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Abstract

Recognizing facial expressions is one of the central prob-

lems in computer vision. Temporal image sequences have

useful spatio-temporal features for recognizing expressions.

In this paper, we propose a new 3D Convolution Neural Net-

work (CNN) that can be trained end-to-end for facial ex-

pression recognition on temporal image sequences without

using facial landmarks. More specifically, a novel 3D con-

volutional layer that we call Local Binary Volume (LBV)

layer is proposed. The LBV layer, when used with our

newly proposed LBVCNN network, achieve comparable re-

sults compared to state-of-the-art landmark-based or with-

out landmark-based models on image sequences from CK+,

Oulu-CASIA, and UNBC McMaster shoulder pain datasets.

Furthermore, our LBV layer reduces the number of train-

able parameters by a significant amount when compared

to a conventional 3D convolutional layer. As a matter of

fact, when compared to a 3 × 3 × 3 conventional 3D con-

volutional layer, the LBV layer uses 27 times less trainable

parameters.

1. Introduction

Facial expressions are subtle signals of a larger commu-

nication process. They express one’s feelings in the form

of facial muscle displacements. A simple smile can indi-

cate our liking, while a frown might show our displeasure.

Thus, understanding facial expressions is an important part

of our communication. In computer vision, facial expres-

sion recognition deals with the problem of recognizing ba-

sic human expressions from video or image data. The prob-

lem has many applications in the field of computer science,

medicine, psychology, and other related areas.

Part of the research on this problem is focused on rec-

ognizing facial expressions from static images [24, 22, 28,

21, 15, 5, 3, 2, 41]. Although this approach is effec-

tive in extracting spatial information, it fails to capture

morphological and contextual variations of the expression

(a) (b) (c)
Figure 1. Space-time transitions in the third dimension for (a) XY,

(b) YT, and (c) XT spaces.

process. Recent methods aim to solve this problem by

using temporal image sequences and utilize both spatial

and temporal variations to give better recognition systems

[9, 18, 32, 27, 35, 16]. Very recent methods use geomet-

ric features such as temporal variations in facial landmarks

along with temporal image sequences to achieve state-of-

the-art results [6, 37, 11, 38, 4]. Facial landmarks boost

the accuracy of models by supplying discriminant informa-

tion that steer the expression recognition process, especially

with deep learning. However, detecting accurate facial land-

marks is a problem by itself. Difficult visual conditions such

as illumination, resolution, and alignment may further make

facial landmarks detection difficult. Recently, Steger et al.

studied the effects of trivial image distortions like rotation

and Gaussian noise on the performance of facial landmarks

detection algorithms [33]. The study, which is a first of its

kind, showed that even state-of-the-art facial landmarks de-

tection models like Uricar [34] and Kazemi [13] are vul-

nerable to image distortions. This emphasizes the need for

a method that can be used in the domain of facial applica-

tions such as facial expression recognition and has an ac-

curate performance at par with the state-of-the-art methods,

while not using facial landmarks.

In this paper, we propose a simple deep 3D Convolu-

tional Neural Network (CNN) that can be trained end-to-



end on temporal image sequences without using any extra

information such as facial landmarks. Our work is inspired

from Volume Local Binary Patterns (VLBP) [40] and re-

cently proposed Local Binary Convolutional Neural Net-

work (LBCNN) [10]. VLBP takes a 3D neighborhood of

each pixel of every frame of a video and generates the corre-

sponding 3D LBP map. LBCNN replaces the conventional

2D convolutional layer of CNN by a Local Binary Convo-

lutional (LBC) layer that exploits LBP concept in a CNN

architecture. Normally, a video sequence is understood as a

stack of XY planes along T axis, but it is easy to see that it

can also be seen as a stack of XT planes along Y axis and

YT planes along X axis. The XT and YT planes too have

information about the space-time transitions as shown in

Fig. 1. Our proposed network that we call Local Binary Vol-

ume Convolutional Neural Network (LBVCNN) captures

these transitions by using three small networks LBVCNN-

XY, LBVCNN-XT, and LBVCNN-YT. Each of these small

networks consists of our newly proposed Local Binary Vol-

ume (LBV) layer which is a 3D variant of the Local Bi-

nary Convolution (LBC) layer of the LBCNN network.

