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Abstract
Existing human joint representations do not fully ex-

ploit the learning power of Convolutional Neural Networks

(CNNs). We propose a representation for skeleton joint se-

quences that is both spatial and spatio-temporal with re-

spect to the receptive fields of convolution kernels of CNN

to facilitate learning from spacial locations of the joints

as well as their transitions over time. Our representa-

tion allows for better hierarchical learning by CNNs as we

transform skeleton sequences into images of flexible dimen-

sions encoding rich spatial and spatio-temporal informa-

tion about the joints by maximizing a unique distance met-

ric, defined collaboratively over the distinct joint arrange-

ments. Our representation additionally encodes the relative

joint velocities. The proposed action recognition exploits

the representation in a hierarchical manner by first captur-

ing the micro-temporal relations between the skeleton joints

using CNN and then exploiting their macro-temporal rela-

tions by computing the Fourier Temporal Pyramids. We ex-

tend the Inception-ResNet CNN architecture with the pro-

posed method and improve the state-of-the-art accuracy

by 4.4% on the large scale NTU human activity dataset.

On NUCLA and UTD-MHAD datasets, our method outper-

forms the existing results by 5.7% and 9.3% respectively.

1. Introduction
Human action recognition has applications in smart

surveillance and human-computer interaction etc. Extract-

ing human skeleton joints from videos to perform this task

is a popular choice because it removes irrelevant informa-

tion such as clothing texture, illumination conditions and

background [4, 51, 27, 10, 50, 42, 6, 43, 44], and recent

methods can extract skeleton data in real-time from single

view RGB videos [25]. Convolutional Neural Networks

(CNNs) [20, 38, 8] can learn powerful hierarchical repre-

sentations from raw images [47, 30, 16, 40] by exploiting

correlations between local pixels, which is the key to accu-

rate image classification. We envisage that higher human

action recognition accuracy can be achieved analogously

by capitalizing on local correlations between the skeleton

joints. This is possible by arranging the skeleton joints in

images and allowing CNNs to be directly trained on such

images. However, the low number of joints and the inher-

ent dissimilarity between skeletons and images restrict the

use of CNNs for processing skeleton data. A major moti-

vation behind this work is to fully exploit the perpetual ad-

vances in CNNs for skeletal action data. We demonstrate

that CNNs can lead to state-of-the-art action recognition

performance using skeletal time-series data alone under the

proposed representation.

Previous attempts [17, 5] of using CNNs arrange the

skeleton joints in an image column, paying no attention to

the different possibilities of joint arrangements. Since the

number of joint is ∼25, these methods find it inevitable to

up-sample the resulting images by over eight folds to match

the input size of pre-trained CNNs. Consequently, the con-

volution kernels at the first few CNN layers have a recep-

tive field over one joint or a linear combination of only two

joints. The covolution kernels can neither learn correlations

between multiple different joint combinations nor learn spa-

tial only features. These ill-defined semantics severely limit

what the employed CNN can learn.

We propose an atomic visual unit Skepxel - skeleton pic-

ture element or skeleton pixel, to construct skeletal im-

ages of flexible dimensions that can be directly processed

by modern CNN architectures without any re-sampling.

Skepxels are constructed by organizing a set of distinct

skeleton joint arrangements from multiple frames into a sin-

gle tensor. The set is chosen under a unique distance metric

that is collectively defined over the joint arrangements for

each frame. Unlike previous works where skeleton joints of

a frame were arranged in a column, we arrange them in a

2D grid to take full advantage of the 2D kernels in CNNs.

The temporal evolution of the joints is captured by employ-

ing Skepxels from multiple frames into one image forming

a compact representation of rich spatial only (poses) and

spatio-temporal information about the action. Using 5 × 5
Skepxels, many 3 × 3 kernels at the first two CNN layers

have receptive fields focused on individual Skepxels to learn
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spatial only features which is unique to our representation.

Kernels at all layers learn spatio-temporal features similar

to other representations. Owing to the systematic construc-

tion of the skeletal images, it is possible to encode multiple

semantic notions about the joints in an image, by encoding

“location” and “velocity” of the joints.

We also contribute a framework that uses the proposed

representation for human action recognition. To that end,

we hierarchically capture the micro-temporal relations be-

tween the joints in the frames using Skepxels and exploit the

macro-temporal relations between the frames by computing

the Fourier Temporal Pyramids [45] of the CNN features

of the skeletal images. We demonstrate the use of skeletal

images of different sizes with the Inception-ResNet [37].

