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Abstract

Perceiving users’ engagement accurately is important

for technologies that need to respond to learners in a natu-

ral and intelligent way. In this paper, we address the prob-

lem of automated estimation of engagement from videos

of child-robot interactions recorded in unconstrained en-

vironments (kindergartens). This is challenging due to di-

verse and person-specific styles of engagement expressions

through facial and body gestures, as well as because of illu-

mination changes, partial occlusion, and a changing back-

ground in the classroom as each child is active. To tackle

these difficult challenges, we propose a novel deep rein-

forcement learning architecture for active learning and es-

timation of engagement from video data. The key to our

approach is the learning of a personalized policy that en-

ables the model to decide whether to estimate the child’s

engagement level (low, medium, high) or, when uncertain,

to query a human for a video label. Queried videos are la-

beled by a human expert in an offline manner, and used to

personalize the policy and engagement classifier to a target

child over time. We show on a database of 43 children in-

volved in robot-assisted learning activities (8 sessions over

3 months), that this combined human-AI approach can eas-

ily adapt its interpretations of engagement to the target

child using only a handful of labeled videos, while being

robust to the many complex influences on the data. The

results show large improvements over a non-personalized

approach and over traditional active learning methods.

1. Introduction

Engagement is a process where multiple parties estab-

lish, maintain, and agreeably end their perceived connec-

tion during a joint interaction [41]. The ability of socially

situated intelligent robots to perceive and estimate users’

engagement is critical for enabling timely, naturalistic and

affect-sensitive interactions with users, which makes them

suitable educational and therapeutic companions [4, 34, 32].

Accurately recognizing the state of user engagement en-

ables such systems to deliver just-in-time interactions nec-

essary to achieve the intervention goals [14]. One of

the fundamental challenges in engagement estimation is in

the wide spectrum of how people elicit engagement and

how it is represented in computational engagement mod-

els. Traditional approaches so far have used nonverbal en-

gagement cues such as gaze patterns, body pose, prosody,

facial expressions, proxemics, and task-context behaviors

such as providing input to the interaction task to build

non-parametric engagement state classifiers [6, 35, 34, 38].

However, such models rarely work equally well for every

individual, especially when there is a large variation be-

tween and within target individuals. Because of this, models

learned from data of training subjects usually underperform

when tested on previously unseen subjects. This calls for

new modeling approaches that can deal effectively with in-

dividual differences, thus, moving from ”one-size-fits-all”

toward personalized models for engagement estimation.

While models of personalization from image data have

been researched in several previous contexts (e.g., self-

reported pain analysis [29] and robot-assisted therapy for

children with autism [36]), they are designed for static im-

ages, thus, they do not provide a principled way of dealing

with video data. Furthermore, when faced with hours of

video data, which is typical in real-world human-robot in-

teractions, it is critical for the model to be able to ”actively”

select those instances that the model is uncertain about so

that they can further be analyzed (e.g., by human experts)

and used to personalize target models (in our case, the mod-

els for engagement estimation). For this, modeling frame-

works such as active learning (AL) [40] and reinforcement

learning (RL) [42], provide a principled means for learning

an optimal data labeling and classification policy. However,

most of the existing frameworks for AL using deep RL are

designed for static modeling tasks, such as image classifi-

cation, and are not directly applicable to videos. On the

other hand, several works proposed using AL for action de-
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Figure 1: Overview of the proposed approach. The input is a video stream of the child-robot interactions segmented into fixed

size intervals (5 seconds, divided into 10 time steps). The image frames are first passed through a pre-trained CNN (ResNet),

and then used as input to the proposed Temporally Consistent Deep Q-learning (TC-DQL) for video labeling/classification

policy learning. This is modeled using an LSTM cell unrolled over the time steps, and followed by fully connected (linear)

layers (fcL). The outputs of these fcL are then averaged over time and passed through a softmax layer, which outputs the

optimal action for the target video: whether to ask for the video label or estimate the engagement level of the child. If the

label is requested, the target video is stored in a data pool for further labeling (e.g, by a human expert). After each session

of the child-robot interactions, the engagement classification and labeling policy is personalized to the target child using the

previously and newly labeled videos from the data pool, by updating the parameters Θ of the Q-function.

tection [43, 3], action recognition [17], and action localiza-

tion [7] from videos. However, these works rely on heuristic

AL strategies and not data-driven AL through deep RL, as

done here. More importantly, they do not attempt personal-

ized AL from video data, which is the focus of this work.

