
Efficient and Accurate Face Alignment by Global Regression and Cascaded

Local Refinement

Jinzhan Su

Meitu, Inc

sjz@meitu.com

Zhe Wang

Meitu, Inc

wz@meitu.com

Chunyuan Liao

Hiscene Technology

liaocy@hiscene.com

Haibin Ling

Temple University

hbling@temple.edu

Abstract

Despite great advances witnessed on facial image align-

ment in recent years, high accuracy high speed face align-

ment algorithms still have rooms to improve especially for

applications where computation resources are limited. Ad-

dressing this issue, we propose a new face landmark local-

ization algorithm by combining global regression and local

refinement. In particular, for a given image, our algorithm

first estimates its global facial shape through a global re-

gression network (GRegNet) and then using cascaded lo-

cal refinement networks (LRefNet) to sequentially improve

the alignment result. Compared with previous face align-

ment algorithms, our key innovation is the sharing of low

level features in GRegNet with LRefNet. Such feature shar-

ing not only significantly improves the algorithm efficiency,

but also allows full exploration of rich locality-sensitive de-

tails carried with shallow network layers and consequently

boosts the localization accuracy. The advantages of our al-

gorithm is clearly validated in our thorough experiments

on four popular face alignment benchmarks, 300-W, AFLW,

COFW and WFLW. On all datasets, our algorithm produces

state-of-the-art alignment accuracy, while enjoys the small-

est computational complexity.

1. Introduction

Automatic face alignment from images, typically formu-

lated as to face landmark localization, is critical in many

computer vision and computer graphics applications, such

as face recognition and verification [56, 38], face attribute

retrieval [49], face animation [6] and face reenactment [39].

These tasks rely on locations of facial landmarks to spa-

tially align the face, to predict the head pose or to fit 3D

morphable models, and their performance directly depends

on the accuracy of face alignment. Despite great advances

witnessed in facial image alignment in recent years, how-

ever, high quality high speed face landmark localization al-

gorithms still have large rooms to improve, especially for

Figure 1. We propose a high accuracy low complexity image

alignment algorithm. It first use a global regression (GRegNet)

to initialize the landmark detection. Then, the result is sequen-

tially improved by a cascaded set of local refinements (LRefNets).

With efficient feature sharing and compact architecture design, our

method compares favorably with recent state-of-the-arts in both

model complexity and run time complexity, while generating best

overall accuracy performance in our thorough experiments.

tasks where computation resource is limited, such as in mo-

bile applications.

Among conventional (a.k.a. non-deep learning) face

alignment methods, cascaded regression algorithms [7, 5,

22, 46] have achieved excellent performances when given

a decent initialization. However, their performance of-

ten depends sensitively on initialization quality. Encour-

aged by recent popularity of deep learning models in com-

puter vision, researchers have investigated using deep neu-

ral networks for initial shape estimator [50] or stage re-

gressor [50, 40], leading to great improvement in align-

ment accuracy. Existing methods usually use separate mod-

els to estimate initial shape and regress shape details in-

crementally in consecutive stages. Such multi-stage strat-

egy [14, 47, 37, 13, 29, 8] often boosts location accuracy

of the initial result, while requests recomputing features at

each stage. As a result, these solutions may have prob-

lems to achieve simultaneously high alignment accuracy

and high run time efficiency.

Motivated by the above mentioned studies and mean-

while to address the issues, in this work we propose to

combine the initial shape estimation and local refinement

in a unified framework. Our key observation is that, a

global shape regression network, in addition to provide ro-



bust global face localization, also carries rich localization

information in its shallow network layers. In particular, in-

termediate feature maps from shallow layers preserve fa-

cial structure and have reasonable abstraction in the mean-

time (Figure 2). Following the observation, our solution

is composed of two closely coupled components, namely

a global regression network (GRegNet) and a few cascaded

local refinement networks (LRefNets). Given an input facial

image, GRegNet first holistically estimates all facial land-

marks; then, starting from the output of GRegNet, LRefNets

refines locally and incrementally each individual landmark.