Moreover, we also enhance the network architecture for the

proposed framework. The proposed technique is thoroughly

evaluated using the NTU Human Activity Dataset [33],

Northwestern-UCLA Multiview Dataset [46] and UTD

Multimodal Human Action Dataset [2]. Our approach im-

proves the state-of-the-art performance on the large scale

dataset [33] by 4.4%, whereas the accuracy gain on the re-

maining two datasets is 5.7% and 9.3%.

2. Related Work
With the easy availability of reliable human skeleton data

from RGB-D sensors, the use of skeleton information in hu-

man action recognition is becoming very popular. Skeleton

based action analysis is becoming even more promising be-

cause of the possibility of extracting skeleton data in real

time using a single RGB camera [25]. Skeleton data can be

directly used to recognize human actions. For instance, De-

vanne et al. [4] represented the 3-D coordinates of skeleton

joints and their change over time as trajectories, and for-

mulated the action recognition problem as computing the

similarity between the shape of trajectories in a Riemannian

manifold. The joint trajectories model the temporal dynam-

ics of actions, and remain invariant to geometric transfor-

mation. Yang et al. [51] proposed a mid-level granularity

of joints called skelets, which can be used to describe the

intrinsic interdependencies between skeleton joints and ac-

tion classes. To balance the skelet-wise and action-wise rel-

evance, a joint structured sparsity inducing regularization is

also integrated into their framework.

Skeleton information is also commonly used in guiding

the action representation in other image and video modali-

ties. Cao et al. [1] used extracted body joints to guide the

selection of convolutional layer activations of RGB input

action videos. They pooled the activations of 3-D convolu-

tional feature maps according to the position of body joints,

and thus created discriminative spatio-temporal video de-

scriptors for action recognition. To facilitate end-to-end

training, they proposed a two-stream framework with bilin-

ear pooling, with one stream extracting visual features and

the other locating key-points of the features maps.

Zanfir et al. [52] proposed a moving pose descriptor

which considers both pose information and the differential

quantities of the skeleton joints for human action recogni-

tion. Their approach is non-parametric and therefore can

be used with small amount of training data or even with

one-shot training. Du et al. [5] transformed the skeleton se-

quences into images by concatenating the joint coordinates

as vectors and arranged these vectors in a chronological or-

der as columns of an image. The generated images are re-

sized and passed through a series of adaptive filter banks.

Their approach is based on global spatial and temporal in-

formation and does not exploit the local correlation of joints

in skeletons. In contrast, our approach models the global

and local temporal variations simultaneously.

Veeriah et al. [41] proposed to use a differential Recur-

rent Neural Network (dRNN) to learn the salient spatio-

temporal structure in a skeleton action. They used the no-

tion of “Derivative of States” to quantify the information

gain caused by the salient motions between the successive

frames, which guides the dRNN to gate the information that

is memorized through time. Their method relies on concate-

nating 5 types of hand-crafted skeleton features to train the

proposed network. Similarly, Du et al. [6] applied a hier-

archical RNN to model skeleton actions. They divided the

human skeleton into five parts according to human physical

structure. Each part is fed into a bi-directional RNN and the

outputs are hierarchically fused for the higher layers. One

potential limitation of this approach is that the definition of

body part is dataset-specific, which causes extra preprocess-

ing when applied to different action datasets.

Shahroudy et al. [35] also used the division of body parts

and proposed a multimodal-multipart learning method to

represent the dynamics and appearance of body. They se-

lected the discriminative body parts by integrating a part

selection process into their learning framework. In addition

to the skeleton based features, they also used hand-crafted

features for depth modality, such as LOP (local occupancy

patterns) and local HON4D (histogram of oriented 4D nor-

mals) around each body joint. Vemulapalli and Chellappa

[43] represented skeletons using the relative 3D rotations

between various body parts. They applied concept of rolling

maps to model skeletons as points in the Lie group, and then

modeled human actions as curves in the Lie group.

Based on the intuition that the traditional Lie group fea-

tures may be too shallow to learn a robust recognition al-

gorithm for skeleton data, Huang et al. [13] incorporated

the Lie group structure into deep learning, to transform

the high-dimensional Lie group trajectory into temporally

aligned Lie group features for skeleton-based action recog-

nition. Their learning structure (LieNet) generalizes the tra-

ditional neural network model to non-Euclidean Lie groups.

