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Figure 1: Example of a gesture in the IsoGD dataset, where a person is performing the sign for five. As we see, the data

captured by an RGB camera (top) suffers from different illumination conditions e.g. the shadows produced by the light source

to the left. However, the depth data (bottom) can have problems detecting the hand in case tit has the same depth as other

objects close to it e.g. if the hand is almost touching the wall.

Abstract

Video-based gesture recognition has a wide spectrum of

applications, ranging from sign language understanding to

driver monitoring in autonomous cars. As different sensors

suffer from their individual limitations, combining multi-

ple sources has strong potential to improve the results. A

number of deep architectures have been proposed to recog-

nize gestures from e.g. both color and depth data. How-

ever, these models conventionally comprise separate net-

works for each modality, which are then combined in the

final layer (e.g. via simple score averaging). In this work,

we take a closer look at different fusion strategies for ges-

ture recognition especially focusing on the information ex-

change in the intermediate layers. We compare three fusion

strategies on the widely used C3D architecture: 1) late fu-

sion, combining the streams in the final layer; 2) informa-

tion exchange in an intermediate layer using an additional

convolution layer; and 3) linking information at multiple

layers simultaneously using the cross-stitch units, originally

designed for multi-task learning. Our proposed C3D-Stitch

model achieves the best recognition rate, demonstrating the

effectiveness of sharing information at earlier stages.
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1. Introduction

Video-based gesture recognition provides an intuitive

medium for human-machine interaction, attempting to de-

tach computer input from conventional devices, such as

mouse and keyboard (see example in Figure 1). Applica-

tion areas of gesture recognition range from robotics [16]

and understanding of sign language [3] to autonomous driv-

ing, where the driver can express his intention via ges-

tures [15]. Multi-modality is an essential concept in such

systems, since each sensor has its individual strengths and

weaknesses [17]. For example, a large number of recog-

nition models available for color images [10] are conve-

nient for adaptation to other application domains (e.g. ges-

tures) via transfer learning, although such RGB cameras

are highly dependent on the illumination and fail at night.

Depth sensors, on the other hand, are well-suited for realis-

tic conditions for multiple reasons: they are less influenced

by the light and mostly omit the surface texture (e.g. cloth-

ing), which is oftentimes irrelevant for gesture recognition

and constitutes additional noise.

Deep neural networks achieve excellent results in many

areas of computer vision and are also clear front-runners

in the field of gesture recognition. Furthermore, successful

methods in the current large-scale gesture recognition chal-

lenge “Chalearn Isolated Gesture Recognition” (IsoGD) are

almost exclusively deep architectures adopted from the field

of action recognition [22, 11, 12]. IsoGD is a large multi-

modal dataset with videos of hand gestures, where each



sample covers both color and depth data. However, methods

presented during the IsoGD challenge train separate neural

networks for each data type and then use either a late fusion

paradigm, e.g. averaging the prediction scores of the model,

or limit the results to a single modality [22].

Despite a high correlation between the data streams, the

possibilities of fusing the information at earlier stages has

barely been explored in the area of gesture recognition. The

main objective of our work, is to implement and system-

atically examine different strategies for sensor data fusion

(e.g. color and depth information) for multi-modal gesture

recognition with deep neural networks, covering both, the

conventional late fusion and a variety of models based on

earlier information exchange at intermediate layers.

Summary and Contributions Given the complementary

nature of the input data, we argue, that gesture recognition

models would benefit from fusion at intermediate layers. To

validate our premise, we adopt the C3D architecture [20]

based on 3D convolutions as our backbone model, which is

widely used for gesture recognition [22, 11]. First, we train

and evaluate separate single-modal networks and combine

them afterwards with score averaging (i.e. late fusion) as

our baselines (Figure 2). Next, we enhance the architecture

with various building blocks for sharing the information at

earlier stages of the network and evaluate their effect. We

employ two different mechanisms at intermediate layers: 1)

information exchange at a single intermediate layer and 2)

fusion at multiple network layers simultaneously via cross

stitch units [13]. In the first approach, we reduce the di-

mensionality of the two network outputs by half through an

additional fusion layer with 1 × 1 × 1 convolution filters.