Different than previous solutions that request expensive fea-

ture extraction for similar refinement steps, our LRefNets

reuse the low-level features extracted by GRegNet. More

specifically, each LRefNet takes one shallow layer output

of GRegNet, and several LRefNets are cascaded to explore

coarse-to-fine layer outputs of GRegNet. The framework of

the proposed algorithm is summarized in Figure 3.

In summary, our main contribution is a high quality high

efficiency face landmark localization framework, with a

novel feature sharing strategy between global shape regres-

sion and local landmark refinement. Such feature sharing

not only significantly improves the algorithm efficiency, but

also allows full exploration of rich localization-sensitive in-

formation carried with shallow network layers and conse-

quently boosts the localization accuracy.

To empirically show the advantages of our algorithm,

it is evaluated thoroughly on four popular face alignment

benchmarks including the 300-W dataset [35], COFW-

68 [16], AFLW [23] and WFLW [43]. On all datasets, our

algorithm shows clear benefits over its baseline and pro-

duces state-of-the-art alignment accuracies. Moreover, our

algorithm runs significantly faster than previously proposed

algorithms, making it suitable for applications where com-

putation resource is limited.

In the rest of the paper, we first summarize related work

in Section 2. Then we introduce in details the proposed

framework in Section 3, and present the experiment valida-

tion in Section 4. Finally, we draw the conclusion in Section

5.

2. Related work

Facial alignment, as a critical step for subsequent face

analyses [56, 38, 49, 6, 39], has been intensively re-

searched for many decades and impressive progress has

been achieved. This is partially due to increasing data

availability and variability [4, 27, 55, 34, 35, 36, 43], and

due to advanced learning techniques that are tailored for

face alignment and benefit from the data. Classical meth-

ods, such as ASMs [10, 31], AAMs [9, 41, 18, 1, 42] and

CLMs [2, 3, 26] can hardly generalize in the wild, and the

iteratively fitting is considerably expensive. Recently, cas-

caded regression methods and deep multi-stage methods are

Figure 2. Visualization of shallow feature maps of GRegNet. Fea-

ture map normalization and histogram equalization are conducted

for better visualization. (A) is input image of size 112× 112; (B),

(C) and (D) are feature maps generated from the first three con-

volutional or residual blocks respectively. Early feature maps (B,

C) preserve facial structures and have proper abstractions of faces.

As the layer goes deeper(D), abstraction get higher, and local de-

tail information get lost.

developed to achieve the state-of-the-art performance.

2.1. Cascaded regression methods

Regression from image features to face shape in one step

is extremely challenging. Cascaded regression methods di-

vide the regression process into stages and learn shape in-

crement at each stage. Conventional cascaded regression

methods differ in the form of stage regressors, such as ran-

dom ferns [7, 5], ensemble regression trees [22], Gaussian

process regression tree (GPRT) [28] or linear regressor [46],

and in different feature mapping functions, such as pixel

different feature [7], hand-crafted SIFT [46], local binary

feature [33]. Their performance strongly depends on the

quality of shape initialization, the capability of stage regres-

sor and the capacity of feature representation. Encouraged

by deep learning methods, deep neural networks were used

as initial shape estimator [50] or stage regressors [50, 40],

leading to great improvement in alignment accuracy. Cur-

rent methods usually use separate models to estimate initial

shape and regress shape increment, and each stage regressor

refines shape incrementally from image patches and hence

performs feature extraction at each stage. Cascaded regres-

sion is also used in [21] for 3D-2D projection estimation to

assist face landmark localization.