The three 3D convolutional neural networks LBVCNN-XY,

LBVCNN-XT, and LBVCNN-YT are trained on the three

orthogonal sides XY, XT, and YT respectively of a video

cuboid. Finally, these fully trained networks are combined

and then fine-tuned. The main motivation behind this idea

is that the local texture information is significant in spatial

structure (facial texture) as well as in minor spatio-temporal

fluctuations (see Fig. 1).

The main contributions of this paper are summarized as

follows.

• We propose a new network called Local Binary Vol-

ume Convolutional Neural Network (LBVCNN) that

can be trained end-to-end on facial expression image

sequences without using landmarks.

• Our network uses significantly fewer trainable param-

eters and has a lower computational cost when com-

pared to the other conventional 3D CNN networks.

• We have validated the proposed method on CK+,

Oulu-CASIA, and UNBC McMaster dataset.

The rest of the paper is organized as follows. Sec-

tion 2 provides an overview of the relevant works. Sec-

tion 3 discusses the architecture of our proposed network

LBVCNN. Section 4 discusses the datasets used for the ex-

periments along with the training and the implementation

details. It also discusses comparison with the state-of-the-

art approaches. Section 5 provides the conclusion and the

future work that can be performed.

2. Related Work

Many existing techniques target facial expression recog-

nition in images and video sequences [26]. Earlier works

on facial expression recognition were concentrated on im-

ages [24, 22, 28, 21, 15, 5, 3, 2, 41]. However, they do not

consider temporal variations. Facial expression process is a

dynamic event which takes minute motion changes through

time into account. Before the era of deep learning, hand-

crafted features were used to extract spatio-temporal infor-

mation and to classify facial expressions. We give a brief

overview of various methods that have achieved good per-

formance on facial expression video sequences below.

Hand-Crafted Feature-Based Methods. For facial ex-

pression analysis in video sequences, many image-based

features are extended in order to get temporal features along

with spatial information such as LBP-TOP [40], 3D-HOG

[14], and 3D-SIFT [29]. Jain et al. used conditional ran-

dom fields and manually created shape-appearance features

for temporal modeling of each facial shape [8]. Sanin et al.

proposed spatio-temporal covariance descriptors using Rie-

mannian locality preserving projection approach for action

and gesture recognition [27]. Wang et al. proposed an Inter-

val Temporal Bayesian Network (ITBN) for capturing com-

plex spatio-temporal relations among facial muscles [35].

Liu et al. proposed an expressionlet-based spatio-temporal

manifold method for dynamic expression recognition [18].

Ptucha et al. proposed a Manifold-based Sparse Represen-

tation (MSR) for expression recognition by mapping fea-

tures in low dimensional manifolds using supervised local-

ity preserving projections [24]. Recently, Sikka et al. pro-

posed a Latent Ordinal Model (LOMo) for facial expres-

sion recognition in videos [31]. LOMo integrates features

extracted from SIFT around the facial landmarks and LBP

using a weakly supervised classifier to learn the expressions

as hidden variables.

Deep Learning-Based Methods. Deep learning-based

models have achieved state-of-the-art results in facial ex-

pression recognition. Liu et al. applied 3D CNN with de-

formable action part constraints (3D CNNDAP) to the prob-

lem of expression recognition [17]. Recent models use ge-

ometric features like facial landmarks to further boost the

accuracy. Jung et al. proposed two separate networks called

DTAN and DTGN and jointly fine-tuned the two networks

to achieve state-of-the-art performance [11]. The DTAN

network is a simple 3D convolutional network that cap-

tures spatio-temporal information from temporal image se-

quences. The DTGN network is a fully-connected network

that captures temporal variations in facial landmarks. Guo

et al. improved Jung et al.’s result and trained a spatial net-

work (MSCNN) and a temporal network (PHRNN) sepa-

rately and jointly fine-tuned them [38]. MSCNN is a simple

convolutional network on peak expression images. PHRNN

is a collection of subnets (recurrent neural networks) that
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Figure 2. The proposed Local Binary Volume (LBV) block. BN- Batch Normalization. ReLU- Rectified Linear Unit

are connected in a binary tree-like structure. Facial land-

marks are divided into four parts and passed at the bottom

of this structure and the outputs of the subnets are concate-

nated at the next layer. The process is repeated for upper

layers and the final layer is a softmax classification layer.