To this end, we propose a novel deep AL approach for

determining whether a robot requires a new label to main-

tain a high confidence level of target-user-specific engage-

ment estimation. Our method starts by learning an offline

label request and classification policy (the group policy).

This policy is subsequently personalized to the target user

based on the requested video data for labeling during the

inference stage (i.e., as the new data of target users be-

come available). In the approach presented here, the queried

videos are labeled in an offline manner by the human expert.

In the future, a similar approach could be used to allow a

robot to autonomously request new labels during an inter-

action, e.g., by asking questions such as “do you want to

keep playing?”, when it perceives a user’s engagement as

low, or when it is uncertain about its estimates.

This work brings together ideas from personalized ma-

chine learning [36], and deep RL [47], to formulate a per-

sonalized active learning approach for efficient labeling and

classification of user’s engagement from videos. The contri-

butions of this work can be summarized as follows: (i) We

propose a novel approach for automated estimation of en-

gagement levels (low, medium, high), as coded by human

experts, directly from videos of child-robot interactions in

real-world conditions. (ii) We introduce a novel deep RL ar-

chitecture, named Temporally Consistent Deep Q-learning

(TC-DQL), that provides principled means for learning the

Q-function for RL from videos by leveraging temporal de-

pendencies between image frames (see Figure 1). This is

in contrast to existing AL frameworks based on active-one-

shot learning (AOSL) and RL (e.g., [47, 28, 39]) that deal

with static image classification and assume that image la-

bels are always available. (iii) We propose a novel algorithm

for personalized policy learning that enables the model to

adapt its engagement interpretations to each child in a se-

quential manner using only a handful of human-labeled

videos of the child-robot interaction sessions. This largely

reduces the human labeling effort, which is time and labor

intensive. We evaluate this approach using video recordings

of 43 kindergarten children, being part of a new child-robot

storytelling interaction dataset [34]. We show that by per-

sonalizing the model policy for requesting the video labels,

we can largely improve the engagement estimation for chil-

dren in the dataset. We also show that this approach outper-

forms the traditional and non-personalized AL strategies,

when using the same budget for requesting the video labels.

2. Related Work

A large body of work in human-robot interaction (HRI)

explored the use of various affective and social cues, such

as gaze patterns, body pose, prosody, facial expressions,

proxemics, and physiological information (e.g., skin con-

ductance), as well as task behaviors to infer about a user’s

engagement state. These can be divided into those that de-

tect the presence of a set of the engagement cues or in-

teraction events [35, 34, 15], or use supervised classifiers

trained with social, physiological, or task-based interaction



features [6, 38, 9]. Such approaches require expert engi-

neering of input features and cannot deal with large feature

dimensions efficiently, e.g., when pixel values from face im-

ages are used as input. To address this, [33] proposed a deep

learning approach for engagement estimation from face im-

ages. However, the traditional “one-size-fits-all” models

usually do not work well when the data is highly heteroge-

neous (e.g., due to the differences in facial expressions/body

gestures as a result of individual engagement styles).

Recently, several works proposed models for personal-

ized estimation of engagement in HRI. [36] proposed a

multi-modal deep learning for engagement estimation that

combines body, face, audio and autonomic physiology data

of children with autism during therapy sessions with a hu-

manoid robot. Similarly, [37] proposed a deep learning ar-

chitecture for engagement estimation from face images, by

adapting the target approach to different cultures and indi-

viduals. However, these models are static and do not deal

with video data. By contrast, the proposed approach deals

with raw video data in a principled manner, and is able to

learn an efficient policy for video labeling and engagement

estimation in a personalized fashion.

The approach proposed here is highly related to AL

frameworks [40]. Central to the AL framework is the query

strategy used to decide when to request a label for target

data. The most commonly used query strategies include

uncertainty sampling, entropy, or query-by-committee [40].

Furthermore, more advanced query strategy have been pro-

posed to adapt deep neural network classifiers based on the

uncertainty of the network output (e.g., [21, 45, 23]). Yet,

the candidate query strategies still must be specified by a

human. More recent works (e.g., [2, 20]) proposed AL ”by

learning” using the notion of meta-learning [26]. Despite

their success in various learning tasks, these models still

approximate the learning strategy via a pre-defined set of

basic AL strategies (e.g., uncertainty sampling or entropy).