2.2. Multistage methods

Besides cascaded regression, multi-stage strategy is a

common strategy to improve the accuracy of the initial re-

sult. The transformation stage [47, 8] or coarse shape pre-

diction stage [14, 24, 29] are typically first used to warp the

input image to a canonical pose. Then, the following stages



Figure 3. An overview of the proposed method with two LRefNets. (A) The input image I is first fed into the Global Regression Network

(GRegNet) to estimate holistically an initial shape S0. (B) Proposed Shape-indexed feature collection (SIFC) process is applied to crop

features from feature maps of various scales preserved in GRegNet, based on the landmark locations provided by the shape out from

previous stage (i.e., S0, S1). (C) On the collected features, the Local Refinement Networks (LRefNets) sequentially improve the results by

predicting shape increments (∆S1, ∆S2) in the coarse-to-fine order. The result of the finest LRegNet is treated as the system output (i.e.,

S = S2).

perform fine-grained landmark localisation. To further im-

prove accuracy, component-wise [8, 29] or point-wise [13]

detection may also be conducted. Current multi-stage meth-

ods perform alignment from images and hence request re-

computing features at each stage.

In this work, we proposed a unified face alignment

framework that closely share features between global re-

gression network (GRegNet) and cascaded local refinement

networks (LRefNet). LRefNets reuse early intermediate

features of GRegNet to refine the global estimation. Em-

pirical experiments indicate that our method is efficient and

accurate.

3. Proposed Method

3.1. Problem formulation and system overview

Given an input facial image I , our task is to localize a set

of n predefined facial landmarks, denoted by S ∈ R
2n. The

proposed method addresses that by two main steps, namely

global regression network (GRegNet), denoted by G, and T

cascaded local refinement networks (LRefNet), denoted by

Rt, t = 1, . . . , T .

Specifically, the input image I is first fed into GRegNet

to estimate, holistically, an initial shape (i.e., set of land-

marks) S0 ∈ R
2n. Meanwhile, T shallow layer feature

maps of GRegNet, namely F t, t = 1, . . . , T are preserved

such that the T -th feature map corresponds to the shallowest

layer (i.e., with most details). Then, cascaded from coarse

(t = 1) to fine (t = T ), localized features for each land-

mark are extracted from F t guided by the shape St−1 from

previous stage. Such feature reusing process, named shape-

indexed feature collection (SIFC) and denoted by Φ(F t),
provides input for LRefNet Rt. Then, Rt produces shape

refinement vector ∆St, which is then combined with St−1

to get an improved shape estimation St. Finally, the result

of the finest LRegNet is treated as the system output, i.e.

S = ST .

The pipeline of our method is summarized in Figure 3

for T = 2. The pipeline can also be summarized by the

following equations sequentially:

{

S0, {F t}Tt=1

}

= G(I), (1)

∆St = Rt
(

Φ(F t, St−1)
)

, (2)

St = St−1 +∆St, t = 1, . . . , T (3)

S = ST . (4)

The rest of this section describes the details of all the com-

ponents in the pipeline as well as the training of the models.



Table 1. Architecture of GRegNet, which is based on ResNet-

18 [20], with following differences: conv1 has a kernel of 3 × 3
and stride 1; max pooling is removed; global average pooling is

replaced by global depthwise convolution layer, namely gdconv in

the table.
Name Layer Shape in

conv1 3× 3, 64,S1,P1 3× 112× 112

res1

[

3× 3, 64
3× 3, 64

]

× 2 64× 112× 112

res2

[

3× 3, 128
3× 3, 128

]

× 2 64× 56× 56

res3

[

3× 3, 256
3× 3, 268

]

× 2 128× 28× 28

res4

[

3× 3, 512
3× 3, 512

]

× 2 256× 14× 14

gdconv 7× 7 512× 7× 7

fc - 1× 512

* S: Stride, P: Padding, G: Group (same for Table 2)

3.2. Global regression network (GRegNet)

A high quality initial estimation of face shape is critical

for the performance of a face alignment system. State-of-

the-art face alignment algorithms mostly base themselves

on deep neural networks with different variations for high

localization precision. While it is tempting to borrow these

algorithms directly for our GRegNet, the high computa-

tional cost force us to find cheaper solutions. Fortunately,

as demonstrated in our thorough evaluation, by reusing

intermediate features in GRegNet, our local refinement

steps (LRefNets) successfully boost the final performance

to state-of-the-arts, while being computationally very effi-

cient.

In particular, our GRegNet G is modified from ResNet-

18 [20] followed by fully connected layers, which are

adapted for the face alignment task. Details of the GReg-

Net architecture is given in Table 1.

