

image 3D reconstruction and a confidence measurement subnet designed for multi-image based reconstruction. (b) The training pipeline

for single images with our proposed hybrid-level loss functions. Our method does not require any ground-truth 3D shapes for training. It

only leverages some weak supervision signals such as facial landmarks, skin mask and a pre-trained face recognition CNN. (c) The training

pipeline for multi-image based reconstruction. Our confidence subnet learns to measure the reconstruction confidence for aggregation with

out any explicit label. The dashed arrows denote error backpropagration for network training.

3. Preliminaries: Models and Outputs

As shown in Fig. 1 (a), we use a CNN to regress coef-

ficients of a 3DMM face model. For unsupervised/weakly-

supervised training [49, 48], we also regress the illumina-

tion and face pose to enable analytic image regeneration.

We detail our models and CNN outputs as follows.

3D Face Model. With a 3DMM, the face shape S and the

texture T can be represented by an affine model:

S = S(α,β) = S̄+Bidα+Bexpβ

T = T(δ) = T̄+Btδ
(1)

where S̄ and T̄ are the average face shape and texture; Bid,

Bexp, and Bt are the PCA bases of identity, expression, and

texture respectively, which are all scaled with standard de-

viations; α, β, and δ are the corresponding coefficient vec-

tors for generating a 3D face. We adopt the popular 2009

Basel Face Model [33] for S̄, Bid, T̄, and Bt, and use the

expression bases Bexp of [18] which are built from Face-

Warehouse [11]. A subset of the bases is selected, resulting

in α ∈ R
80, β ∈ R

64 and δ ∈ R
80. We exclude the ear and

neck region, and our final model contains 36K vertices.

Illumination Model. We assume a Lambertian surface for

face and approximate the scene illumination with Spherical

Harmonics (SH) [35, 36]. The radiosity of a vertex si with

surface normal ni and skin texture ti can then be computed

as C(ni, ti|γ) = ti ·
∑B2

b=1
γbΦb(ni) where Φb : R

3 → R

are SH basis functions and γb are the corresponding SH co-

efficients. We choose B = 3 bands following [49, 48] and

assume white lights such that γ ∈ R
9.

Camera Model. We use the perspective camera model

with an empirically-selected focal length for the 3D-2D pro-

jection geometry. The 3D face pose p is represented by ro-

tation R ∈ SO(3) and translation t ∈ R
3.

In summary, the unknowns to be predicted can be rep-

resented by a vector x = (α,β, δ,γ,p) ∈ R
239. In this

paper, we use a ResNet-50 network [22] to regress these

coefficients by modifying the last fully-connected layer to

239 neurons. For brevity, we denote this modified ResNet-

50 network for single image reconstruction as R-Net. We

present how we train it in the following section.

4. Hybrid-level Weak-supervision for Single-

Image Reconstruction

Given a training RGB image I , we use R-Net to regress

a coefficient vector x, with which a reconstructed image I ′

can be analytically generated with some simple, differen-

tiable math derivations. Some examples of I ′ can be found



Figure 2. Comparison of the results without (top row) and with

(bottom row) using our skin attention mask for training.

in Fig. 1. Our R-Net is trained without any ground truth

labels, but via evaluating a hybrid-level loss on I ′ and back-

propagate it.

4.1. Image­Level Losses

We first introduce our loss functions on low-level infor-

mation including per-pixel color and sparse 2D landmarks.

4.1.1 Robust Photometric Loss

First, it is straightforward to measure the dense photometric

discrepancy between the raw image and the reconstructed

one [5, 50, 49, 48]. In this paper, we propose a robust, skin-

aware photometric loss instead of a naive one, defined as:

Lphoto(x) =

∑
i∈M Ai · ‖Ii − I ′i(x)‖2∑

i∈M Ai

(2)

where i denotes pixel index, M is reprojected face region

which can be readily obtained, ‖·‖ denotes the l2 norm, and

A is a skin color based attention mask for the training image

which is described as follows.