3. Our Approach

We propose a 3D convolutional neural network based ar-

chitecture. Our idea is inspired from Volume Local Binary

Pattern (VLBP) [40] and the recently proposed Local Bi-

nary Convolutional Neural Network (LBCNN) [10]. We

give a brief description of the works that inspired our model

below. A detailed description of our network is given in

Section 3.1.

Local Binary Pattern. Local Binary Pattern (LBP) was

proposed by Ojala et al. [23]. It computes a binary pat-

tern using each pixel of an image. Every pixel of the image

is treated as a center pixel and thresholded with neighbor-

hood pixels. It assigns 0 or 1 to a neighborhood pixel if it

is lesser or greater than the center pixel, respectively. Illu-

mination invariance is an important property which makes

LBP robust and it has been used in many computer vision

problems for feature extraction. For a center pixel Ic and a

neighboring pixel Ii (i = 1, 2, .., p), LBP can be formalized

as follows.

LBPp,r =

p
∑

i=1

F (Ii − Ic)× 2i−1
(1)

F (I) =

{

1, I ≥ 0.
0, otherwise.

(2)

Here, p and r are the number of neighboring pixels and the

radius, respectively. After construction of local binary pat-

tern map, a histogram is created to form the feature descrip-

tor which can be used for classification.

Volume Local Binary Pattern. In order to make LBP use-

ful for dynamic video sequences, Zhao and Pietikainen pro-

posed Volume LBP (VLBP) for dynamic texture recogni-

tion [40]. VLBP takes a 3D neighborhood of each pixel

of every frame and generates the corresponding 3D LBP.

To make it computationally simple, LBP is extracted from

three orthogonal planes (XY, XT & YT) corresponding to

a center pixel and called as LBP-TOP (Local Binary Pat-

tern - Three Orthogonal Planes). Finally, all the three LBP

histograms are concatenated in order to form a feature de-

scriptor which can be fed into a classification algorithm.

The feature descriptor combines motion features with spa-

tial features and extracts significant information from the

video sequences. Note that, although LBP-TOP is compu-

tationally cheap, it is not equivalent to VLBP [40]. This is

because, it does not take into account all the pixels in the 3D

neighborhood of a center pixel as done by VLBP. In LBP-

TOP, only the co-occurrences of the local binary patterns on

three orthogonal planes are taken into account [40].

Local Binary Convolutional Neural Network. Xu et al.

[10] proposed Local Binary Convolutional Neural Network

(LBCNN). In this network, the conventional convolutional

layer of CNN is replaced by a Local Binary Convolutional

(LBC) layer which is a generalized version of simple LBP.

The LBC layer broadly consists of two sub-layers. The first

layer involves convolving the input with fixed non-trainable

filters of size 3×3 in order to get a difference map, followed

by a ReLU activation to get an approximate local binary

bit-map. The non-trainable filters contain values sampled

from the set {-1,0,1} using Bernoulli distribution. The sec-

ond layer is trainable and involves 1×1 convolutions on the

output of the first layer in order to get feature maps. This

architecture significantly reduces the number of trainable

parameters as it involves training of only 1× 1 filters.

3.1. Local Binary Volume Convolutional Neural
Network

In order to make LBCNN useful for dynamic video se-

quences, a straight-forward way would be to apply it in an

LBP-TOP fashion. This can be done by using three separate

LBCNN networks for XY, XT, and YT planes of the video

cuboid and taking the third dimension as channels, and fi-

nally combining them and fine-tuning the integrated net-

work. However, we found experimentally that such an ap-

proach fails to fully capture the spatio-temporal variations

along all the dimensions. Table 1 shows the results when
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Figure 3. The proposed LBVCNN network architecture. BN- Batch Normalization, AP- Average Pooling, ReLU- Rectified Linear Unit.

