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Abstract

Multi-person pose estimation from a 2D image is chal-

lenging because it requires not only keypoint localization

but also human detection. In state-of-the-art top-down

methods, multi-scale information is a crucial factor for the

accurate pose estimation because it contains both of local

information around the keypoints and global information

of the entire person. Although multi-scale information al-

lows these methods to achieve the state-of-the-art perfor-

mance, the top-down methods still require a huge amount

of computation because they need to use an additional hu-

man detector to feed the cropped human image to their pose

estimation model. To effectively utilize multi-scale informa-

tion with the smaller computation, we propose a multi-scale

aggregation R-CNN (MSA R-CNN). It consists of multi-

scale RoIAlign block (MS-RoIAlign) and multi-scale key-

point head network (MS-KpsNet) which are designed to ef-

fectively utilize multi-scale information. Also, in contrast to

previous top-down methods, the MSA R-CNN performs hu-

man detection and keypoint localization in a single model,

which results in reduced computation. The proposed model

achieved the best performance among single model-based

methods and its results are comparable to those of sepa-

rated model-based methods with a smaller amount of com-

putation on the publicly available 2D multi-person keypoint

localization dataset.

1. Introduction

Localizing semantic keypoints of an instance such as a

human body or hand is an essential technique for action

recognition or human-computer interaction. It has been

studied for decades in computer vision community and has

attracted considerable research interest.

Recently, many methods [11, 5, 13, 2, 14, 22, 20, 24]

utilize deep convolutional neural networks (CNNs) and

achieved noticeable performance improvement. Although

these methods have progressed considerably, they still suf-

fer from occluded or invisible keypoints, crowded back-

(b) Proposed MSA R-CNN

(a) Previous top-down methods

crop and resize

MS-
RoIAlign 

(cls)

MS-
KpsNet

cls head

human/
not

W

H

W

H

w

h

MS-
RoIAlign 

(kps)

Figure 1: Overall pipeline comparison with the previous

top-down methods (a) and the proposed method (b). Most

of the top-down approaches use two separated deep net-

works for multi-person pose estimation. The first model is a

human detector (i.e., left part of (a)) and the other is a pose

estimation model (i.e., right part of (a)). In contrast, in (b),

the human detector (i.e., cls head) and pose estimation net-

work (i.e., MS-KpsNet) are combined into a single model

and share most of the feature maps.

ground, and high computational complexity.

In the previous top-down methods, the use of multi-

scale information is crucial in performance improvement.

Newell et al. [21] and Chen et al. [5] used downsampling

and upsampling layers with skip connections. This network

architecture (i.e., U-net structure) is simple and effective.

Huang et al. [13] aggregated multi-scale information by

concatenating feature maps from multiple scale spaces. Al-

though these multi-scale approaches exhibit state-of-the-art

accuracy, they require a huge amount of computation be-

cause they need to use an additional human detector to feed

the cropped human image to their model. Considering that

both of the recent state-of-the-art object detectors [25, 11]

and keypoint localization networks [5, 13, 22] are primar-

ily based on the very deep backbone networks [12, 34], the

total amount of computation is very large.
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Upsampling

Aggregation

Figure 2: The MSA R-CNN extracts multi-scale informa-

tion from downsampled and upsampled feature maps and

aggregates the information by using MS-RoIAlign and MS-

KpsNet. The orange and red boxes denote the extracted

feature maps of the human and the receptive fields of con-

volutional layers, respectively. We take an example of the

left knee area.

By contrast, Mask R-CNN [11] learns human detec-

tion and keypoint localization in a single model that

can be trained in an end-to-end manner. Based on the

shared feature maps, two small separated head networks

for human/non-human classification and keypoint localiza-

tion are jointly learned to minimize the weighted sum of

loss functions. However, this method does not fully utilize

multi-scale information which is a bottleneck to the accu-

rate keypoint localization. Specifically, RoIAlign [11] ex-

tracts a feature of each proposal from a single-scale fea-

ture map by considering the size of each proposal. The

small proposals are extracted from a fine-scaled feature

map, while the large proposals from a coarse-scaled fea-

ture map. However, because each proposal is from a single-

scale feature map, RoIAlign fails to fully exploit multi-scale

information. Also, the keypoint head network consists of

several sequentially added convolutional layers. As this de-

sign gradually increases receptive field size, the output fea-

ture would mainly focus on global information rather than

local information. This makes it hard to aggregate multi-

scale information.