Skin Attention. To gain robustness to occlusions and

other challenging appearance variations such as beard and

heavy make-up, we compute a skin-color probability Pi for

each pixel. We train a naive Bayes classifier with Gaus-

sian Mixture Models on a skin image dataset from [26]. For

each pixel i, we set Ai =
{

1, if Pi > 0.5
Pi, otherwise

. We find that

such a simple skin-aware loss function works remarkably

well in practice without the need for a face segmentation

method [43]. Figure 2 illustrates the benefit of using our

skin attention mask.

It is also worth mentioning that our loss in Eq. 2 inte-

grates over 2D image pixels as opposed to 3D shape vertices

in [49, 48]. It enables us to easily identify self-occlusion via

z-buffering thus our trained model can handle large poses.

4.1.2 Landmark Loss

We also use landmark locations on the 2D image domain as

weak supervision to train the network. We run the state-of-

the art 3D face alignment method of [8] to detect 68 land-

marks {qn} of the training images. During training, we

Figure 3. Comparison of the results with only image-level losses

(top row) and with both image-level and perceptual losses (bottom

row) for training. The numbers are the evaluated photometric er-

rors. A lower photometric error does not guarantee a better shape.

project the 3D landmark vertices of our reconstructed shape

onto the image obtaining {q′
n}, and compute the loss as:

Llan(x) =
1

N

N∑

n=1

ωn‖qn − q′
n(x)‖

2 (3)

where ωn is the landmark weight which we experimentally

set to 20 for inner mouth and nose points and others to 1.

4.2. Perception­Level Loss

While using the low-level information to measure image

discrepancy can generally yields decent results [5, 50, 49,

48], we find using them alone can lead to local minimum is-

sue for CNN-based 3D face reconstruction. Figure 3 shows

that our R-net trained with only image-level losses gener-

ates smoother textures and lower photometric errors than

the compared opponents, but the resultant 3D shapes are

less accurate by visual inspection.

To tackle this issue, we introduce a perception-level loss

to further guide the training. Inspired by [16], we seek for

the weak-supervision signal from a pre-trained deep face

recognition network. Specifically, we extract the deep fea-

tures of the images and compute the cosine distance:

Lper(x) = 1−
<f(I), f(I ′(x)) >

‖f(I)‖ · ‖f(I ′(x))‖
(4)

where f(·) denotes deep feature encoding and < ·, ·> vector

inner product. In this work, we train a FaceNet [44] struc-

ture using an in-house face recognition dataset with 3M face

images of 50K identities crawled from the Internet, and use

it as our deep feature extractor.

Figure 3 shows that with the perceptual loss, the textures

are sharper and the shapes are more faithful. Quantitative

results in the experiment section also show the benefit.

4.3. Regularization

To prevent face shape and texture degeneration, we add a

commonly-used loss on the regressed 3DMM coefficients:

Lcoef (x) = ωα‖α‖2 + ωβ‖β‖
2 + ωγ‖δ‖

2 (5)



which enforces a prior distribution towards the mean face.

The balancing weights are empirically set to ωα = 1.0,

ωβ = 0.8 and ωγ = 1.7e−3.

Although the face textures in the Basel 2009 3DMM [33]

were obtained with special devices, they still contain some

baked-in shading (e.g., ambient occlusion). To favor a con-

stant skin albedo similar to [48], we add a flattening con-

strain to penalize the texture map variance:

Ltex(x) =
∑

c∈{r,g,b} var(Tc,R(x)) (6)

where R is a pre-defined skin region covering cheek,

noise, and forehead.

In summary, our loss function L(x) for R-Net is com-

posed of two image-level losses, a perceptual loss and two

regularization loss. Their weights are set to wphoto =
1.9, wlan=1.6e−3, wper=0.2, wcoef =3e−4 and wtex=5
respectively in all our experiments.