Aside from the initial shape estimation S0, G provides

rich locality sensitive information to the following refine-

ment by sharing with LRefNets shallow layer features

{F t}Tt=1. In this work, to balance the run time efficiency

and alignment accuracy, we choose two such layers, i.e.,

T = 2. In particular, F 1 and F 2 are taken from the outputs

of the res1 layer and the conv1 layer of GRegNet, respec-

tively. These features, as shown in Figure 2, capture details

of facial characteristics that can greatly benefit local shape

refinement.

3.3. Shapeindexed feature collection (SIFC)

Intermediate features have been used popularly in vision

tasks, and various methods were proposed to extract ROI

features from feature maps such as in [17, 19]. The moti-

vation for us to design shape-indexed feature collection for

LRefNets is multi-fold: 1) for high localization quality, lo-

Figure 4. Shape-indexed feature collection (SIFC). At each

rescaled landmark (xi, yi), a w × h patch centered at (xi, yi)
are cropped from input feature maps with bilinear interpolation

for achieving subpixel precision. Then n volume feature col-

lected from n landmarks are concatenated to form the input of

size h× w × nC for LRefNet.

Table 2. Architecture details of LRefNet. C represents channel

number of input feature maps, n is the number of landmarks.

Name Layer Shape in

Conv 5× 5, 4n, S1, P0, Gn nC × 5× 5
ReLU - 4n× 1× 1
FC - 1× 4n

cal features need to be extracted at subpixel precision; 2)

the extraction process should be differentiable with respect

to input features, so as to enable the loss of LRefNets to

be back propagated to input layers, which is essential for

the end-to-end training of both local refinement and global

regression; and 3) the extraction should be efficient.

Thus motivated, we carefully design the shape-indexed

feature collection (SIFC) process, denoted by Φ(F t, St−1),
as illustrated in Figure 4. Specifically, let F t ∈ R

H×W×C

contains C channels of spatial resolution (W,H), and

St−1 ∈ R
2n contains coordinates of n landmark points at

scale t − 1. For each landmark point p′

i
= (x′, y′), such

that x′

i
= St−1(2i− 1) and y′

i
= St−1(2i), i = 1, 2, . . . , n,

the goal is to collect features of C channels with spatial res-

olution (w, h), by cropping from corresponding location in

F t. For this purpose, we first rescale p
′

i
to pi = (xi, yi) to

match the spatial dimension of F t. Then, for each channel

c ∈ {1, . . . , C}, we crop from the c-th channel of F t a w×h
patch centered at pi by linear interpolation for achieving

subpixel precision. Finally, all local features for each land-

mark form the output feature volume of size h × w × nC,

which serves as the input for the local refinement module

Rt.

Aside from providing efficient local features, SIFC is

naturally differentiable with respect to the input feature.

This makes the whole system end-to-end trainable as de-

scribed in Section 3.5. In our implementation we set w = 5
and h = 5 throughout all experiments.



3.4. Local refinement network (LRefNet)

Starting from the initial shape S0 estimated by GReg-

Net, a sequence of T LRefNets refine the result in a cas-

caded way. To take full benefit of reusing shallow features

shared by GRegNet through SIFC, LRefNets are designed

to be very efficient, both in speed and in the number of pa-

rameters.

In particular, each LRefNet contains only one convolu-

tional layer (including ReLU), followed immediately by a

linear output layer. Furthermore, the convolution operations

are grouped to run on each landmark independently, further

reducing the computational complexity, and allowing con-

volutions focus on shape-indexed local features. Details of

the LRegNet architecture is given in Table 2.

3.5. Optimization and training

Let θ = θG
∪

θR be the set of all parameters in our

model, where θG and θR denote sets of parameters for

GRegNet and LRefNets, respectively. For an input image

I with ground truth face shape S∗ and estimated shape S, θ

is typically learned through minimizing the loss function as

for conventional face alignment networks:

θ = argmin
θ

L(S, S∗) (5)

Note that in practice the loss is defined over the set of train-

ing samples, but in this section we focus on just one sample

for notation conciseness.