One issue with LieNet is that it is mainly designed to learn

spatial features of skeleton data, and does not take full ad-
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vantage of the rich temporal cues of human actions. To

leverage both spatial and temporal information in skeleton

sequences, Kerola et al. [18] used a novel graph represen-

tation to model skeletons and keypoints as a temporal se-

quence of graphs, and applied the spectral graph wavelet

transform to create the action descriptors.

Ke et al. [17] transformed a skeleton sequence into three

clips of gray-scale images. Each clip consists of four im-

ages, which encode the spatial relationship between the

joints by inserting reference joints into the arranged joint

chains. They employed the pre-trained VGG19 model to

extract image features and applied the temporal mean pool-

ing to represent an action. A Multi-Task Learning was pro-

posed for classification. Wang and Wang [44] proposed a

two-stream RNN architecture to simultaneously exploit the

spatial relationship of joints and temporal dynamics of the

skeleton sequences. In the spatial RNN stream, they used a

chain-like sequence and a traversal sequence to model the

spatial dependency, which restricts modeling all possibili-

ties of the joint movements.

Kim and Reiter [19] proposed a Res-TCN architecture

to learn spatial-temporal representation for skeleton actions.

They constructed per-frame inputs to the Res-TCN by flat-

ting 3D coordinates of the joints and concatenating values

for all the joints in a skeleton. Their method improves in-

terpretability for skeleton action data, however, it does not

effectively leverage the rich spatio-temporal relationships

between different body joints. To better represent the struc-

ture of skeleton data, Liu et al. [23] proposed a tree traversal

algorithm to take the adjacency graph of the body joints into

account. They processed the joints in top-down and bottom-

up directions to keep the contextual information from both

the descendants and the ancestors of the joints. Although

this traversal algorithm discovers spatial dependency pat-

terns, it has the limitation that the dependency of joints from

different tree branches can not be easily modeled.

3. Proposed Approach
Restricted by the small number of joints in a human

skeleton, existing approaches for converting the skeleton

data into images generally result in smaller size images

than what is required for the mainstream CNN architectures

e.g. VGG [36], Inception [39], ResNet [9]. Consequently,

the images are up-sampled to fit the desired network ar-

chitectures [5, 17] which imports unnecessary noise in the

data. This also compromises the effectiveness of the net-

work kernels that are unable to operate on physically mean-

ingful discrete joints. One potential solution is to design

new CNN architectures that are better suited to the smaller

images. However, small input image size restricts the recep-

tive fields of the convolution kernels as well as the network

depth. As a result, the network may not be able to appropri-

ately model the skeleton data.

In this paper, we address this problem by mapping the

Figure 1. Illustration of a Skepxel rendered as an RGB image

patch. The numbers on skeleton and color image share the joint

description. e.g. 3-neck, 18-right knee, 21-spine, etc.

skeleton data from a fixed length sequence to an image with

the help of a basic building block (similar to pixel). The

resulting image is rich in both spatial and temporal infor-

mation of the skeleton sequences, and can be constructed

to match arbitrary input dimensions of the existing network

architectures. The approach is explained below.

3.1. Skeleton Picture Elements (Skepxels)

We propose to map a skeleton sequence to an image

I ∈ R
H×W×3 with the help of Skepxels. A Skepxel is a

tensor ψ ∈ R
h×w×3 obtained by arranging the indices of

the skeleton joints in a 2D-grid and encoding their coordi-

nate values along the third dimension. We treat the skele-

ton in a video as a set S ⊆ R
3 such that its jth element,

i.e. sj ∈ R
3 represents the Cartesian coordinates of the jth

skeleton joint. Thus, the cardinality of S , i.e. |S| ∈ R de-

notes the total number of joints in the skeleton. For ψ, it

entails h × w = |S|. This formulation allows us to repre-

sent a Skepxel as a three-channel image patch, as illustrated

in Fig. 1. We eventually construct the image I by concate-

nating multiple Skepxels for a skeleton sequence.

Owing to the square shaped kernels of CNN architec-

tures, the skeletal information in images is likely to be

processed more effectively for square/near square shaped

building blocks of the images. Therefore, our representa-

tion constrains the height and the width of the Skepxels to

be as similar as possible.

3.2. Compact spatial coding with Skepxels

A Skepxel constructed for a given skeleton frame en-

codes the spatial locations of the skeleton joints. Consid-

ering the convolution operations involved in CNN learning,

it is apparent that different arrangements of the joints in a

Skepxel can result in a different behavior of the models.

This is fortuitous, as we can encode more information in

the image I for the CNNs by constructing it with multiple

Skepxels that employ different joint arrangements. How-

ever, the image must use only a few (but highly relevant)

Skepxels for keeping the representation of the skeleton se-

quence compact.