5. Weakly-supervised Neural Aggregation for

Multi-Image Reconstruction

Given multiple face images of a subject (e.g., a photo

album), it is natural to leverage all the images to build a

better 3D face shape. Images captured under different con-

ditions should contain information complementary to each

other due to change of pose, lighting etc. Moreover, using

an image set for reconstruction can gain further robustness

to occlusion and bad lighting in some individual images.

Applying deep neural networks on an arbitrary number

of orderless images is not straightforward. In this work,

we use a network to learn a measurement of confidence or

quality of the single-image reconstruction results, and use it

to aggregate the individual shapes. Specifically, we seek to

generate a vector c ∈ R
80 with positive elements measur-

ing the confidence of the identity-bearing shape coefficients

α ∈ R
80. We do not consider other coefficients such as ex-

pression, pose, and lighting as they vary across images and

fusion is unnecessary. We also bypass texture as we found

the skin color of a subject can vary significantly across in-

the-wild images. Let I := {Ij |j = 1, . . . ,M} be an image

collection of a person, xj = (αj ,βj , δj ,pj ,γj) the output

coefficient vector from R-Net for each image j, and cj the

confidence vector for each αj , we obtain the final shape via

element-wise shape coefficient aggregation:

αaggr = (
∑

j c
j ⊙αj) ⊘ (

∑
j c

j) (7)

where ⊙ and ⊘ denote Hadamard product and division, re-

spectively.

Next, we present how we train a network, denoted as

C-Net, to predict c in a weakly-supervised fashion without

labels. The structure of C-Net will be presented afterwards.

5.1. Label­Free Training

To train C-Net on image sets, we generate the recon-

structed image set {Ij ′} of {Ij} with {x̂j}, where x̂j =
(αaggr,β

j , δj ,pj ,γj). We define the training loss as

L({x̂j}) =
1

M

M∑

j=1

L(x̂j) (8)

where L(·) is our hybrid-level loss function defined in Sec-

tion 4 evaluated with Ij ′ of Ij .

This way, the error can be backpropagated to αaggr thus

further to c and C-Net weights, since Eq. 7 is differentiable.

C-Net will be trained to produce confidences that lead to

an aggregated 3D face shape consistent with the face im-

age set as much as possible. The pipeline is illustrated in

Fig. 1(c). In the multi-image training stage, the loss weights

ωlm, ωphoto and ωid are set to 1.6e−3, 1.9, and 0.1 respec-

tively.

Our aggregation design and training scheme are inspired

by the set-based face recognition work of [55]. However,

[55] used a scalar quality score for feature vector aggrega-

tion, whereas we produce element-wise scores for 3DMM

coefficients. In Section 6.2.1, we show element-wise scores

yield superior results and analyze how our network exploits

face pose difference for better shape aggregation.

5.2. Confidence­Net Structure

Our C-Net is designed to be light-weight. Since R-Net

is able to predict high-level information such as pose and

lighting, it is natural to reuse its feature maps for C-Net. In

practice, we take both shallow and deep features from R-

Net, as illustrated in Fig. 1 (a). The shallow feature can be

used to measure image corruptions such as occlusion.

Specifically, we take the features after the first residual

block Fb1 ∈ R
28×28×256 and after global pooling Fg ∈

R
2048 of R-Net as the input to C-Net. We apply three 3 ×

3 convolution layers 256 channels and stride 2, followed

by a global pooling layer on Fb1 to get F ′
b1 ∈ R

256. We

then concatenate F ′
b1 and Fg , and apply two fully-connected

layers with 512 and 80 neurons respectively. At last, we

apply sigmoid function to make the confidence predictions

c ∈ R
80 positive. Our C-Net has 3M parameters in total,

which is about 1/8 size of R-Net.