Instead of using heuristic strategies, recent deep AL ap-

proaches (e.g., [28, 13, 47, 44, 11]) have adopted a data-

driven approach that learns a model-free AL off-line pol-

icy using RL [42]. For instance, [47] proposed a model

where an agent makes a decision whether to request a label

or make a prediction. The agent receives a reward related

to its decision: a positive reward is given for correct predic-

tions, and negative rewards for incorrect predictions or label

requests. This is achieved by Q-learning modeled using the

notion of deep RL [30]. However, this static RL approach

is designed for problems such as image classification on the

Omniglot dataset [25]. Its main goal is to adapt the pre-

diction model to new tasks, using a minimum number of

queries. This problem has also been addressed by the re-

cent AOSL frameworks [39, 31, 22], that use meta-learning

to adapt quickly to new tasks from a few examples of new

classification categories.

In summary, the main difference of this work from prior

work on RL [28, 13, 47] and AL [2, 20], is that prior ef-

forts are devised for static inputs such as image frames, and

not videos. Furthermore, the standard AL frameworks and

those that ”learn how to learn” require the labeling bud-

get to be pre-specified, while in our case, this is learned

from training data. Moreover, most of these approaches are

designed for stream-based AL. This, in turn, requires the

models to be updated after each query. This is impractical

for two reasons. First, it is computationally demanding to

update the perception modules after each video query (in

our case, every 5 sec). Second, to maintain a naturalistic

and engaging interaction, the robot should avoid asking too

often a human expert or the user to provide the correct en-

gagement label. Instead, we propose an approach where the

robot first stores the videos it is uncertain about, in which

case no engagement estimation is made. After the interac-

tion, a human expert is asked to provide her feedback for

those videos, which are then used in an off-line manner to

personalize the data labeling/engagement estimation policy

by optimizing it for future interactions with the target child.

3. Preliminaries

3.1. Problem Statement and Notation

In our learning setting, we use video recordings of child-

robot interactions [34], described in Section 5.1. Formally,

we denote our dataset as D = {d1, .., di, .., dC}, where di
comprises video recordings of child i, and C is the num-

ber of children. The data of each child are segmented into

a maximum of M = 8 different sessions (one session per

week) as di = {Si,j}j=1,..,M , but the number of sessions

may vary per child (e.g., when a child did not attend a ses-

sion). Furthermore, each child’s session contains K video

clips of that child, denoted as Si,j = {v1i,j , .., v
k
i,j , .., v

K
i,j},

where K may vary per child. Lastly, each video clip

comprises vki,j = {X, y}, where X = [x1, .., xT ] ∈

R250×250×T is a window of T image frames (size 250×250
pixels) associated with the target label y = {0, 1, 2}, corre-

sponding to the child’s engagement level (see Section 5 for

details). Given these data, we address it as a multi-class im-

age sequence classification problem, where our goal is two-

fold: (i) to predict the target label given a window of image

frames, and (ii) to actively select the data of each child so

that our prediction model can iteratively be personalized to

that child as the sessions progress.

3.2. Action Recognition from Video Data

To classify each video clip, we use a Long Short-

Term Memory (LSTM) [19] model, which enables long-

range learning of time-feature dependencies between im-

age frames. This has shown great success in tasks such

as action recognition [10, 1] and speech analysis [16, 12].



Each LSTM cell has hidden states augmented with nonlin-

ear mechanisms that allow the network state to propagate

without modification, be updated, or be reset, using simple

learned gating functions. More formally, a basic LSTM cell

can be described with the following equations:

ĝf , ĝi, ĝx, ĉt = Wx · xt +Wh · ht−1 + b

gf = σ(ĝf ), gi = σ(ĝi), gx = σ(ĝx)
ct = gf ⊙ ct−1 + gi ⊙ tanh(ĉt), ht = gx ⊙ tanh(ct),

(1)

where ĝf , ĝi, ĝx are the forget gates, input gates, and output

gates respectively, ĉt is the candidate cell state, and ct is the

new LSTM cell state. Wx and Wh are the weights mapping

from the observation (xt) and hidden state (ht−1), respec-

tively, to the gates and candidate cell state, and b is the bias

vector. ⊙ represents element-wise multiplication; σ(·) and

tanh(·) are the sigmoid and hyperbolic tangent functions re-

spectively [47]. To model the window of T image frames,

we adopt an architecture resembling that of the Long-term

Recurrent Convolutional Network (LRCN) [10] framework,

proposed for fully supervised action recognition. In this ap-

proach, each instance of the unrolled LSTM cell receives a

temporally ordered image frame from a video clip (where

each image is first passed through a CNN network). Then,

their output-state values ht are passed through fcLt, and av-

eraged across time. Finally, a sigmoid function is applied to

obtain the target label y∗, as depicted in Figure 1.