Red, green and blue dashed boxes represent individual LBVCNN-XT, LBVCNN-XY, and LBVCNN-YT networks.

LBCNN is applied on the CK+ and Oulu-CASIA datasets in

LBP-TOP fashion. Here, the evaluation is performed using

10 fold cross validation. We think that the subtle structural

difference (as discussed previously in [40]) between VLBP

and LBP-TOP is responsible for such a phenomenon. In or-

der to solve this problem, we propose a 3D variant of the

LBC layer and integrate it with our newly proposed LB-

VCNN network as discussed below.

Accuracy (%)

Method CK+ Oulu-CASIA

LBCNN-XY 91.2 72.89

LBCNN-XT 85.65 69.26

LBCNN-YT 86.1 69.24

LBCNN(joint) 92.52 74

Table 1. Results on the CK+ and Oulu-CASIA dataset when the

LBCNN network is applied in a straightforward way in the LBP-

TOP fashion on the sides of video cuboid.

Local Binary Volume Layer. We propose a 3D variant of

the LBC layer of LBCNN network that we call Local Bi-

nary Volume (LBV) layer (Fig. 2). The LBV layer is simple

and very powerful in capturing subtle spatio-temporal varia-

tions in temporal image sequences. The LBV layer consists

of two sub-layers. The first layer involves convolving the

input with fixed non-trainable 3D filters of size 3× 3× 3 in

order to get a 3D difference map, followed by a ReLU acti-

vation to get an approximate 3D local binary bit-map. The

non-trainable 3D filters contain values sampled from the set

{-1,0,1} using Bernoulli distribution. The number of ele-

ments from the set {-1,1} determine the sparsity of the 3D

filter. The second layer is trainable and involves 1 × 1 × 1
convolutions on the output of the first layer in order to get

the 3D feature maps. As proved in LBCNN [10], we show

experimentally that our LBV layer approximates 3D convo-

lutional layer of the conventional 3D-CNN.

Before discussing the complete structure of our proposed

network, we discuss the usefulness of the ensemble of net-

works in deep learning and its relevance to the problem of

recognizing facial expressions from videos.

Usefulness of ensemble of networks. Training and fine-

tuning CNNs is difficult as it requires experimenting with

many hyperparameters, and data splits and is highly subject

to overfitting. An ensemble of independently trained net-

works can improve the predictions by reducing the overfit

and can avoid the possible poor test result of a single net-

work [7]. However, in a data fusion ensemble model, mul-

tiple networks are necessary to analyze the heterogeneous

input data [1]. In other words, independent networks learn

different data modalities to make a collective classification

decision. In general, spatial information of video for each

frame is captured by XY plane, whereas the temporal vari-

ations can be observed using YT and XT planes. Fig. 1

shows the variations observed along all the three directional

planes. Approximately only half of video cubes are shown

in order to illustrate the variations clearly along all the three

planes. In Fig. 1, space-time visual motion impression of

rows and columns can be observed using only XT and YT

planes especially around eyes and lips. By combining the

information from all these three planes using an ensemble

of convolutional neural networks, we can extract appear-

ance and motion information separately.

Local Binary Volume Convolutional Neural Network.

Fig. 3 shows the general architecture of our proposed net-

work LBVCNN. It consists of three small 3D CNNs that

we call LBVCNN-XY, LBVCNN-XT, and LBVCNN-YT

which are shown as dashed lines in Fig. 3. The networks

LBVCNN-XY, LBVCNN-XT, and LBVCNN-YT capture

spatio-temporal information from the three orthogonal sides



of a video cuboid XY, XT, and YT respectively. We use Res-

Net like structure for all the networks. More details on the

input-sizes, parameters, hyperparameters, and the structures

of all the networks are given in Section 4.

Fusion fine-tuning. For fine-tuning, we drop the final soft-

max layer from each of the three fully trained networks

LBVCNN-XY, LBVCNN-XT, and LBVCNN-YT. Further,

we combine the three networks by an element-wise aver-

age of the output of the fully connected layers which is then

connected to a final softmax layer for classification. The

fine-tuning network is shown in Fig. 3. Note that during the

fine-tuning process, the entire LBVCNN network (Fig. 3) is

fine-tuned at a very low learning rate.