To remedy the heavy computation in the previous top-

down methods [5, 13, 24] and the lack of multi-scale infor-

mation in the Mask R-CNN [11], we propose a multi-scale

aggregation R-CNN (MSA R-CNN). The MSA R-CNN

crops and resizes human bounding box proposals from fea-

ture maps instead of an input image as shown in Figure 1.

This property enables the MSA R-CNN to share feature

maps for human detection and keypoint localization, which

results in considerably reduced computation. Also, to ex-

ploit multi-scale information more effectively, we propose

multi-scale RoIAlign block (MS-RoIAlign) and multi-scale

keypoint head network (MS-KpsNet). In contrast to the

original RoIAlign, the MS-RoIAlign obtains human pro-

posals from multi-scale feature maps instead of a single fea-

ture map and aggregates them. It enables the model to ex-

ploit various scales of the feature maps which is helpful for

the final prediction. Also, the MS-KpsNet obtains human

proposals from the MS-RoIAlign and estimates heatmaps

for each keypoint by utilizing multi-scale information. The

proposed MS-KpsNet consists of downsampling and up-

sampling layers with residual skip connections which help

incorporate local- and global-scale information. To summa-

rize, both of the MS-RoIAlign and MS-KpsNet try to ex-

tract and aggregate multi-scale information as in Figure 2.

We validated the usefulness of the MS-RoIAlign

and MS-KpsNet on the MS COCO keypoint detection

dataset [18]. The experimental results show that the pro-

posed items (i.e., MS-RoIAlign and MS-KpsNet) bring

large performance improvement. Our model outperforms

all single model-based methods and achieves comparable

results to those of separated model-based methods but with

less computation on a challenging benchmark [18].

Our contributions can be summarized as follows:

• The MSA R-CNN reduces a large amount of computa-

tion compared with other top-down methods by com-

bining human detection and keypoint localization in a

single model.

• The MS-RoIAlign and MS-KpsNet effectively uti-

lize multi-scale information, thereby enhancing perfor-

mance.

• Our model achieved the best performance among sin-

gle model-based methods and comparable results to

those of separated model-based methods on the MS

COCO keypoint detection dataset [18].

2. Related works

The proposed method is closely related to the following

two tracks. In this paper, we mainly focus on methods based

on the CNN.

Single-person pose estimation. Toshev et al. [31] di-

rectly estimated the Cartesian coordinates of body joints
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Figure 3: Overall pipeline of the proposed method. The input image that contains multiple humans is fed to the backbone

network. After the backbone network generates human bounding box proposals, the features of the proposals are extracted by

the MS-RoIAlign from the multiple feature maps. The extracted features are aggregated and passed to the head networks in a

parallel manner. We exclude the MS-RoIAlign and head network of the classification from the figure, and only one proposal

with orange rectangle is drawn for simplicity.

by using a multi-stage deep network and obtained remark-

able performance. Tompson et al. [30] estimated the per-

pixel likelihood for each joint by using CNN and used it as

the unary term in an external graphical model to accurately

estimate joint positions. Liu et al. [32] utilized multiple

stages of refinement to enlarge receptive fields. Newell et

al. [21] proposed a stacked U-Net structure model (i.e.,

hourglass structure) to exploit information from multiple

scales. Bulat and Tzimiropoulos [1] adopted a detection

subnetwork to help the regression subnetwork accurately

localize body joints. Carreria et al. [3] proposed an itera-

tive error feedback-based human pose estimation system. It

is supervised to progressively refine the initial pose to the

groundtruth pose. Chu et al. [6] enhanced the stacked hour-

glass network [21] by incorporating multi-context attention

mechanism. Chen et al. [4] also improved the hourglass

network [21] with the adversarial loss to generate plausible

poses.