Note that more advanced deep architectures can be used

to model video data, as done in fully supervised learning

settings (e.g., [5, 46, 8, 10]). Within our approach, these ar-

chitectures can be considered as more effective feature ex-

tractors (Section 4.1). However, the focus of this work is on

the learning of the personalized policy for data labeling and

adaptation of the engagement classifier in a data efficient

manner, and using the notion of deep RL.

3.3. RL for Data­labeling Policy Learning

RL [42] is a framework that can be used to learn an opti-

mal data labeling policy π(si). Given a video (vi), the pol-

icy takes a state (si) and outputs an action (ai) by maximiz-

ing an optimal action-value function Q∗(si, ai). This func-

tion is at the heart of RL, and it specifies the expected sum

of discounted future rewards for taking action ai in state si
and acting optimally from then on:

ai = π∗(si) = argmax
ai

Q∗(si, ai); (2)

The optimal Q function is given by the Bellman equation:

Q∗(si, ai) = Esi+1
[Ri + γmax

ai+1

Q∗(si+1, ai+1)|si, ai],

(3)

where Esi+1
indicates an expected value over the distribu-

tion of possible next states si+1, Ri is the reward at the

current video i given state si (image features) and action ai,

and γ is a discount factor, which incentivizes the model to

seek reward in fewer time steps. Recently, [47] proposed to

use this approach for AL from the Omniglot image dataset,

where the model’s actions ai are defined as binary states: 1
when the true label y∗i is requested, and 0 when there is no

request, in which case the model makes a prediction yi for

the target image category. We adopt this definition of the

action space in our RL model (Section 4.2).

4. Methodology

We propose a deep learning approach for learning an op-

timal data-labeling policy and engagement estimation from

fixed-sized video segments. The proposed deep architecture

has two blocks designed for: (i) the extraction of deep fea-

tures from video frames using pretrained CNNs, and (ii) the

learning of the Q-function of the RL model implemented

using an LSTM cell and fcL followed by a softmax layer

(see Figure 1). The role of the latter is to learn simulta-

neously the group-policy for data labeling and multi-class

engagement classification from input videos of the training

children. During inference, for a new child, the group pol-

icy is first used to select videos that the model is uncertain

about. These are then used to personalize the policy and

engagement estimator to that child in an iterative fashion.

4.1. Deep Features

The image frames X from a target input video v1 are

passed individually through a pre-trained CNN network.

Specifically, we applied the ResNet-50 [18] architecture,

pre-trained on the ImageNet dataset [24]. We used all 50

network layers (convolutional and dense) but the last (i.e.,

the softmax layer) to obtain the network activations as our

deep features, X̂ = {x̂1, . . . , x̂T } ∈ R
2048×T , where 2048

is the size of the output layer (conv 5x). Recent works

have showed that these features, capturing edges, corners,

shapes and other data representations, work well as general-

purpose deep features for image classification tasks [27].

We also applied data augmentation by rotating the images

in order to account for different camera-views.

4.2. Group­policy Learning

We start by learning the group-policy πg for making the

decision when to query a video label and when to estimate

the engagement level. For this, we use the deep features

from the training videos v = {X̂, y} to learn the Q func-

tion of the RL model (Section 3.3). Specifically, given a

video vi, the active learner may choose an action ai of ei-

ther requesting the true label yi (ri = 1), or providing its

estimate y∗i (ri = 0). If the engagement label is requested,

the model receives a negative reward to reflect that obtain-

ing video labels is costly. On the other hand, if the model

1For notational simplicity, we drop the dependence on {i, j, k}



decides to estimate the child’s engagement level, the model

receives positive reward if the estimation is correct; other-

wise, it receives negative reward. This is encoded by the

following RL reward function, also used in [47]:

Ri =











Rreq, if ri = 1

Rcor, if ri = 0 ∧ y∗ = y

Rinc, if ri = 0 ∧ y∗ 6= y

(4)

This reward drives the learning of the Q-function that we

use to learn the target policy. We approximate the Q-

function using an LSTM cell, with 128 hidden units, un-

rolled in time for t = 1, .., T . The outputs of these

LSTMs simulate the states of the Q function, but at the

frame level. The states for the input video are denoted by

Hi = {hi,1, .., hi,T } ∈ R
128×T . Subsequently, each set

of states hi,t, t = 1, .., T is passed through a linear fcL

(128 × 4) with parameters {Wl, bl}, for each image frame

mapping the states to a 4-D action space âi,t (see below).