Let A ⊆ R
h×w be a set of 2D-arrays, with its ith ele-
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Figure 2. Illustration of the employed definition of the radial dis-

tance on 5 × 5 grids. If the joint αi is located at [1,1] position in

A
m
j , the left 5 × 5 grid is used. For the joint location [4,2], the

right grid is used. There are 25 such grids in total to measure the

distance of skeleton joints among m arrangements.

ment Ai ∈ R
h×w representing the ith possible arrangement

of the skeleton joints for a Skepxel. The cardinality of this

set can be given as |A| = (h × w)!. Even for a video con-

taining only a 25-joint skeleton, the total number of possible

arrangements of the joints for a Skepxel is ∼ 1.55 × 1025.

Assume that we wish to use only m Skepxels in I for the

sake of compactness, we must then select the joint arrange-

ments for those Skepxels from a possible |A|Cm combina-

tions, which becomes a prohibitively large number for the

practical cases (e.g. (4×4)!C16 > 10199). Therefore, a prin-

cipled approach is required to choose the suitable arrange-

ments of the joints to form the desired Skepxels.

To select the m arrangements for the same number of

Skepxels, we define a metric ∆(Am)→γ over an arbitrary

subset Am of A, where |Am|=m, such that

∆(Am) =

|Am|∑

j=1

|S|∑

i=1

δ(αi,A
m
j ). (1)

In Eq. (1), Am
j denotes the jth element of Am and αi is

the ith element of the set {1, 2, ..., |S|}. The function δ(., .)
computes the cumulative radial distance between the loca-

tion of the joint αi in A
m
j and its locations in the remaining

elements of Am. Let (x, y) denote the indices of αi in A
m
j ,

and (xq, yq) denote its indices in any other Am
q ∈ Am, then

δ(αi,A
m
j ) =

∑|Am|−1
q 6=j,q=1 max(abs(x − xq), abs(y − yq)),

where abs(.) computes the absolute value. As per the def-

inition of ∆(.), γ is a distance metric defined over a set of

m possible arrangements of the skeleton joints such that a

higher value of γ implies a better scattering of the joints in

the considered m arrangements. The notion of the radial

distance used in Eq. (1) is illustrated in Fig. 2. Noticing the

image patterns in the figure, we can see the relevance of this

metric for the CNNs that employ square shaped kernels, as

compared to the other metrics, e.g. Manhattan distance.

Due to better scattering, the skeleton joint arrangements

with the larger γ values are generally preferred by the CNN

architectures to achieve higher accuracy. Moreover, differ-

ent sets of arrangements with similar γ values were found

to achieve similar accuracies. Interestingly, this implies

that for the CNNs the relative positions of the joints in the

Skepxels become more important as compared to their ab-

solute positions. This observation preempts us to construct

Figure 3. Skepxels generated for one skeleton frame. Same color

corresponds to the same joint. Only joint 20 is marked.

Skepxels with the skeleton joint arrangements based on the

semantics of the joints. On the other hand, selection of the

best set of arrangements from the |A|Cm possibilities is an

NP-hard problem for all practical cases.

We devise a pragmatic strategy to find a suitable set of

the skeleton joint arrangements for the desired m Skepx-

els. That is, we empirically choose a threshold γt for the

Skepxels and generate m matrices in R
h×w such that the

coefficients of the matrices are sampled uniformly at ran-

dom in the range [1, h× w], without replacement. We con-

sider these matrices as the elements of Am if their γ value is

larger than γt. We use the resulting Am to construct the m
Skepxels. The Skepxels thus created encode a largely varied

skeleton joint arrangements in a compact manner. Fig. 3, il-

lustrates three Skepxels created by the proposed scheme for

a single skeleton frame containing 25 joints. The Skepxels

are shown as RGB image patches. In our approach, we let

m = H/h and construct a tensor Ψ ∈ R
H×w×3 by the

row-concatenation of the Skepxels ψi∈{1,2,...,m}. The con-

structed tensor Ψ is rich in the spatial information of the

joints in a single frame of the video.

3.3. Compact temporal coding with Skepxels

To account for the temporal dimension in a sequence of

the skeleton frames, we compute the tensor Ψi for the ith

frame in the n-frame sequence and concatenate those ten-

sors in a column-wise manner to construct the desired image

I. For a sequence of frames, the appearance of a Skepxel

changes specifically at the locations of the active joints for

the action - indicating effective encoding of the action dy-

namics by Skepxels. The concatenation of Ψi∈{1,2,...,n} en-

sures that the dynamics are recorded in I under m suitable

Skepxels, making the representation spatially and tempo-

rally rich. The formation of the final image by concatenat-

ing Ψi, ∀i is illustrated in Fig. 4.