The output of this fusion layer is therefore a linear com-

bination of the feature maps, which is further passed to a

single shared late network (Figure 3). As our second strat-

egy, we propose the C3D-Stitch architecture, leveraging the

cross stitch units, which learn how to combine the activa-

tions of both networks with even less parameters, as a sin-

gle weight is learned for each input feature map (Figure 4).

Cross stitch units facilitate information exchange between

the two sources, while keeping the original output dimen-

sionality, and can therefore be included at different depths

of the network simultaneously, so that the point of fusion is

not be chosen by hand, as done in the first approach.

Our experiments on the ten most frequent gestures of

the IsoGD dataset [22] demonstrate the effectiveness of ex-

changing information at intermediate layers in comparison

to the single-modal baselines and the popular late fusion

approach. The best recognition rate is achieved with the

proposed C3D-Stitch network, where the fusion takes place

at multiple layers at the same time.

2. Related Work

The field of gesture recognition is strongly influenced

by progress in image analysis, as popular models for im-

age classification are extended to be able to deal with im-

age sequences by including a temporal dimension. Recent

progress of deep learning methods has revolutionized the

field, shifting the recognition paradigm from explicit def-

inition of feature descriptors defined by hand [24, 25, 9]

to end-to-end learning of good representations directly

from visual input through Convolutional Neural Networks

[10, 12, 22, 11], with a survey provided in [1].

Various modern gesture recognition architectures de-

rive from methods of the related field of action recogni-

tion [2, 19, 14, 7]. Similarly to action recognition, in order

to obtain a motion-based representation [22], optical flow

is sometimes extracted from the image sequence and used

instead of or in addition to the raw videos. There are dif-

ferent strategies for handling the temporal dimension, such

as classifying image frames with conventional 2D CNNs

and then averaging the results of all frames [19] or placing

a recurrent neural network, such as an LSTM [6], on top

of the CNN [14]. Motivated by the idea of making use of

space-time features, Tran et al. [20] introduced the C3D ar-

chitecture, which employs convolution layers with 3D ker-

nels, which were also adapted in multiple other architec-

tures [7, 2, 21].

Due to the growing interest in gesture recognition, vari-

ous large-scale benchmarks were introduced in recent years,

such as the ChaLearn Gesture Dataset (CGD) [5], which

served as a basis for the large-scale Isolated Gesture Dataset

(IsoGD) dataset [22, 23]. In the related recent gesture

recognition challenge [22], the majority of proposed meth-

ods on gesture recognition adopt the C3D architecture as

their backbone model [22]. We therefore also employ the

C3D model as the core architecture in our framework and

enhance it with building-blocks for mid-level fusion.

Fusing multiple modalities for deep-learning based ges-

ture recognition is done with late fusion by the vast major-

ity of previous approaches. They train individual networks

for each modality, which are then joined via score averag-

ing [22], using Support Vector Machines (SVMs) [11], us-

ing Canonic Correlation Analysis [12] or by a employing

a voting strategy [4]. Despite the high correlation of infor-

mation in the early stages of the multi-modal streams, such

as in case of RGB and depth data, the research of deep fu-

sion at intermediate network layers has been scarce so far.

In this work, we aim to create a model which enables in-

formation sharing between the data sources at earlier stages

in the model, by enhancing the C3D network with multiple

fusion building blocks such as 1 × 1 × 1 convolutions or

cross-stitching units [13], which were originally designed

for multi-task learning and additionally used to fuse differ-

ent data streams for head pose estimation [18].



3. Fusion Strategies for Multi-modal Gesture

Recognition

In this paper, we investigate various methods for deep

multi-modal fusion in the context of hand gesture recog-

nition. That is, given multiple video inputs (i.e. depth

and color data), our goal is to identify the performed hand

gesture, while combining the information from different

streams in a beneficial way. While in the past, separately

trained networks for each modality were joined via late fu-

sion, we specifically focus on learning a shared representa-

tion at intermediate layers, which has been overlooked in

the previous work.

To this intent, we employ the C3D [20] back-

bone architecture based on 3D convolutions, which has

achieved excellent results for multi-modal gesture recog-

nition (Section 3.1) and analyze the conventional late fu-

sion approach (Section 3.2). We further evaluate merging

at intermediate levels in the network and propose a straight-

forward method for linking the streams earlier via 1× 1× 1
convolutions, which we examine at different network stages

(Section 3.3). Finally, we propose a new architecture C3D-

stitch, which learns how to combine the activations of both

networks at multiple layers simultaneously by utilizing the

cross stitch units (Section 3.4).