Space-time complexity analysis of the LBV layer. On

comparing our proposed LBV layer with the convolutional

layer (of size 3×3×3) of the traditional 3D CNN network,

we can see that the LBV layer has 27 times less trainable

filters. This is due to the fact that only the second layer of

LBV (with 1× 1× 1 size filters) is trainable while the first

layer has fixed non-trainable filters of size 3× 3× 3.

Furthermore, the 3D convolution operation in LBV (first

layer) contains just addition and subtraction operations due

to the presence of -1, 0, and 1. This is in contrast to mul-

tiplicative floating point operations in a traditional 3D con-

volution layer.

4. Experiments

To evaluate our model, we conducted extensive exper-

iments on the three popular facial expression recognition

datasets - CK+, Oulu-CASIA, and UNBC McMaster shoul-

der pain. We start by discussing data pre-processing and

augmentation.

Data preprocessing. In order to process the data through

the proposed network, we perform a few preprocessing

steps. Note that each video consists of varying number of

frames. Therefore, in order to account for varying tempo-

ral lengths, we used the video normalization method from

[42]. The method converts the video sequences of arbitrary

lengths into a fixed length sequence (11 in our case). The

normalized fixed length temporal patterns preserve the char-

acteristics of the original video well [42]. Thus, it will not

affect the performance of the model. Note that another re-

cent FER work, DTAGN [11] uses the same method for

video normalization with a fixed length of 11 sequences.

These 11 frames represent a neutral to peak expression.

Face is extracted from each frame, cropped, and resized to

64× 64 size. Therefore, each temporal image sequence is

of shape 64 × 64 × 11 (XYT). Sample frames of a happy

and surprise expressions of a subject are shown in Fig. 4.

Data augmentation. Data classification using a deep net-

work requires a large amount of data to train the network

in order to prevent overfitting. However, the datasets which

have been used in this experiment contain only hundreds

of videos. Hence, in order to increase the data, we per-

form data augmentation similar to [11]. Cropped and re-

sized facial frames are rotated to 5◦, 10◦, 15◦, −5◦, −10◦,

and −15◦ angles. Frames are flipped and again rotated with

the above six angles. Hence, a total of 14 times of original

(1 original + 6 angles of original + 1 flipped + 6 angles of

flipped ) dataset has been created through data augmenta-

tion.

Construction of the LBV layer. As discussed in sec-

tion 3.1, the LBV layer consists of two convolutional lay-

ers. The first layer is a 3-D convolution layer with 64 fixed

non-trainable 3× 3× 3 filters. This is followed by a convo-

lution layer containing 64 trainable 1 × 1 × 1 filters with a

ReLU activation function in between. For the first layer, we

construct a filter bank of 64 - 3 × 3 × 3 filters. Each of the

64 3-D filters contains values from the set {-1,0,1} sampled

according to the Bernoulli distribution. Sparsity which is

defined as the number of non-zero elements of each filter is

kept as 0.9. Note that all the LBV layers in our experiments

share the same 64 non-trainable 3D filters irrespective of

the network (LBVCNN-XY, LBVCNN-XT, LBVCNN-YT,

or joint network) that they are being used. Note that the 64

- 1 × 1 × 1 trainable filters are not shared among the three

networks and are learned independently.

Network architecture. Each of the small networks

LBVCNN-XY, LBVCNN-XT, and LBVCNN-YT (see

Fig. 3) take inputs of different sizes. Let XYT (in our case

X=64, Y=64 and T=11) be the size of our video cuboid with

XY being the spatial dimension and XT and YT being the

temporal dimensions. The network LBVCNN-XY takes as

input a volume cuboid of shape 64 × 64 × 11 while the

networks LBVCNN-XT and LBVCNN-YT take inputs of

sizes (64× 11× 64) and (11× 64× 64) respectively. Rest

of the network is same for all the three networks with the

input layer followed by five consecutive LBV layers with

a maxpooling layer after each LBV layer, except the last.

The final LBV layer is followed by a fully connected layer

of size 256 which is followed by a final softmax layer for

classification. The architecture of the combined network for

fine-tuning is discussed in Section 3.1 and shown in Fig. 3.