In the ideal case, one can train the whole network by

the above optimization. In practice, however, it is hard to

train both θG and θR in one shot, especially considering

that θR contains parameters for cascaded stages. Consid-

ering the fact that LRefNets are used to improve the result

from GRegNet, it is natural to design a two-phase training

process, such that the first one learns all parameters, while

the second one fine tunes those in LRefNets.

Specifically, in phase one, we train θ by minimizing the

following cost

θ = argmin
θ

[

LG(S
0, S∗) +

T
∑

t=1

LR(∆St,∆St∗)
]

(6)

where ∆St is output of the t-th LRefNet, and ∆St∗ is the

target of ∆St which is calculated online during training

∆St∗ = S∗ − St−1 (7)

We use ℓ2 loss for both cost functions LG and LR.

Then, in the second phase, we fine tune LRefNets by the

following optimization

θR = argmin
θR

T
∑

t=1

LR(∆St,∆St∗) (8)

Details of training settings are discussed in Section 4.

The training pipeline is summarized in Algorithm 1.

Algorithm 1 The training pipeline of proposed method

1: Input: Training data and network hyperparameters

2: Output: Trained network G andRt, t = 1, . . . , T

3: // Phase 1

4: while training jointly do

5: Forward as Equations 1–3

6: ∆St∗ ← S∗ −∆St−1 as Eq. 7

7: ℓ← L(S0, S∗) +
∑T

t=1
L(∆St,∆St∗)

8: Optimize G and {Rt}Tt=1 by minimize ℓ

9: end while

10: // Phase 2

11: while fine tune LRefNets do

12: Forward as Equations 1–3

13: ∆St∗ ← S∗ −∆St−1 as Eq. 7

14: ℓ←
∑T

t=1
L(∆St,∆St∗)

15: Fine tune {Rt}Tt=1 by minimize ℓ

16: end while

4. Experiments

4.1. Datasets

300-W. The 300-W dataset is a combination of five face

datasets including LFPW [4], AFW [55], HELEN [27],

XM2VTS [30] and IBUG [36]. Images in the dataset

have been semi-automatically annotated with 68 facial land-

marks. Following the protocol in previous work [52], all

the training samples from LFPW, HELEN and the full set

of AFW are used as the training set, which contains 3,148

training samples. The common test set is formed by testing

images from LFPW and HELEN, which contains 554 im-

ages. In addition, 135 samples in IBUG are regarded as the

challenging testing subset. All testing samples form the full

testing set with 689 samples.

COFW. For the COFW [5] dataset, we use the re-

annotated COFW test set introduced by [16] to evaluate our

algorithm.

AFLW. The AFLW dataset was first introduced in [23].

We evaluate the proposed method using the AFLW-Full pro-

tocol [53]. The original dataset provides up to 21 landmarks

coordinates for each face but excluding invisible ones. The

AFLW-Full dataset excludes ear landmarks and keeps other

19 landmarks, and invisible landmarks have been added

manually. We use the data split introduced in [53]. Over-

all, 20,000 samples are used as the training set, and 4,386

samples as the test set.

WFLW. The WFLW dataset was introduced in [43]. It

contains 10,000 faces with 98 manually annotated land-

marks. We follow the protocol in [43] by using 7,500 sam-

ples of the dataset as the training set and the rest 2,500 sam-

ples as the test set. The test set is divided into 6 subsets by

attributes, i.e, occlusion, pose, make-up, illumination, blur



and expression. The dataset introduces large variations in

expression, pose and occlusion.

4.2. Evaluation metric

Normalized Mean Error (NME) and Cumulative Errors

Distribution (CED) are used to evaluate the performance of

proposed method. For the WFLW dataset, we follow [23]

and use face size as the normalizing factor. For other

datasets by default, errors are normalized by “inter-ocular”

distance [35]. To better compare with previous results that

are normalized by “inter-pupil” distance on 300-W dataset,

we also report our results with “inter-pupil” normalization

as shown in Table 3. In particular, we use the location av-

eraged over all six points around eyes to get the position of

pupils. In addition to NME and CED, the Area Under the

Curve(AUC) and the failure rate at maximum error of 0.1.

are also reported.