3.1. Backbone Architecture and Preprocessing

The backbone architecture of our pipeline is a Convolu-

tional Neural Network (CNN) that employs spatio-temporal

3D kernels to handle the temporal dimension. We adopt the

C3D architecture, as it has been most prominent on previ-

ous work for multi-modal gesture recognition1. Conceptu-

ally, our pipeline uses one C3D network for each modal-

ity. Since the dataset consists of color- and depth data, we

train two C3D networks and examine various ways to link

their information at different stages with the proposed fu-

sion strategies.

Backbone Architecture. C3D consists of 8 convolutional

layers, 5 pooling layers followed by two fully-connected

layers and softmax normalization. The amount of filters in-

creases from the first to the last convolutional layer start-

ing with 64 filters, followed by 128, two 256 and three 512
convolutional layers, respectively. Four out of the five max

pooling layers with kernel size of 2× 2× 2 use a stride of 2
for increasing the receptive field and decreasing the amount

of information to consider. The first pooling layer is an ex-

ception. In order to keep more temporal information, it only

has a kernel size of 1× 2× 2, with 1 denoting the temporal

dimensions.

1We use the PyTorch implementation with its pre-trained weights

on the Sports 1-M dataset provided in https://github.com/

DavideA/c3d-pytorch.

Figure 2: Overview of the late fusion model. This archi-

tecture consists of separate depth- and RGB-C3D-streams,

where no interaction or information exchange is carried out

between them. The fusion is carried out only in the final

prediction layer (i.e. after the softmax normalization) where

the confidences for each class is averaged between the two

streams.

Spatial Alignment and Data Augmentation. As we aim

to fuse the output of the convolution layers, correct spatial

alignment between the feature maps of different modali-

ties is important. However, the color- and depth frames

of the IsoGD dataset are not perfectly aligned. In order

to register the different views, we calculate the homogra-

phy between the RGB and depth frames via multiple corre-

sponding points. This operation aligns the views, therefore

increasing their correlation. Following the original C3D

implementation[20], we first rescale the videos to a reso-

lution of 128×171 pixel. The input to the C3D network are

then 16 cropped frames of 116×116 pixel. We employ ran-

dom selection of the 16 frames and their cropping to achieve

the desired resolution as our training data augmentation. At

test-time, we compute center crops of the video frames.

Learning Setting. We train the model with a learning rate

of 0.0001, momentum of 0.9 and a mini batch size of 10.

We initialize the weights for both, color and depth streams,

using a model pre-trained on the Sports-1M [8] dataset for

large-scale action recognition.

3.2. Late Fusion Approach

Our first multi-modal strategy is late fusion, where we

combine the outputs of the two networks though their last

fully-connected layer by score averaging – a widely used

method in gesture recognition. We investigate three differ-

ent policies to train the model: 1) individual training of the

two networks with two separate losses, 2) joint training of

both networks in an end-to-end fashion, with a single loss

estimated after averaging, and 3) a multi-step technique,

where we first pre-train the networks on each modality indi-

vidually and thereafter fine-tune them jointly. The learning

parameters are identical to the backbone models that were

trained separately for each modality (Section 3.1), except

for the fine tuning phase of the network trained in multi-

ple stages. An overview of the C3D network with the late

fusion paradigm is illustrated in Figure 2.



Figure 3: Overview of the proposed intermediate fusion

module via 1 × 1 × 1 convolutions. We combine the two

streams at different levels of the network i.e. at the second,

third and fourth pooling layer. After the fusion module the

two streams are merged to a single shared network using

concatenation.

3.3. Midlevel Fusion with Shared Late Network

The main focus of this work are approaches, where the

information exchange takes place at the feature maps level

of the intermediate network layers, so that useful early fea-

ture correlations are taken into account. Our first intuition is

to use separate streams at early layers and, then, fuse them

into a joint model in a later stage (as depicted in Figure 3).

A straight-forward fusion method is simply using 1× 1× 1
convolutions followed by concatenation of the two output

feature maps. The input shape for a single shared net-

work of the next layer (after the fusion) should have the

same shape as each of the two inputs to the fusion modules.