6. Experiments

Implementation Details. To train our R-Net, we col-

lected in-the-wild images from multiple sources such as

CelebA [32], 300W-LP [57], I-JBA [30], LFW [24] and

LS3D [8]. We balanced the pose and race distributions and

get ∼260K face images as our training set. We use the

method of [12] to detect and align the images. The input

image size is 224×224. We take the weights pre-trained in

ImageNet [42] as initialization, and train R-Net using Adam



Table 1. Average reconstruction errors (mm) on MICC [1] and

FaceWarehouse [11] datasets for R-Net trained with different

losses. Our full hybrid-level loss function yields significantly

higher accuracy than other baselines on both datasets.

Losses
MICC Facewarehouse

Lphoto Llan Lper

X 1.87±0.43 2.70±0.73

X X 1.80±0.52 2.17±0.65

X X 1.71±0.43 2.11±0.48

X X X 1.67±0.50 1.81±0.50

Table 2. Mean Root Mean Squared Error (RMSE) across 53 sub-

jects on MICC dataset (in mm). We use ICP for alignment and

compute point-to-plane distance between results and ground truth.

Method Cooperative Indoor Outdoor

Tran et al. [51] 1.97±0.49 2.03±0.45 1.93±0.49

Genova et al. [16] 1.78±0.54 1.78±0.52 1.76±0.54

Ours 1.66±0.52 1.66±0.46 1.69±0.53

optimizer [29] with batch size of 5, initial learning rate of

1e−4, and 500K total iterations.

To train C-Net, we construct an image corpus using

300W-LP [57], Multi-PIE [17] and part of our in-house

face recognition dataset. For 300W-LP and Multi-PIE, we

choose 5 images with rotation angles evenly distributed for

each person. For the face recognition dataset, we randomly

select 5 images for each person. The whole training set

contains ∼50K images of ∼10K identities. We freeze the

trained R-Net, and randomly initialize C-Net except for its

last fully-connected layer which is initialized to zero (so that

we start from average pooling). We train it using Adam [29]

with batch size of 5, initial learning rate of 2e−5 and 10K

total iterations.

6.1. Results on Single Image Reconstruction

6.1.1 Ablation Study

To validate the efficacy of our proposed hybrid-level loss

function, we conduct ablation study on two datasets: the

MICC Florence 3D Face dataset [1] and the FaceWarehouse

dataset [11]. MICC contains 53 subjects, each associated

with a ground truth scan in neutral expression and three

video sequences captured in cooperative, indoor, and out-

door scenarios. For FaceWarehouse, we use 9 subjects each

with 20 expressions for evaluation.

Table 1 presents the reconstruction errors with various

loss combinations. It shows that jointly considering image-

and perception-level information gives rise to significantly

higher accuracy than using them separately.

6.1.2 Comparison with Prior Art

Comparison on MICC Florence with [51, 16, 14, 25, 57,

31]. We first compare with the methods of Tran et al. [51]

and Genova et al. [16]. For [51] and ours, we evaluate the

Figure 4. Comparison with Genova et al. [16]. Our texture and

shape exhibit larger variance and are more consistent with the in-

puts. The images are from [16].

Figure 5. Comparison with VRN [25], 3DDFA [57], Tran et

al. [51], Liu et al. [31] on three MICC subjects. Our results show

largest variance and are visually most faithful among all methods.

The input images and results of other methods are from [31].

error with the average shape from a sequence. [16] aver-

aged their encoder embeddings from all frames before re-

construction and produce a single shape per sequence. Fol-

lowing [16], we crop the ground truth mesh to 95mm around

the nose tip and run ICP with isotropic scale for alignment.

The results of [51] only contains part of the forehead region,

thus we further cut the ground truth meshes accordingly

for fair comparison. Table 2 shows that our method sig-

nificantly outperforms [51] and [16] on all three sequences.

The qualitative comparison in Fig. 4 and Fig. 5 also demon-

strates the superiority of our results. Note that [16] uses

a perceptual loss similar to ours, but they ignores the low-

level information such as photometric similarity.

We then compare with PRN [14], a recent CNN method

with supervised learning that predicts unrestricted face

shapes. Following [14], we render face images with 20

poses for each subject using pitch angles of −15, 20, and

25 degrees and yaw angles of −80, 40, 0, 40, 80 degrees.