Total number of parameters used in an individual network

(XY, YT or XY) are .53 million where trainable parameters

and non-trainable parameters are .08 million and .44 mil-

lion respectively. Total number of parameters in the fusion

network are 1.6 million where trainable and non-trainable

parameters are .13 million and 1.47 million respectively.

Training. Our LBVCNN network architecture is shown

in Fig. 3. At first, each of the subnetworks LBVCNN-

XY, LBVCNN-XT, and LBVCNN-YT (see Fig. 3) were

trained separately on XY-T, XT-Y, and YT-X cuboids re-

spectively. All the subnetworks use adam optimizer with

momentum 0.9, learning rate 1e-3, and are trained for 50

epochs. Finally, all the fully trained subnetworks are inte-
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Figure 4. An example of the cropped and resized frames from CK+ dataset of (a) happy and (b) surprise emotions.

grated as shown in Fig. 3 for fine-tuning. The joint network

is then fine-tuned for 100 epochs with SGD (Stochastic Gra-

dient Descent) optimizer with momentum 0.9 and learning

rate 1e-7. Throughout all our experiments, we maintain the

batch-size of 16. The loss function used is categorical cross-

entropy.

Testing. For testing, we adopt the k-fold cross-validation

method. Details of the number of splits/folds created and

the method used for their construction is provided in the

description section of the datasets. Note that, while testing

on a particular split/fold, we consider its unaugmented part

only [11].

4.1. CK+ Dataset

Description of the dataset: Cohn-Kanade AU-Coded Ex-

pression dataset is a benchmark for facial expression recog-

nition [12, 19]. This dataset is composed in a restricted en-

vironment where the subject is facing the camera with an

empty background. Each video in the dataset starts with a

neutral expression and ends with a peak expression. Each

video is labeled as an expression of anger, contempt, dis-

gust, fear, happiness, sadness, and surprise. The dataset

contains a total of 327 videos collected from 118 subjects.

Each video includes a varying number of frames. For the

preparation of the dataset, the subjects are arranged by ID

in ascending order. These subject IDs are then partitioned

into 10 subsets by sampling in ID ascending order with a

step size of 10 [18]. Nine subsets were used for training and

the remaining one was used for validation [18]. This pro-

cess is called as 10-fold cross-validation. The evaluation is

performed in a subject independent way.

Results: The total accuracy of 10-fold cross-validation of

our model on the CK+ dataset is shown in Table 2. Note

that in order to make the comparison fair, we do not con-

sider image-based and 3D geometry based algorithms and

models from the comparison tables. The top three models

DTAGN [11], LOMo [31] and PHRNN-MSCNN [38] that

have recently achieved state-of-the-art accuracy use facial

landmarks. Our model achieves state-of-the-art accuracy

when compared to the models like HOG 3D [14], Cov3D

[27], and STM-ExpLet [18] that do not use facial land-

marks. It achieves results comparable to landmark-based

state-of-the-art models and better results when compared

to the non landmark-based models. The confusion ma-

Method Accuracy Landmarks Strategy

HOG 3D [14] 91.44 × 10 folds

TMS [8] 91.89 X 4 folds

Cov3D [27] 92.30 × 5 folds

3DCNN-DAP [17] 92.40 X 15 folds

STM-ExpLet [18] 94.19 × 10 folds

LOMo [31] 95.10 X 10 folds

VLBP [40] 96.26 × 10 folds

DTAGN [11] 97.25 X 10 folds

PHRNN-MSCNN[38] 98.50 X 10 folds

LBVCNN-XY 95.31 × 10 folds

LBVCNN-XT 95.50 × 10 folds

LBVCNN-YT 95.19 × 10 folds

LBVCNN(joint) 97.38 × 10 folds

Table 2. Comparison of various methods on the CK+ dataset

in terms of average recognition accuracy of seven expressions.

Note that in order to make the comparison fair, we do not con-

sider image-based and 3D geometry based algorithms and models.

VLBP [40] results are for six expressions only.