Thus, we reduce the number of output filters by half in each

1×1×1 convolution layer (i.e. we divide the number of fil-

ters by the number of streams). In other words, we employ

the 1 × 1 × 1 convolutions to decrease the dimensionality

within the filter space. The final architecture therefore con-

sists of three components: two early-stage networks corre-

sponding to each individual modality and a shared network

for the final stage, which leverages the shared input repre-

sentation.

An important question when employing such a fusion

scheme is selecting the point of fusion in the network, as

we can select any convolution layer in the C3D architec-

ture. Thus, we implement and compare different variants

of the model, with fusion at different layers in the model.

Figure 3 shows three model variants with the 1×1×1 con-

volution layer before conv 3a, conv 4a and conv 5a of the

shared network. We follow the same learning procedure

as for the late fusion (Section 3.2). Furthermore, similar

to Section 3.2, we evaluate both variants, with and without

pre-training on the individual modalities.

3.4. Fusion on multiple Levels via Crossstitch Units

Until now, we needed to manually select a certain stage

in the model, at which the streams would be joined. In this

section, we aim at building a model, which does not restrict,

where the individual or joint learning takes place, and facil-

itates information exchange on multiple layers at the same

time. We present a novel multi-stream model, which con-

sists of individual C3D networks for each modality, which

pass information to each other at each pooling and fully

connected layer. In this architecture, the output of each

of these layers is combined via a learned weighted aver-

age called cross-stitch units [13] (see overview of the C3D-

Stitch model in Figure 4). In other words, at every stage all

networks contribute to each other pairwise, while the extend

of this contribution of foreign modalities is learned end-to-

end.

We adapt the cross-stitch units building block, first used

for multi-task learning, and utilize it for multi-modal fusion

of single-task C3D networks. The cross-stitch units take

two activation maps from both streams and pass a generated

linear combination with learned weights to the next layer

of each stream, respectively. In this way, the unit pieces

together two new activation maps and passes them onto the

next layer of the corresponding network.

More formally, let xA, xB be the feature maps of the

two networks after layer ℓ (e.g. output of one of the pooling

layers). The objective is to learn the linear combination x̂A,

x̂B of the two feature maps xA, xB :

[

x̂
i,j
A

x̂
i,j
B

]

=

[

αℓ
AA αℓ

AB

αℓ
BA αℓ

BB

] [

x
i,j
A

x
i,j
B

]

, (1)

where i, j are location coordinates in the feature maps,

while the α learned weights show the amount of informa-

tion flow of each filter between the streams. The param-

eters αAA, αBB weight the information flow in the same

modality, while αAB , αBA control the impact of the ex-

ternal modality stream on the current one. In other words,

the α-values denote the degree of contribution of each pair

of streams. A close to zero αAB or αBA value indicates

that the amount of information shared between the modal-

ities is low, while, high positive or low negative αAB or

αBA weights are linked to a high amount of information

exchange between the networks.

The core structure for each C3D model remains almost

unchanged, as we extend its connections to the external net-

work via cross-stitch units after each pooling layer and in-



Figure 4: Overview of the proposed multi-layer fusion C3D-Stitch architecture. The model consists of two C3D streams,

which pass each other information after each pooling and fully connected layer via cross-stitch units.

between the fully-connected layers. As the C3D-Stitch con-

sists of two individual networks which actively share the in-

formation along the layers, the direct forward pass outputs

two predictions. We therefore average the resulting softmax

scores of both network and unify the prediction score. We

follow the same learning procedure as for the late fusion

(Section 3.2) and choose a cross-stitch layer learning rate

of 0.01, similar to [13].

4. Experiments

We evaluate both our fusion policies and the single-

stream baseline methods on the publicly available Isolated

Gesture Dataset (IsoGD) [22, 23] for multi-modal gesture

recognition. This benchmark consists of both color- and

depth videos of 249 hand signs, where each video corre-

sponds to a single isolated gesture. IsoGD is a large-scale

dataset that provides a high variety of different gesture types

of multiple applications ranging from sign language to div-

ing and more specialized ones like gestures used for com-

munication by Italians.

In this work, we focus on the potential of multi-layer fu-

sion and conduct a systematic evaluation of various meth-

ods at different stages in the network. To this intent, we

do not aim at improving the performance of current ap-

proaches, but selected a popular neural network often used

in this task without any extensions such as skeleton extrac-

tion or hand cropping, which are often employed to improve

the recognition rate.