This is followed by the parameter-free averaging layer:

âi =
∑T

t=1
âi,t ←Wl · hi,t + bl. (5)

The discrete action space is then obtained as:

ai = [ri, ~yi]← softmax(âi), (6)

and is a one-hot encoding of the request and engagement la-

bels as ai = [ask, low,med, high]. For instance, if a label

is requested, ai = [1, 0, 0, 0]; otherwise, for engagement

level y = high, we obtain ai = [0, 0, 0, 1]. To leverage

the memory-augmentation property of the LSTM models,

whenever the label is requested, it is provided in the next

iteration of the model learning by augmenting the deep fea-

tures of the next video (vi+1), being the input to LSTMi+1:

LSTM t
i+1 ← [x̂t

i+1 , ~yi], if ri = 1

LSTM t
i+1 ← [x̂t

i+1 ,
~0], if ri = 0

, t = 1, .., T (7)

This strategy is commonly used in AOSL methods (e.g.,

see [2, 39, 47]) designed to adapt faster and more easily to

new tasks in an online fashion. Since we deal with a single

task (i.e., engagement estimation), in our experiments, this

only resulted in more stable and faster model convergence

during training. However, it did not affect the model’s es-

timation performance. Furthermore, as described in Sec-

tion 4.3, during the inference stage, we do not have access

to the previous video label, even if there was a request.

Once we defined the action space and the input features,

the parameters of the Q-function are optimized by minimiz-

ing the Bellman loss on each training video vi:

L
(i)
B (Θ) = [QΘ(si, ai)− (Ri + γmax

ai+1

QΘ(si+1, ai+1))]
2,

(8)

which encourages the model to improve its estimate of the

expected reward at each training iteration. We do this over

i = 1, . . . , N video instances from the training children,

and over a number of training episodes. The loss minimiza-

ton is performed in an end-to-end fashion2, where Θ are the

parameters of the proposed deep Q-function (see Figure 1).

However, this unconstrained parametrization of the action

space may lead to (i) slow convergence of the loss function,

and more importantly, (ii) a high number of requests, which

in practice may easily exceed the available budget for ob-

taining the data labels. To this end, we constrain the action

space by adding a surrogate cross-entropy loss directly on

the logits of the action space as follows:

L
(i)
X = log (softmax(âi ⊙ [0 1 1 1])) · [0 ~yi]

T , (9)

where we mask the label request through the vector

element-wise multiplication ⊙. The the newly introduced

loss function that optimizes the group-policy πg is then:

min
Θ

∑

i=1..N

L(Θ) = min
Θ

∑

i=1..N

[L
(i)
B (Θ) + αL

(i)
X ], (10)

where the cross-entropy loss is paramater-free, and α bal-

ances the trade-off between the two losses. Note that when

α is high, we obtain the model similar to the LRCN [10],

i.e., we obtain a supervised model. Conversely, when α =
0, our model is a generalization of the active-one-shot RL

approach [47] to video data. We name this new model the

temporally consistent deep Q-learning (TC-DQL).

4.3. Personalized­policy Learning

The learned group-policy can be applied to videos of pre-

viously unseen children. However, this policy may be sub-

optimal due to the highly diverse styles of engagement ex-

pressions across the children, in terms of their facial expres-

sions, head movements, body gestures and positions, among

others. These may vary from child to child not only in their

appearance (e.g., facial) but also dynamics during the en-

gagement episodes. To account for these individual differ-

ences, we personalize the policy to each child. Specifically,

for a new child, we assume we have access to multiple in-

teraction sessions over a period of time. Then, we start with

the group-level policy to provide initial engagement esti-

mates, but also to select ”difficult” videos that need to be

expert-labeled and used to personalize the policy to the tar-

get child. The main premise here is that with a small num-

ber of human-labeled videos, the parameters of the group-

level policy can easily be adapt to the target child.