Different action videos may contain various number of

skeletal frames. For the videos that comprise the skeleton

sequences with more than n frames, we create multiple im-

ages from the same video and label them according to the

action label. For the videos with fewer than n frames, we

found that the simple strategy of interpolating between the

frames works well to construct the image of the desired size.

Note that, the images resulting from the proposed method

capture the temporal dynamics in the raw skeleton data. By

fixing the length of the temporal window to n, the images

are able to encode the micro-temporal movements that are

expected to model the fine motion patterns contributing to
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Figure 4. The final image is compactly constructed with the Skepx-

els along spatial and temporal dimensions.

the classification of the entire action video. In Section 3.7,

we also discuss the exploitation of the macro-temporal rela-

tionships with the proposed representation.

3.4. Modeling joint speed with Skepxels

The modular approach to construct images with the

Skepxels not only allows us to easily match the input di-

mensions of an existing CNN architecture, it also provides

the flexibility to encode a notion that is semantically differ-

ent than the “locations” of the skeleton joints. We exploit

this fact to extend our representation to the skeleton joint

“speeds” in the frame sequences. To that end, we construct

the Skepxels similar to the procedure described above, how-

ever instead of using the Cartesian coordinate values for the

joints we use the differences of these values for the same

joints in the consecutive frames. A Skepxel thus created

encodes the speeds of the joint movements, where the time

unit is governed by the video frame-rate. We refer to the

final tensors constructed with the joint coordinates as the

location images, and the tensors constructed using the joint

speeds as the velocity images.

For many actions, the speed variations among different

skeleton joints is an important cue for distinguishing be-

tween them (e.g. walking and running), and it is al-

most always supplementary to the information encoded in

the absolute locations of the joints. Therefore, in our rep-

resentation, we augment the final image by appending the

three speed channels dx, dy, dz to the three location chan-

nels x, y, z. This augmentation is illustrated in Fig. 5. We

note that unless allowed by the CNN architecture under con-

sideration, the augmentation with the speed channels is not

mandatory in our representation. Nevertheless, it is desir-

able for better action recognition accuracy, which will be-

come evident from our experiments in Section 5.

3.5. Normalization and data augmentation

Before converting the skeleton data into images using

the proposed method, we perform the normalization of the

raw skeleton data. To do so, we anchor the hip joint in a

skeleton to the origin of the used Cartesian coordinates, and

Figure 5. Joint differences between consecutive frames give veloc-

ity images, which are appended to the location images.

align the virtual vector between the left-shoulder and

the right-shoulder of the skeleton to the x-axis of the

coordinate system. This normalization strategy also results

in mitigating the translation and viewpoint variation effects

in the skeleton data by filtering out the motion-irrelevant

noises. A further normalization is performed over the chan-

nels of the resulting images to restrict the values of the pix-

els in the range [0, 255]. Both types of normalizations are

carried out on the training as well as the testing data.

In order to augment the data, we make use of the addi-

tive Gaussian noise. We draw samples from the zero Mean

Gaussian distribution with 0.02 Standard Deviation and add

those samples to the skeleton joints in the frame sequences

to double the training data size. This augmentation strategy

is based on the observation that slight variations in the joint

locations/speeds generally do not vary the skeletal informa-

tion significantly enough to change the label of the associ-

ated action. For our experiments, doubling the training data

size already resulted in a significant performance gain over

the existing approaches. Therefore, no further data augmen-

tation was deemed necessary for the experiments.

3.6. Processing skeletal images with CNNs

Due to its flexibility, the proposed mapping of the skele-

tal information to the image-like tensors allows us to ex-

ploit a wide variety of existing (and potentially future) CNN

architectures to effectively process the information in the

skeleton frame sequences. To demonstrate this, we employ

the Inception-ResNet [37] as the test bed for our represen-

tation. This recent CNN architecture has been successful in

the general image classification task [3], as well as the spe-

cific tasks such as face recognition [32]. More importantly,

the architecture allows for a variable input image size both

in terms of the spatial dimensions and the number of color

channels of the image.

First, we trained the Inception-ResNet from scratch by

constructing the skeletal images of different dimensions

(without the speed channel augmentation). This training

resulted in a competitive performance of the network for

a variety of image sizes - details provided in Section 5.