4.3. Implementation details

Before cropping, we pad the provided bounding box on

300-W, WFLW, and COFW. On the 300-W and COFW

datasets, bounding boxes are padded by 10% isotropically.

On WFLW, bounding boxes are padded with left 10%, top

-12.3%, right 10% and bottom 7.7%, which is the average

displacement between detected and ground truth bounding

boxes on the WFLW training set. On the ALFW dataset,

original bounding boxes are used. Then, all images are

cropped and resized to 112× 112 according padded bound-

ing boxes.

Data Augmentation. Various augmentation techniques

are used in this work. We randomly translate each training

sample by 10% of the size of its bounding box. Samples are

randomly rotated between [−30, 30] degrees, and bounding

boxes are randomly scaled in range [0.75, 1.2]. In addition,

samples are randomly flipped horizontally with probability

of 50%. We use imgaug package1 to perform pixel oriented

augmentation. Gaussian blur, average blur, median blur,

sharpen, emboss, additive Gaussian noise, add, add to hue

and saturation, contrast normalization, and gray scale are

applied. To balance the pose distribution, similar techniques

to PDB [14] are applied to the 300-W training set. Except

for pose balancing, we perform augmentation online during

training and generate random samples in every epoch.

Training We use PyTorch [32] for all experiments. SIFC

is implemented as a common module on the PyTorch frame-

work. We use the SGD optimizer with base learning rate

0.01, momentum 0.9, weight decay 5e-4. ReduceLROn-

Plateau scheduler is used to adjust the learning rate con-

figured with patience 200 epochs, learning rate decay factor

is set to 0.75. As described in Algorithm 1, we train the net-

works in two phases. In phase one, GRegNet and LRefNets

are trained jointly up to 3,000 epochs. In phase two, we

1https://github.com/aleju/imgaug

Table 3. A Comparison on 300-W. The three best scores are indi-

cated in red, green and blue, respectively. Best viewed in color.

Method
300-W

Common Challenging Fullset

In
te

r-
p

u
p

il
n

o
rm

al
iz

at
io

n

RCPR [5] 6.18 17.26 8.35

CFAN [50] 5.5 16.78 7.69

ESR [7] 5.28 17 7.58

SDM [46] 5.57 15.4 7.5

LBF [33] 4.95 11.98 6.32

CFSS [52] 4.73 9.98 5.76

3DDFA [54] 6.15 10.59 7.01

MDM [40] 4.83 10.14 5.88

DVLN [44] 3.94 7.62 4.66

LAB [43] 3.42 6.98 4.12

Wing(CNN6/7) [14] 3.27 7.18 4.04

baseline(GRegNet) 4.11 7.32 4.74

Ours 3.76 6.89 4.37

In
te

r-
o

cu
la

r
n

o
rm

al
iz

at
io

n TCDCN [51] 4.8 8.6 5.54

Two-Stage [29] 4.36 7.56 4.99

RAR [45] 4.12 8.35 4.94

PCD-CNN [25] 3.67 7.62 4.44

SAN [11] 3.34 6.6 3.98

SBR [12] 3.28 7.58 4.1

LAB [43] 2.98 5.19 3.49

baseline(GRegNet) 2.97 5.07 3.38

Ours 2.71 4.78 3.12

reduce base learning rate to 0.001 and fine tune LRegNets

for 1,500 epochs. In our experiments, we find that GReg-

Net fit 300-W training set so well that makes ∆St∗ (Eq. 7)

insignificant for following LRefNets to learn the incremen-

tal refinement. To address this problem, dropout is added

to GRegNet in phase two when generating initial shape es-

timation. For fair evaluation, no extra data is used in all

experiments, and all models are trained from scratch.