In order to systematically evaluate fusion at different lev-

els, we conduct our experiments on ten gestures, which are

most frequent in the IsoGD dataset for mainly two reasons.

First, the IsoGD dataset is highly unbalanced and considers

classes, which occur only a few times in the dataset. This

unbalance might influence the outcome of our evaluation,

as the task gradually becomes few-shot learning. Secondly,

due to the high computational cost of training on the en-

tire dataset, we opt to include more experiments on a subset

of the data instead of providing only a scarce analysis on

the complete IsoGD. Thus, we evaluate our idea on the ten

most frequent gestures from IsoGD, resulting in a dataset of

3711 gesture videos. We adopt the training, validation and

test splits provided by the IsoGD benchmark.

4.1. Evaluation Metric

Following the evaluation procedure of the Isolated Ges-

ture Recognition Challenge [22], we also use the recogni-

tion rate r as our default metric for comparing our fusion

methods:

r =
1

n

n
∑

i=1

δ(p(i), t(i)), δ(x, y) =

{

1, if x = y

0, otherwise
(2)

where t(i) is the target of the i-th sample point, p(i) is the

prediction and n is the number of samples in our test set.

4.2. Late Fusion

Modality Train. Proc. Validation Test

Baselines

RGB – 52.3 58.0

Depth – 49.0 71.6

Late Fusion Methods

RGB+Depth

separate 49.3 70.3

combined 54.9 66.7

sep.+comb. 64.6 75.2

Table 1: Results of C3D using late fusion compared with

depth- and RGB-only. In this experiment, we evaluate dif-

ferent methods for late fusion where we: 1) train the models

separately and combine the prediction only during testing;

2) train the depth and RGB-model together by averaging

the cross entropy loss of both networks; 3) first train the

networks separately and, then, fine-tune them together.



As a baseline, we first compare the commonly used late

fusion approach with the single-stream models. We evalu-

ate networks trained with three different training schemes

described in Section 3.2: training two models separately,

jointly, and a combination of both (first, they are trained

separately and then, they are fine-tuned by averaging the

losses). Table 1 illustrates the results of the experiment,

clearly showing the benefit of multi-modal fusion. Train-

ing both networks jointly after single-modality pre-training

leads to the best recognition rate of 75.2%, outperforming

the depth-only model by over 3% and the RGB-only model

by more than 17%.

4.3. Early and MidFusion via 1×1×1 convolutions

conv_3a conv_4a conv_5a
Layer

0
10
20
30
40
50
60

Ac
cu

ra
cy

 [%
]

no pre-training
ind. pre-training

Figure 5: Validation accuracy of the fusion strategy using

1 × 1 × 1 convolutions. We compare the performance be-

tween different placements of the fusion module. Further-

more, we differentiate between models that were first pre-

trained individually and ones that were directly trained to-

gether.

Next, we explore the effect of the proposed mid-level fu-

sion via 1×1×1 convolutions (as described in Section 3.3).

We add the fusion layer at different depths of the networks

and report results for fusion at layers conv 3a, conv 4a and

conv 5a of the C3D model illustrated in Figure 5. The po-

sition of the fusion layer has a great impact on the overall

performance on the test set, ranging from 53.4% at the earli-

est layer to 78.6% at conv 5a layer (Table 2). We observe a

clear trend for better classification results deeper in the net-

work for both validation and test set. Still, information ex-

change via 1×1×1 convolution at later stages surpasses the

conventional late fusion method (i.e. at the softmax-layer)

by over 3%.

4.4. Fusion via CrossStitching Units

Finally, we evaluate the effectiveness of the proposed

C3D-Stitch model, where the networks share the informa-

tion on multiple layers simultaneously. In Table 2, we per-

form extensive comparison between the C3D-Stitch net-

work, late- and single-layer mid-level fusion approaches

and the baseline methods. Similarly to previously consid-

ered methods, C3D-Stitch benefits from combining both,

Modality Ind. pre-train. Layer Validation Test

Baselines

RGB – – 52.3 58.0

Depth – – 49.0 71.6

Late Fusion Methods

RGB+Depth
✗

softmax
54.9 66.7

✓ 64.6 75.2

1 × 1 × 1 Convolutions

RGB+Depth

✗
conv 3a

32.8 42.7

✓ 34.7 53.4

✗
conv 4a

44.1 64.8

✓ 53.2 70.5

✗
conv 5a

52.8 75.2

✓ 57.4 78.6

Cross-stitch Units

RGB+Depth
✗

multi-layer
56.6 77.1

✓ 66.0 79.8

Table 2: Results of C3D using the different fusion methods.