We strictly followed the original work [37] for the train-

ing methodology, which demonstrates the compatibility of
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Figure 6. Modified architecture of Inception-ResNet [37]: The “STEM” part of the network is extended to fit the augmented 6-channel

input images. The input/output sizes are described as rows× cols× channels. The kernel is specified as rows× cols× filters, stride.

the proposed representation with the existing frameworks.

In our experiments, training the network from scratch was

consistently found to be more effective than fine tuning the

existing models. We conjecture that the visible difference

of the patterns in the skeleton images and the images of

the natural scenes is the main reason for this phenomenon.

Hence, it is recommended to train the network from scratch

for the full exploitation of the proposed representation.

To demonstrate the additional benefits of augmenting the

skeletal image with the speeds of the skeleton joints, we

also trained the Inception-ResNet for the augmented im-

ages. Recall, in that case the resulting image has six chan-

nels - three channels each for the joint locations and the joint

speeds. To account for the additional information, we modi-

fied the Inception-ResNet by extending the “STEM” part of

the network[37]. The modified architecture is summarized

in Fig. 6. To train the modified network, Center loss [49]

is added to the cross entropy to form the final loss function.

We optimized the network with the RMSProp optimizer,

and selected the initial learning rate as 0.1.

3.7. Macrotemporal encoding and classification
Once it is possible to process the skeleton data with

the desired CNN, it also becomes practicable to exploit

the CNN features to further process the skeletal informa-

tion. For instance, as noted in Section 3.3, a single skeleton

image used in this work represents the temporal informa-

tion for only n skeletal frames, which encodes the micro-

temporal patterns in an action. To explore the long term

temporal relationship of the skeleton joints, we can further

perform a macro-temporal encoding over the CNN features.

We perform this encoding as follows.

Given a skeleton action video, we first construct the

‘Q’ possible skeleton images for the video. These im-

ages are forward passed through the network and the fea-

tures ξi∈{1,2,...,Q} ∈ R
1792 from the prelogit layer of

the Inception-Resnet are extracted. We compute the Short

Fourier Transform [26] over ξi, ∀i and retain ‘z’ low fre-

quency components of the computed transform. Next, the

column vectors ξi are divided into two equal segments

along their row-dimension, and the Fourier Transform is

again applied to retain another set of ‘z’ low frequency com-

ponents for each segment. The procedure is repeated ‘ℓ’

times and all the 2ℓ−1 × z resulting components are con-

catenated to represent the video. These features are used

for training an SVM classifier. We used ℓ = 3 in our exper-

iments in Section 5. The features computed with the above

method take into account the whole skeletal sequence in the

videos, thereby accounting for the macro-temporal relations

between the skeleton joints.

4. Datasets

NTU RGB+D Dataset: The NTU RGB+D Human Activ-

ity Dataset [33] is a large-scale RGB+D dataset for human

activity analysis. This dataset has been collected with the

Kinect v2 sensor and it includes 56,880 action samples each

for RGB, depth, skeleton and infra-red videos. Since we

are concerned with the skeleton sequences only, we use

the skeleton part of the dataset to evaluate our method.

In the dataset, there are 40 human subjects performing 60

types of actions including 50 single person actions and 10

two-person interactions. Three sensors were used to cap-

ture the data simultaneously from three horizontal angles:

−45◦, 0◦, 45◦, and every action performer performed the

action twice, facing the left or right sensor respectively.

Moreover, the height of the sensors and their distances to

the action performer have been adjusted in the dataset to

get further viewpoint variations. The NTU RGB+D dataset

is one of the largest and the most complex cross-view action

dataset of its kind to date. We followed the standard evalua-

tion protocol proposed in [33], which includes cross-subject

and cross-view evaluations. For the cross-subject case, 40

subjects are equally split into training and testing groups.

For the cross-view protocol, the videos captured by the sen-

sor C-2 and C-3 are used as the training samples, whereas

the videos captured by the sensor C-1 are used for testing.

Northwestern-UCLA Dataset: This dataset [46] contains

RGB, Depth and skeleton videos captured simultaneously

from three different viewpoints with the Kinect v1 sensor,

while we only use skeleton data in our experiments. The

dataset contains videos of 10 subjects performing 10 ac-

tions: (1) pick up with one hand, (2) pick up with two hands,

(3) drop trash, (4) walk around, (5) sit down, (6) stand up,

(7) donning, (8) doffing, (9) throw, and (10) carry. The three

viewpoints are: (a) left, (b) front, and (c) right. This dataset
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Figure 7. Action recognition performance for different skeletal im-

age size on the NTU RGB+D Human Activity Dataset [33].

is challenging because some videos share the same “walk-

ing” pattern before and after the actual action is performed.