4.4. Results and discussion

Comparison with state-of-the-arts. On 300-W, as re-

ported in Table 3, our method achieves excellent results that

are better than or similar to state-of-the-arts. Our method

generates the best scores in Inter-ocular NME on all three

subsets. For Inter-pupil NME, our method also performs

among the bests, especially on the challenging subset. On

the AFLW dataset, as shown in Table 5, our method reaches

the state-of-the art performance and ranks the second in

both full and frontal settings, while runs much more ef-

ficient than the champion. These results show clearly the

benefit brought by our concise and efficient combination of

global regression and local refinement, as well as the feature

sharing between them.

Our method continues generating excellent results on

WFLW and COFW-68 by generating new state-of-the-art

results. On WFLW, following the work in [43], we report

mean error, failure rate and AUC on the testset and six sub-



Table 4. Evaluation on WFLW in terms of the NME. The baseline results are estimated by GRegNet. The three best scores are indicated in

red, green and blue, respectively. Best viewed in color.

Metric Method FullSet Pose Expression Illumination Makeup Occlusion Blur

NME(%)

ESR [7] 11.13 25.88 11.47 10.49 11.05 13.75 12.20

SDM [46] 10.29 24.10 11.45 9.32 9.38 13.03 11.28

CFSS [52] 9.07 21.36 10.09 8.30 8.74 11.76 9.96

DVLN [44] 6.08 11.54 6.78 5.73 5.98 7.33 6.88

LAB [43] 5.27 10.24 5.51 5.23 5.15 6.79 6.32

Wing(ResNet-50) [14] 5.11 8.75 5.36 4.93 5.41 6.37 5.81

baseline(GRegNet) 5.09 8.71 5.62 4.91 5.22 6.09 5.63

Ours 4.65 7.99 5.13 4.49 4.74 5.67 5.24

Failure Rate (%)

ESR [7] 35.24 90.18 42.04 30.80 38.84 47.28 41.40

SDM [46] 29.40 84.36 33.44 26.22 27.67 41.85 35.32

CFSS [52] 20.56 66.26 23.25 17.34 21.84 32.88 23.67

DVLN [44] 10.84 46.93 11.15 7.31 11.65 16.30 13.71

LAB [43] 7.56 28.83 6.37 6.73 7.77 13.72 10.74

Wing(ResNet-50) [14] 6.00 22.70 4.78 4.30 7.77 12.50 7.76

baseline(GRegNet) 6.44 25.77 6.37 5.73 5.83 11.96 8.02

Ours 4.88 18.40 4.78 4.44 5.34 9.65 6.99

AUC@0.1

ESR [7] 0.2774 0.0177 0.1981 0.2953 0.2485 0.1946 0.2204

SDM [46] 0.3002 0.0226 0.2293 0.3237 0.3125 0.2060 0.2398

CFSS [52] 0.3659 0.0632 0.3157 0.3854 0.3691 0.2688 0.3037

DVLN [44] 0.4551 0.1474 0.3889 0.4743 0.4494 0.3794 0.3973

LAB [43] 0.5323 0.2345 0.4951 0.5433 0.5394 0.4490 0.4630

Wing(ResNet-50) [14] 0.5504 0.3100 0.4959 0.5408 0.5582 0.4885 0.4918

baseline(GRegNet) 0.5485 0.3172 0.4919 0.5539 0.5332 0.4958 0.5074

Ours 0.5824 0.3570 0.5211 0.5921 0.5667 0.5250 0.5399

Table 5. A comparison on AFLW dataset in terms of NME. The

three best scores are indicated in red, green and blue, respectively.

Best viewed in color.

Method AFLW-Full(%) AFLW-Frontal(%)

CDM [48] 5.43 3.77

RCPR [5] 3.73 2.87

ERT [7] 4.35 4.35

LBF [33] 4.25 2.74

CFSS [52] 3.92 2.68

CCL [53] 2.72 2.17

TSR [29] 2.17 -

DAC-OSR [15] 2.27 1.81

Wing(CNN6/7) [14] 1.65 -

LAB [43] 1.25 1.14

baseline(GRegNet) 1.89 1.78

Ours 1.63 1.46

sets, as summarized in Table 4. Our method outperforms

all previous state-of-the-art methods (as reported on github2

by the author of [14]) by a large margin. We further reduce

mean error on the full set from 5.11% to 4.65%, i.e., 9.0%

relative performance improvement. The proposed method

achieves best performances in all criteria on all subsets, ex-

cept for a second place in the failure rate on the illumination

one.