We group our fusion methods into three categories: 1) late

fusion where we combine the prediction of the networks

after the final fully connected layer by simply averaging the

confidences for each class; 2) early- and mid-level fusion

using 1×1×1 convolution layers to bridge the information

between our two networks; 3) we apply cross-stitch units

after each pooling and fully connected layer of the two C3D

streams.

individual modality-specific pre-training and final joint op-

timization. As expected, our model outperforms single-

model baselines by a large margin (17% for validation,

8.2% for testing) and are also more effective than the con-

ventional late fusion strategy (1.4% for validation, 4.6% for

test). Overall, the proposed C3D-Stitch network yields the

best recognition rate of 79.8% . This outcome shows that

modern multi-modal gesture recognition models can benefit

more from sharing information between single convolution

layer and late fusion. It further shows that it is helpful to

employ a method like cross-stitch units that allow the net-

work to learn end-to-end where and how much the different

streams should interact with each other.

4.5. Learned Shared C3DStitch Representations

Networks with cross stitch units share the information

through a linear combination of activation maps, where

the corresponding weights are learned during training in

an end-to-end fashion. In this section, we investigate the

amount of information shared by the network as we take a

look at the learned cross stitch units weights. The parame-

ters αC and αD (Section 3.4) denote the weight each of the

streams contribute to the output (C denotes color- and D

depth network input). The weights are initialized in such a
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Figure 6: The sorted weights of the cross stitch units for different layers in our network, where we call αC the weights of the

RGB-C3D model, while αD shows the importance of the depth architecture. Thus, the higher the values for αC the more the

network chooses the current features of the RGB stream, while higher αD show a stronger preference in feature maps from

the depth stream.
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current stream.



way that a small amount of information is shared between

the two networks, as done in[13]. During training, the α

values are learned to assure the optimal information sharing

for the task.

We visualize the learned weights of the cross-stitch units

in Figure 6 for the input to the color stream and in Figure 7

for the depth network. Both figures illustrate the sorted

weights of each individual layer, where the cross stitch units

are applied. We see in Figure 6, that while overall, internal

features (in this case, color data), have a stronger contribu-

tion to the input of the next layer, we observe a clear mixture

of the two modalities. The weights of the foreign depth net-

work contains values of up to 0.25, while some α values of

the color network have a value of over 1.0.

Overall, individual features of the same modality are

weighted differently, i.e. our model has learned to select and

share the most useful information. This exchange pattern is

present along all layers, except for the last convolution layer

fc 6, where the representation is still mixed, but the fea-

tures seem to be weighted uniformly (around 0.9 for color

and 0.1 for the foreign depth stream). We observe similar

behavior for the depth sub-network (Figure 7), with active

information exchange at all levels. In conclusion, these re-

sults demonstrate, that both the RGB and the depth model

benefit from the knowledge sharing at multiple stages.

5. Conclusion

In this paper, we took a closer look at various CNN-

based fusion strategies for multi-modal gesture recognition

from videos. Going beyond the conventional late fusion

paradigm, we specifically focus on merging the data at in-

termediate network layers. To achieve this, we proposed

multiple enhancements for the popular C3D architecture:

fusion in the middle of the network with an additional con-

volution layer and the C3D-stitch model, where the ex-

change happens at multiple layers simultaneously through

the cross stitch units.

Our thorough analysis of different models for gesture

recognition from color- and depth videos, has given three

main findings: 1) we confirm our assumption, that gestures

recognition benefits from multi-modality, as even simple

multi-modal approaches surpass single-model ones; 2) we

show, that involving mid-level features in the information

exchange with an additional 1 × 1 × 1 convolution layer

further boosts the performance; 3) sharing the information

at multiple layers simultaneously consistently outperforms

single-layer fusion, which we demonstrate with our novel

C3D-stitch architecture. The proposed C3D-stitch network

achieves the best results with a performance increase of

over 20% compared to the RGB-baseline model. Our ex-

periments indicate, that multi-modal gesture recognition ap-

proaches could benefit further from utilizing earlier network

layers for the information exchange between the streams.
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