Moreover, some actions such as “pick up with on hand” and

“pick up with two hands” are hard to distinguish from dif-

ferent viewpoints. We use skeleton videos captured from

two views for training and the third view for testing, which

produces three possible cross-view combinations.

UTD Multimodal Action Dataset: The UTD-MHAD

dataset [2] consists of 27 actions performed by 8 subjects.

Each subject repeated the action 4 times, resulting in 861

action sequences in total. The RGB, depth, skeleton and the

inertial sensor signals were recorded. We only use skele-

ton videos in our experiments. We follow [2] to evaluation

UTD-MHAD dataset with cross-subject protocol, which

means the data from subject 1, 3, 5, 7 is used for training,

and the data form subject 2, 4, 6, 8 is used for testing.

5. Experiments
Skeleton Image Dimension: We first analyze the perfor-

mance of the models trained with different sizes of the

skeleton images to choose a suitable image size for our

experiments. We used the NTU RGB+D Human Activity

Dataset [33] for this purpose. According to the evaluation

protocol of [33], we split the training samples into train-

ing and validation subset. Only the location images were

evaluated. After the best image size was chosen, we ap-

plied it to both location and velocity images, and conducted

the comprehensive experiments. During our evaluation for

the image size selection, we increased the image size from

120 × 120 to 300 × 300, with a step of 20 pixels. Fig. 7

shows the recognition accuracy for each setting. We even-

tually selected 180×180 as the image dimensions based on

these results. These skeletal image dimensions were kept

the same in our experiments with the other data sets as well.

Evaluation on NTU RGB+D Dataset: We trained our

CNN model from scratch for the NTU RGB+D dataset. The

model was trained twice for cross-subject and cross-view

evaluations respectively. We first evaluated the proposed

method with the location images only, where the input ten-

sor to the network was in R
H×W×3. We call this evalua-

tion as Skepxelloc mode. Then, we evaluated our method in

Skepxelloc+vel mode, where we combined the location and

velocity images to train the network with the input tensors

Table 1. Action recognition accuracy (%) on the NTU Dataset.

Cross Cross

Method Data Subject View

Baseline

Lie Group [42] Joints 50.1 52.8

Deep RNN [33] Joints 56.3 64.1

HBRNN-L [6] Joints 59.1 64.0

Dynamic Skeleton [12] Joints 60.2 65.2

Deep LSTM [33] Joints 60.7 67.3

LieNet [13] Joints 61.4 67.0

P-LSTM [33] Joints 62.9 70.3

LTMD [24] Depth 66.2 -

ST-LSTM [23] Joints 69.2 77.7

DSSCA-SSLM [34] RGB-D 74.9 -

Interaction Learning [28] Joints-D 75.2 83.1

Clips+CNN+MTLN [17] Joints 79.6 84.8

Proposed

Skepxelloc Joints 77.4 87.0

Skepxelloc+vel Joints 81.3 89.2

in R
H×W×6. We used the network defined in Fig. 6 for our

evaluation in the Skepxelloc+vel mode. Note that some ac-

tion clips were performed by two persons. In this case we

encode each skeleton individually in alternating frames to

form a skepxel-based image. This also enable us to readily

use the normalization method describe in Section 3.5. Table

1 compares the performance of our approach with the exist-

ing techniques on the NTU dataset. Our method is able to

improve the accuracy by 4.4% in the Skepxelloc+vel mode

over the nearest competitor.

Evaluation on the NUCLA Dataset: We took the CNN

model trained for the NTU cross-view evaluation as a base-

line. Firstly, we directly applied this model on the NU-

CLA dataset to evaluate the generalization of our model

on the unseen skeleton data. Secondly, we fine-tuned the

model with the NUCLA dataset and conducted the eval-

uation again to evaluate performance on this dataset. Ta-

ble 2 summarizes our results on the NUCLA dataset. The

proposed method for the skeleton images alone achieves

83.0% average accuracy without fine-tuning on the target

dataset, which demonstrates the generalization of our tech-

nique. After fine-tuning, the average accuracy increases by

2.2%. The best performance is achieved when we combined

the skeleton and the velocity images, improving the accu-

racy over the nearest competitor by 5.7%.