As an example, consider a child interacting with a robot:

we estimate the engagement levels from video segments as

the interaction proceeds. For the current video segment vi,

2We freeze the parameters of the input CNNs.



the engagement label is obtained as:

y∗i = argmax(ai ⊙ [0 1 1 1]T ), (11)

where for the first session (S1), we use the TC-DQL model

parameters Θ0 from the group policy πg to obtain ai =
[ri, ~yi]. Note that during this inference stage, the model

still may request the label; however, since the labels are not

available at that point, we introduce a masking layer, as in

Eq. 11. This also returns the ~0 to the LSTM units, thus,

no memory augmentation is enabled. On the other hand,

to store the “difficult” videos for expert-labeling after the

session is completed, we use the action-request bit obtained

before the masking layer, i.e., r∗i = ai(1).
The requested videos from an ongoing session (and all

previous sessions of that child) are stored in a video pool

vr. Once the session is completed, the stored videos are

labeled by an expert, and used to update the model policy

for further data requests and engagement classification for

the target child. In a general case, for videos from session

Sj , this is performed through the following updates of the

model parameters:

Θ̂j ← min
Θj−1

∑

vr∈{Sj}

[L
(vr)
B (Θ) + αL

(vr)
X ], (12)

where the loss function is defined in Eq. 10, and the model

parameters are initialized using those from the previous ses-

sion Sj−1, j = 1, ..,M . Therefore, the new parameters Θj

are optimized only using the labels for the requested videos.

This results in a new personalized policy πt for target child,

which is updated after each session is completed. Currently,

for each new child, the learning of the personalized policy

starts from the group-policy learned during training.

5. Experiments

5.1. Dataset

We used the child-robot storytelling interaction dataset

of 43 children between the ages of 4–6 years recruited

from 12 local kindergarten classrooms (55% female, age

µ = 5.36 ± 0.62 years) [34]. In each interaction, the

robot and the child took turns telling stories to each other.

We used video recordings from the bird’s-eye view of the

interaction (see Figure 1). On average, each robot story

lasted for about 15 minutes, and each child interacted with

the robot for 6–8 sessions over three months. From the

videos of this dataset, we sampled ∼7.2K 5-second video

clips (@30fps) annotated by three expert psychologists in

terms of visual cues of engagement levels as low engage-

ment/disengagement (y = 0), mid-engagement (y = 1),

and high engagement (y = 2). We averaged these annota-

tions and used them as the ground truth for the engagement

estimation task.

5.2. Data Processing and Evaluation Setting

For training/testing, we computed the CNN features for

each frame (scaled to 250 × 250) from target videos, and

averaged them within 1 second intervals, with an overlap of

0.5 seconds. This resulted in 10 temporally coherent deep

feature vectors (Section 8), which were then fed into the

LSTM cell of the TC-DQL model. We report the average

F1 score and accuracy (ACC) for the 3-class engagement

classification task. For the RL methods that provide a mech-

anism to request a label, we also report the portion of the

requested videos, and precision (PR), defined as the num-

ber of correctly classified videos from those that were not

requested by the model. To evaluate the models, we split

the children into: training (18), validation (4) and test (21).

For the proposed approach, we investigated different net-

work architectures by changing the number hidden states in

the LSTM units (h = 32, 64, 128 and 256), and n = 128
was selected as the best on the validation set. The size of

the fcL was set to 128 × 4, as the size of the action vector

a was set to 4. For each training iteration, we used a batch

size of 20 episodes, with each episode containing 30 ran-

domly selected videos. For the Bellman loss in Eq. 8, we

set the epsilon greedy action to ǫ = 0.05, with discount fac-

tor γ = 0.8, and used the Adadelta optimizer with a learn-

ing rate lr = 0.2. If not said otherwise, the reward values

were set to: Rreq = −0.05, Rcor = 1 and Rinc = −1. We

evaluated several versions of our model: TC-DQL – trained

with cross-entropy loss only (this setting has the same ar-

chitecture as the LRCN [10] model, previously proposed

for supervised activity recognition), TC-DQL that uses the

Bellman loss only (α = 0, see Eq. 12). For the combined

loss (Bellman+xentropy), we used TC-DQL with α = 3, as

it performed the best on the validation set.