COFW-68 is a re-annotated version of the COFW test

2https://github.com/FengZhenhua/Wing-Loss

following the same annotation protocol as that for 300-W.

We conduct evaluation on COFW-68 using the same model

trained on 300-W dataset. Two aspects of the accuracy

is evaluated based on the manually annotated visibility at-

tributes of landmarks. The comparisons are measured by

the CED curves, as plotted in Figure 5a and 5b. Our method

achieves the best accuracy among the state-of-the-art meth-

ods with mean error 4.40% for all landmarks and 3.68%

for visible landmarks, compared to previous best [43] with

4.58% and 3.81% mean error.

Aside from achieving the above highly accurate results,

it is worth noting that, our method does not sacrifices in the

run time efficiency, nor in model complexity. This will be

quantitatively analyzed later in this section.

Comparison with baseline. To help understand the benefit

of the proposed two stage localization algorithm, we treat

the GRegNet as a baseline algorithm, i.e., no local refine-

ment. Its performance on 300-W is shown in Table 3 along

with results from other methods. From the table we see that,

on the Fullset, GRegNet achieves accuracies of 4.74 (inter-

pupil NME) and 3.38% (inter-ocular NME), both of which

are clearly lower than the proposed final solution (4.37%

and 3.12% respectively). Similar observations can be found

on other settings as well as other datasets as well, i.e., see

Table 4 for WFLW, Table 5 for AFLW, and Figures 5a and

5b) for COFW. These results convincingly show the clear



(a) Evaluation on all landmarks (b) Evaluation on visible landmarks

Figure 5. CED for the COFW-68 testset. For each method, the training set (in parentheses), mean error and failure rate are summarized in

the legend.

Table 6. A comparison among face alignment methods on WFLW

dataset in terms of network complexity.

Method # Parameter(M) # MACC(G)

DVLN [44] 269.65 46.40

Wing(ResNet-50) [14] 23.79 4.09

LAB [43] 12.22 18.70

baseline(GRegNet) 11.56 1.7430

Ours 12.97 1.7444

benefits of using LRefNets to refine the initial result gener-

ated by GRegNet.

Network complexity. As discussed in previous sections,

the main motivation for our method is to design a landmark

localization algorithm that not only generates high preci-

sion results but also with low complexity, so as to facilitate

the deployment to resource limited scenarios such as mobile

applications. Both GRegNet and LRefNets are designed

following this motivation, and uses concise structures that

powerfully and effciently collaborate with each other.

In practice, algorithm efficiency depends on various fac-

tors. For objective evaluating the algorithm, we use the es-

timated number of parameters of network and number of

Multiplication Accumulation operations (MACC) for mea-

suring respectively the model complexity and the run time

complexity.

The statistics of different algorithms compared on the

WFLW dataset are summarized in Table 6. It clearly

show the efficiency of our algorithm, especially the run-

ning time complexity. The table also shows that only 0.9‰

of MACCs of our model is due LRefNets, which is barely

noticeable in practice, especially considering the signifi-

cant accuracy improvement. In practice, on a PC (i7-4770

at 2.20GHz), our unoptimized implementation runs about

150ms per image.

5. Conclusion

In this work, we proposed a high accuracy high speed

face alignment algorithm, which effectively combines

global shape regression (i.e. GRegNet) and a cascaded set

of local shape refinements (i.e. LRefNets). Through a care-

fully designed feature sharing strategy, the locality-sensitive

shallow features generated by the GRegNet are efficiently

shared with LRefNets, which then refines the initial output

from GRegNet sequentially to high quality output. Aside

from the feature sharing strategy, the carefully designed

compact network architecture helps further boost the com-

putational efficiency. In our thorough experiments on four

popular face alignment benchmarks, our method produces

state-of-the-arts accuracies, while enjoying low complexity

in both computation and model parameters.
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