An Co Di Fe Ha Sa Su

An 97.63 0 2.37 0 0 0 0

Co 0 100 0 0 0 0 0

Di 0 0 100 0 0 0 0

Fe 0 0 0 88.05 7.97 3.98 0

Ha 0 0 0 0 100 0 0

Sa 2.62 2.62 0 2.62 0 92.14 0

Su 0 0 0 0 1.28 0 98.72

Table 3. Confusion matrix of LBVCNN (joint) on CK+ dataset.

trix of the combined network i.e., LBVCNN (joint) on CK+

dataset is reported in Table 3. Comparison of accuracy ac-

cording to each emotion among four networks is shown in

Fig. 6. The accuracy in the cases of angry, contempt, dis-

gust, happiness, and surprise is good, but the performance

for sadness and fear is relatively poor.

4.2. OuluCASIA Dataset

Description of the dataset: The Oulu-CASIA dataset con-

sists of six expressions (surprise, happiness, sadness, anger,

fear, and disgust) from 80 subjects under visible light con-

dition [39]. Subjects are between 23 to 58 years old and



Figure 5. Comparison of accuracy according to each emotion

among four networks on CK+ dataset.

73.8% of the subjects are males. It has a total of 480

video sequences, 6 each for 80 subjects. The dataset pro-

vides cropped version (only face) of the original frames.

We have performed similar preprocessing as in CK+ dataset

on cropped frames. Only 11 frames per video are consid-

ered and resized to 64 × 64. Each video sequence starts

with a neutral expression and ends with a peak expression.

Preparation of this dataset is done similarly to that of CK+

dataset.

Results: The total accuracy of 10-fold cross-validation of

our model on the Oulu-CASIA dataset is shown in Ta-

ble 4. Note that the models DTAGN [11], LOMo [31],

and PHRNN-MSCNN [38] that have recently achieved

state-of-the-art accuracy use facial landmarks. Thus, geo-

metric features certainly boost the performance of expres-

sion recognition models. Our model achieves state-of-the-

art accuracy when compared to the models like HOG 3D

[14], AdaLBP [39], and STM-ExpLet [18] that do not use

facial landmarks. It achieves results comparable to the

landmark-based state-of-the-art models except the PHRNN-

MSCNN[38] and better results when compared to all the

non landmark-based models. The confusion matrix of the

combined network i.e. LBVCNN (joint) is reported in Ta-

ble 5. Comparison of accuracy according to each emotion

among the four networks is shown in Fig. 5. The accuracy

in the cases of fear, happiness, sadness, and surprise is good,

but the performance for anger and disgust is relatively poor.

In particular, there is a high degree of confusion among the

expressions anger, disgust and sadness as they happen to

look similar in particular facial region.

4.3. UNBC McMaster Shoulder Pain Dataset

Description of the dataset: Unlike CK+ and Oulu-CASIA

datasets which are in controlled setting, UNBC McMaster

dataset is in spontaneous setting [20]. This makes the task

of facial expression recognition even more challenging. The

dataset consists of real world videos of subjects with pain

while performing guided movements of their affected and

Method Accuracy Landmarks Strategy

HOG 3D [14] 70.63 × 10 folds

AdaLBP [39] 73.54 × 10 folds

STM-ExpLet [18] 74.59 × 10 folds

DTAGN [11] 81.46 X 10 folds

LOMo [31] 82.10 X 10 folds

PHRNN-MSCNN[38] 86.25 X 10 folds

LBVCNN-XY 77.40 × 10 folds

LBVCNN-XT 77.59 × 10 folds

LBVCNN-YT 76.09 × 10 folds

LBVCNN(joint) 82.41 × 10 folds

Table 4. Comparison of various methods on the Oulu-CASIA

dataset in terms of average recognition accuracy of six expres-

sions. Note that in order to make the comparison fair, only video

based methods are included.

An Di Fe Ha Sa Su

An 77.78 6.94 4.17 0 11.11 0

Di 13.89 73.61 1.39 2.78 8.33 0

Fe 0 5.56 79.17 2.78 5.56 6.94

Ha 1.39 1.39 5.56 90.28 1.39 0

Sa 12.5 5.56 2.78 0 79.17 0

Su 0 1.39 4.17 0 0 94.44

Table 5. Confusion matrix of LBVCNN (joint) on Oulu-CASIA

dataset.