5.3. Compared Methods

We compared our approach with several baselines. As

fully supervised models, we used the CNN features and the

temporally unrolled LSTM cell (see Figure 1), which out-

put states (10 × 128 = 1280) were then fed to a linear

fcL (1280 × 3) and a softmax layer outputting probabil-

ities for the engagement levels (LSTM-S). We also com-

pared to a traditional deep network that performs a majority

voting from the frame-level engagement estimates (DNN-

MV). For this, the CNN output for each frame was passed

to a linear fcL (2048 × 128) followed by a soft-max layer

for per-frame estimation, and the majority vote to obtain the

video label. Since our approach is most similar to the deep

RL in [47], we applied a straightforward extension of this

model to video data. Namely, to obtain the fixed-size rep-

resentation of the video, each frame was passed through a

fcL (2048× 128), resulting in 1280-D feature vectors, as in

DNN-MV. These features were used as input to the LSTM

cell (we used 200 hidden states as in [47]), followed by an-



other fcL (200 × 4) and a softmax layer. We denote this

model as LSTM-RL. During the evaluation of test videos,

we return zero-labels, as in our TC-DQL, when requests are

made. This is because, in contrast to [47], in our evaluation

setting, the true labels are not available during inference.

5.4. Results

Table 1 shows the performance of different methods on

test children. In the case of RL-based models, this cor-

respond to the case when the group-policy, learned from

videos of training children, is applied to test children.3 We

note that the static DNN-MV approach fails to reach the per-

formance of its temporal counterparts. We also note that the

fully-supervised LSTM-S approach shows slight improve-

ment in terms of F1/ACC over the LSTM-RL approach.

However, the latter uses much less video labels during train-

ing (16%). On the other hand, the proposed deep architec-

ture (TC-DQL), when evaluated in the fully supervised set-

ting, i.e., using the cross-entropy loss only, outperforms the

LSTM-S by 2% in terms of all three performance measures.

When the combined loss (Bellman + cross-entropy) is

used in the proposed TC-DQL (α = 3), this model outper-

forms TC-DQL without the cross-entropy regularization.

We attribute this to the fact that the action space of the lat-

ter is unconstrained, resulting in a less dicriminative model.

Also, the lack of the proposed regularization results in a

higher number of video requests (19% vs. 4%). This ev-

idences the importance of constraining the action space,

when the requests and the labels are modeled jointly in the

output of the RL model. By changing the negative reward in

the TC-DQL, we noticed a drop in its F1/ACC, even though

the number of requests for the labels increased. A simi-

lar trend can be observed during the training stage. This

is depicted in Figure 2, showing the models’ performance

on videos of the training children. Overall, we note that

among these models, the TC-DQL with the proposed com-

bined loss reaches the highest performance, while minimiz-

ing label requests. Note that for the TC-DQL (α = 3), we

set the request bit in the action space to 0 for the first 1800

iterations, effectively giving a warm start to the model.

We next compare TC-DQL with the LSTM-S model that

is personalized to target children using video labels queried

using traditional (heuristic) AL strategies. Namely, we

evaluate the following AL strategies: the entropy (ENTR),

the least confidence (LCONF) and the smallest margin

(SMAR). To investigate the models performance under sim-

ilar conditions, the budget of the heuristic AL strategies is

set to the average number of requests by TC-DQL (REQ).

Table 2 shows the results of the personalized models on

test children and per child-robot interaction session. For

the first session, the group policy (INIT) is used (i.e., the

3Because of the highly imbalanced labels of engagement levels, the

reported results are obtained on the balanced set.

Table 1: Comparison of different models. The performance

measures are obtained by running the group policy on the

test subjects, and are reported in %.

Model F1 ACC PR REQ

DNN-MV 37 39 39 100

LSTM-S 41 43 43 100

LSTM-RL 40 38 42 16

TC-DQL (xentropy) 43 45 45 100

TC-DQL (α = 0, Rinc = −1) 38 37 47 19

TC-DQL (α = 3, Rinc = −1) 45 44 47 4

TC-DQL (α = 3, Rinc = −2) 43 42 48 9

TC-DQL (α = 3, Rinc = −3) 41 40 47 17
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Figure 2: The models’ performance on training data dur-

ing learning stage. As the number of training iterations in-

creases, the ACC of the models increases, while their la-

bel requests decrease, as expected. The proposed approach

reaches the lowest number of requests for α = 3.

non-personalized model). After each session, the queried

video labels are used to personalize the policy to the tar-

get child, as described in Section 4.3, and such model is

evaluated on all video data4 from the next session of the

target child. Likewise, the LSTM-S is personalized to the

target child by fine-tuning the model parameters using the

queried video labels. To avoid overfitting during model

personalization, the parameters of both models were fine-

tuned using only 10 iterations of the Adadelta optimizer

(lr = 0.02). On average, the heuristic AL strategies outper-

form the RND data selection in LSTM-S in terms of ACC.