Evaluation on the UTD-MHAD Dataset: For the UTD-

MHAD dataset, we evaluated the performance of our tech-

nique using the models pre-trained with the NTU dataset.

Table 3 summarizes our results. The proposed approach

achieves a significant accuracy gain of 9.3% over the nearest

competitor. We note that our Skepxels representation can be

used with multiple existing CNN architectures, which pro-

vides the opportunity to extract varied network features. Ex-

ploiting ensembles/concatenation of such features, it is pos-
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Figure 8. Performance on UTD-MHAD dataset [2] with different parameters. (a) Number of joints are varied by dropping/interpolating

joints. (b) Skepxel dimensions are varied. In (a) and (b), the number of skepxels and frames are chosen such that the final image is

180× 180. (c) 36 skepxels of size 5× 5 are used per frame, and the number of frames is varied. All images are resized to 180× 180.

Table 2. Accuracy (%) on the NUCLA dataset. V 3
1,2 means view

1, 2 were used for training and view 3 was used for testing.

Skepxel∗loc used the NTU cross-view model without fine-tuning.

Method Data V 3
1,2 V 2

1,3 V 1
2,3 Mean

Baseline

Hankelets [21] RGB 45.2 - - 45.2

JOULE [12] RGB/D 70.0 44.7 33.3 49.3

DVV [22] Depth 58.5 55.2 39.3 51.0

CVP [53] Depth 60.6 55.8 39.5 52.0

AOG [46] Depth 73.3 - - -

nCTE [7] RGB 68.6 68.3 52.1 63.0

NKTM [29] RGB 75.8 73.3 59.1 69.4

R-NKTM [31] RGB 78.1 - - -

HPM+TM [30] Depth 91.9 75.2 71.9 79.7

Proposed

Skepxel∗loc Joints 89.9 83.9 75.2 83.0

Skepxelloc Joints 88.8 85.3 81.6 85.2

Skepxelloc+vel Joints 91.5 85.5 79.2 85.4

sible to achieve further performance gain using our method.

We provide discussion on this aspect of our approach in the

supplementary material of the paper.

6. Ablation Experiments

Different Skepxel Encoding Schemes: We demonstrate

how the overall recognition performance is affected by

(a) altering the number of joints encoded per Skepxel,

(b) changing the Skepxel dimensions with fixed number of

joints; and (c) changing the number of frames encoded per

image. We chose UTD-MHAD dataset [2] for these experi-

ments because the proposed representation achieved signif-

icant performance improvements for this dataset. The sum-

mary of the results of our ablation experiments is presented

in Fig. 8. The overall results demonstrate effective encod-

ing by skepxels. The location+velocity encoding is always

able to improve the performance, which is intuitive because

of more information being encoded in the representation.

Testing Skepxels on RGB Actions To demonstrate that the

effectiveness of Skepxels is not limited to the datasets that

provide precise skeleton information, we also performed

experiments by extracting inaccurate skeleton information

from RGB videos, and feeding the resulting skeltons to our

Table 3. Action recognition accuracy (%) on UTD-MHAD dataset.

Skepxel∗loc used the NTU cross-view model without fine-tuning.

Method Data Mean

Baseline

ELC-KSVD [54] Joints 76.2

kinect-Inertia [2] Depth 79.1

Cov3DJ [14] Joints 85.6

SOS [11] Joints 87.0

JTM [48] Joints 87.9

Proposed

Skepxel∗loc Joints 94.7

Skepxelloc Joints 96.5

Skepxelloc+vel Joints 97.2

approach. We extracted the skeletons from UTD-MHAD

dataset [2] using the DeeperCut method [15] that gives 14

joints per frame. We added 2 more joints by interpolat-

ing between left/right hip, and hip/neck and formed images

with 4 × 4 skepxels, assigning zeros to the z-axis values.

With this setting, the recognition accuracies for the UTD-

MHAD dataset are 87.2% and 92.3% for loc. and loc.+vel.,

respectively. These results are comparable to the first two

bars in Fig. 8 that are correspondingly computed for 4 × 4
skepxels with the provided accurate 3d skeletons.

7. Conclusion
We proposed a representation that maps human joint data

to images for effective processing by CNN architectures.

The method exploits a basic building block, termed Skepxel

to construct the skeletal images of arbitrary dimensions that

encode spatial and spatio-temporal information of human

joint locations and velocities under multiple informative

joint arrangements. We showed that the proposed repre-

sentation can be used to successfully capture the macro-

temporal details with any CNN architecture leading to state-

of-the-art human action recognition on benchmark datasets.
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