Figure 6. Comparison of accuracy according to each emotion

among four networks on Oulu-CASIA dataset.

unaffected arms in a clinical interview. The videos are rated

for pain intensity (0 to 5) by trained experts. Following [31],

we labeled videos as “pain” for intensity above 3 and “no

pain” for intensity 0, and discarded the rest. This resulted

in 149 videos from 25 subjects with 57 positive and 92 neg-

ative samples. Following [25], a temporal window of 0.5

seconds is taken. The process of data pre-processiong and

augmentation is same as that of CK+ and the Oulu-CASIA

datasets. Unlike the case of CK+ and Oulu-CASIA datasets,

the validation protocol used is “leave one subject out” which

is same as the works mentioned in Table 6.

Results: The total accuracy of “leave one subject out”

cross-validation of our model on the UNBC McMaster

dataset is shown in Table 6. Note that the models MS-MIL

[30], MIL-HMM [36], RMC-MIL [25], and LOMo [31] use



landmarks to achieve state-of-the-art results. Our method

achieves better results than all, except the LOMo [31] where

we achieve comparable results.

Method Accuracy Landmarks

MS-MIL [30] 83.7 X

MIL-HMM[36] 85.2 X

RMC-MIL[25] 85.7 X

LOMo[31] 87.0 X

LBVCNN-XY 84.76 ×

LBVCNN-XT 83.20 ×

LBVCNN-YT 83.48 ×

LBVCNN(joint) 86.55 ×

Table 6. Comparison of various methods on the UNBC McMaster

shoulder pain dataset in terms of average recognition accuracy of

pain and no pain expressions.

4.4. Feature Visualization

In this section, we visualize the learned feature maps of

our LBVCNN model. Fig. 7 show the feature maps learned

by our multi frame-based CNN in the first layer for expres-

sions angry, happy, and surprise respectively on the CK+

database. For the sake of simplicity, only six out of sixty

four filters feature maps are shown. Here, blue and red

represent the high and the low response values. We ob-

serve that our model is able to capture the facial expression

movements very effectively. Furthermore, the learned fea-

ture maps are consistent, for example the feature maps cor-

responding to the starting frame, which is a neutral frame

for each emotion sequence, have approximately same vi-

sualization. Fig. 8 shows the failure cases from CK+ and

UNBC McMaster shoulder pain datasets, respectively. We

observe that, for UNBC McMaster dataset the videos with

true label as “pain” and misclassified as “no pain” are high.

The number of cases where videos with true label as “no

pain” being misclassified as “pain” are very less.

5. Conclusion

A novel 3D-CNN is proposed in order to recognize fa-

cial expressions from image sequences in an end-to-end

fashion. The method can be performed directly on image

sequences without any additional information such as fa-

cial landmarks. In particular, local binary volume layer (an

efficient replacement of 3D-CNN layer) is proposed based

on the concept of volume local binary pattern. LBV layer

saves a significant number of trainable parameters when

compared to conventional 3D-CNN layer. Our proposed

network, LBVCNN, achieves comparable results on CK+,

Oulu-CASIA and UNBC McMaster shoulder pain datasets.

Most of the state-of-art methods use facial landmarks to ex-

tract geometric features. Since detecting landmarks is a

difficult problem by itself and the problem becomes more

complex with changes in illumination, resolution, and ori-

Figure 7. Feature maps learned by the LBVCNN-XY (left),

LBVCNN-XT (middle), and LBVCNN (right) for the happy emo-

tion. Blue and red represent the high and low response values.

Figure 8. Failure cases from the CK+ (left) and UNBC (right)

datasets. P- Predicted, T- Target.

entation, our work is of significant use as it does not use

landmarks to drive the expression recognition process.

In future, we will seek utilization of local binary volume

layer in other face video based computer vision problems

such as face recognition and biometrics (e.g., age, ethnicity,

gender recognition). In such problems, geometric features

(e.g. facial landmarks) are used to boost the accuracy of the

models. We shall explore other video based applications

where additional features are required to boost the accuracy

of the model.
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