Figure 6 shows the point-to-plane RMSE averaged across

subjects and pitch angles. Our method has a much lower

error than PRN for all yaw angles. Also note that PRN has
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Figure 6. Comparison with PRN [14] on MICC. Leftmost: Mean
RMSE of different yaw angles. Our method excels at all views.
Right three images: qualitative result comparison.

a larger model size than ours (160MB vs. 92MB).
We further qualitatively compare with several learning-

based methods including VRN [25], 3DDFA [57], and Liu
et al. [31]. Figure5 shows that our method can well-recover
both identity and expression, whereas the results of other
methods have very low shape variance.

Comparison on Facewarehouse with [48, 49, 28, 15].
We compare our results on the 9 Facewarehouse subjects
selected by [48], with three learning-based approaches of
Tewariet al. [49, 48], Kim et al. [28] and an optimization-
based approach of Garridoet al. [15]. The evaluation pro-
tocol of [48] is used.

We evaluate two face regions: a smaller

Figure 7.

one same as [48]'s, and a larger one with
more cheek areas included (see Fig.7). The
point-to-point errors are presented in Ta-
ble 3. Our method achieved the lowest re-
construction error among all learning-based
methods. Note that [49], [48]-C (coarse re-
sults), [28], and our method are all based on 3DMM rep-
resentation, and we show signi�cant improvement upon
theirs. Our method is even better than [48]-F which uses
a corrective space to re�ne the 3DMM shape. Our accuracy
gets closer to the optimization-based approach of [15] while
our method can be orders of magnitude faster.

We further compare with [48] qualitatively in Fig8. Our
recovered shapes are of higher �delity. Moreover, some ar-
tifacts from [48] can be observed under occlusion while our
results are much more pleasing. Also note that our method
can handle pro�le faces (see,e.g., Fig. 9), while the large-
pose robustness of the above methods are unclear to us.

Comparison with other methods [37, 53]. Figure 10
compares our results with Richardsonet al. [37], Tran and
Liu [53] and Tewariet al. [49]. By visual inspection, our
method produces better results.

6.2. Results on Multi Images Reconstruction

6.2.1 Ablation Study and Analysis

To test our multi-image shape aggregation method, we �rst
conduct ablation study on render images of MICC. We ren-
der 20 poses for each of the 53 subjects as in Sec.6.1.2.
Table 4 presents the shape error of different aggregation

Table 3. Mean reconstruction error (mm) on 180 meshes of 9
subjects from FaceWarehouse. “-F” and “-R” denote the “�ne”
and “coarse” results of [48]. The face regions “S” (Smaller) and
“L” (Larger) are shown in Fig.7. Our error is lowest among the
learning-based methods. *: due to the GPU parallel computing
scheme, one forward pass of our R-Net takes 20ms with both
batch-size 1 and batch-size 10 (evaluated with an NVIDIA TITAN
Xp GPU). The times of other methods are quoted from [48].

Learning Optimization
Ours [48]-F [48]-C [49] [28] [15]

Region-S 1.81 1.84 2.03 2.19 2.11 1.59
Region-L 1.91 2.00 - - - 1.84

Time
20ms
(2ms� ) 4ms 4ms 4ms 4ms 120s

Figure 8. Comprison with Tewariet al. [48] (�ne results). Top:
results on different races. Bottom: results under occlusion. The
images are from [48].

Figure 9. Comparison with Selaet al. [45] under large pose and
challenging appearance.

Figure 10. Comparison with Richardsonet al. [37], Tewari et
al. [49], and Tran and Liu [53]. Images are from [53].

strategies (S1 to S4). For S1, we train a C-Net similar to that
described in Sec.5.1but modify the �nal FC layer to output
a global con�dence scorec j 2 R+ , and we aggregate the
identity coef�cients via� aggr =

P
j c j � � j =

P
j c j . For