4No balancing of the labels for the engagement levels is performed

during this inference step.



Table 2: Comparisons of the proposed TC-DQL approach and LSTM-S, personalized per child and interaction session. We

apply the initial model (INIT), i.e., the group policy (Θ0), to S1, and the personalized policy to consequent sessions S2-S8,

where the labels for the queried videos from the previous sessions were used to personalize the models. For both models, we

investigate the performance when the random (RND) data selection was used to personalize the policy. For LSTM-S, the AL

strategies: entropy (ENTR), the least confidence (LCONF) and the smallest margin (SMAR), were used to query the video

labels. For TC-DQL, we report the results of the personalized policy based on the requested data (RL). The last row shows

the average percentage of the requested videos (REQ). The numbers in bold depict the best performance per model.

Model
ACC [%] F1 [%]

S1 S2 S3 S4 S5 S6 S7 S8 AVE. S1 S2 S3 S4 S5 S6 S7 S8 AVE.

LSTM-S

INIT 65 59 61 60 62 60 48 67 60 31 40 36 37 38 40 32 35 35

RND 65 67 69 65 67 64 55 68 65 31 46 40 35 40 41 41 33 38

ENTR 65 61 65 70 73 65 57 75 66 31 42 43 37 38 43 40 35 39

LCONF 65 66 62 69 72 69 52 75 66 31 40 39 41 37 42 41 35 38

SMAR 65 66 70 66 75 70 55 73 68 31 45 41 36 48 47 37 36 40

TC-DQL

INIT 72 57 66 61 74 64 56 71 65 32 42 33 40 43 47 35 31 39

RND 72 67 60 64 72 70 63 81 69 32 38 39 32 46 40 41 41 40

RL 72 70 74 70 82 75 65 85 74 32 45 42 46 45 50 48 46 44

REQ [%] 2.2 0.6 4.8 6.3 14.9 5.2 7.6 11.5 6.6 2.2 0.6 4.8 6.3 14.9 5.2 7.6 11.5 6.6

On the other hand, only the SMAR approach outperforms

RND in the case of LSTM-S and F1 score. From these re-

sults, we note that there is no a one heuristic AL strategy

that is optimal across all the sessions, i.e., there is not a

single strategy that achieves a consistent improvement over

the random queries. On the other hand, we note that in the

proposed TC-DQL approach, the requests are in most cases

more informative than RND queries, leading to consistent

improvements over the INIT and RND strategies. Overall,

TC-DQL outperforms LSTM-S with the best heuristic AL

strategy (SMAR). This is achieved with an average number

of requests of 6.6%, thus, only ∼ 10 5 sec videos per child.

Figure 3 depicts the improvements in ACC (over the

group-policy – TC-DQL-INIT) per target child. As can

be noted, in many cases, the model does not request la-

bels. There are also cases where the model fails to capital-

ize on the updated policy, resulting in lower performance

than when the group-policy is used (e.g., for child ID=

14 and 9). This behavior occurs in cases when the model

overfits during the policy personalization. For this reason,

there are no consistent improvements over the sessions of

the same child. This is also because the child’s position as

well as the engagement behaviour patterns can vary largely

from session to session. However, the model achieves

large improvements (reaching 100% for the child with ID=

9), on a majority of the children. This clearly shows the

benefits of using the personalized policy for video label-

ing/engagement classification, over the group-level policy.

6. Conclusions

We introduced a novel approach for personalized estima-
tion of engagement directly from videos of child-robot in-
teractions using the notion of active learning and deep RL.
We demonstrated that this approach outperforms related RL

Figure 3: The relative improvement in terms of ACC[%] by

the TC-DQL personalized-policy over the group-policy.

and traditional AL strategies under the same budget for re-
questing video labels. We also showed that the proposed ap-
proach provides a data efficient personalized policy that al-
lows the model to easily adapt to a new child, improving the
engagement estimation using a small number of video la-
bels provided by the human expert. This combined human-
AI approach has potential to improve the robot perception
of user engagement, and personalized video analysis.
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