Multi-person pose estimation. There are two streams

in the multi-person pose estimation. The first one, top-

down approach, relies on a human detector which predicts

bounding boxes of humans. The detected human is cropped

and fed to the pose estimation network. The second one,

bottom-up approach, localizes all the human body key-

points in an input image and groups them using proposed

clustering algorithms of each work.

[11, 5, 13, 22, 33, 19] are based on the top-down ap-

proach. Papandreou et al. [22] estimated heatmaps and off-

sets for each joint. The offsets are defined as vectors toward

the groundtruth joint location from each tensor grid. He et

al. [11] proposed Mask R-CNN which can perform human

detection and keypoint localization in a single model. It ex-

tracts human features from a feature map instead of an input

image by using RoIAlign. Chen et al. [5] used a coarse-

to-fine approach and designed a network called cascaded

pyramid network (CPN) which consists of GlobalNet and

RefineNet. The GlobalNet is U-Net shaped model and su-

pervised to estimate heatmaps for each keypoint from each

scale of a feature map. The RefineNet is designed to refine

the localization output from the GlobalNet by focusing on

hard keypoints. Xiao et al. [33] proposed a straightforward

architecture-based human pose estimation model.

[2, 14, 20, 24, 16] are based on the bottom-up approach.

DeepCut [24] assigned the detected keypoints to different

persons in an image by formulating the assignment problem

as an integer linear program. DeeperCut [24] improves the

DeepCut [24] by introducing image-conditioned pairwise

terms. Cao et al. [2] proposed part affinity fields (PAFs)

that models the relationship between human body keypoints

and assembled the localized keypoints using the estimated

PAFs. Newell et al. [20] introduced a pixel-wise tag value

to assign localized keypoints to a certain human. Kocabas et

al. [16] proposed a pose residual network for assigning de-

tected keypoints to each person.

3. Overview of the proposed model

The proposed MSA R-CNN has three components. The

first is a single backbone network for shared feature extrac-

tion. The second component is separated into two MS-

RoIAligns for human/non-human classification and key-

point localization. The outputs of MS-RoIAligns are fed to

two small head networks (i.e., classification head network

and MS-KpsNet) which are the third component of our sys-

tem. The backbone network extracts deep features, and

each MS-RoIAlign passes these features to the correspond-

ing head network. The classification head network predicts

whether a proposal is human or not, and the MS-KpsNet

estimates heatmaps for each joint. The overall pipeline is

visualized in Figure 3.

3



body part output part

Figure 4: Architecture of the MS-KpsNet. It consists of a

body and output parts. The feature map in the body part

passes through convolutional, downsampling and upsam-

pling layers. In the output part, the feature map from the

body part is upsampled by a deconvolutional layer and bi-

linear interpolation is applied for accurate estimation. The

loss is calculated on the four times upsampled RoI which is

the last feature map of the output part.

4. Backbone network for shared features

The feature pyramid network (FPN) [17] is adopted as

the backbone network. The FPN extracts deep features us-

ing ResNet [12] or ResNeXt [34] and gradually upsamples

the features. Each upsampled feature is summed by lateral

connections with the feature map in the same scale space

from the front part of the network. This upsampling with

skip connection architecture is widely used for dense pre-

diction such as segmentation [27] and keypoint localiza-

tion [21] because it can provide more semantic information

to fine-scale feature maps. Following [25], the backbone

network is supervised to generate human bounding box pro-

posals from an input image by using a binary cross entropy

loss for each sampled feature map grid and a smooth L1 loss

to refine the bounding box coordinates.

5. Multi-scale RoIAlign block (MS-RoIAlign)

The MS-RoIAlign passes the extracted human feature

from the backbone network to the corresponding head net-

work.

The original RoIAlign [11] extracts human proposal fea-

tures from a single feature map. The feature map is se-

lected among several scales according to the size of the pro-

posal [17]. The original method assigns small and large

proposals to large feature maps (fine-scale, low-level fea-

ture maps) and small feature maps (coarse-scale, high-level

feature maps), respectively. However, this straightforward

assignment strategy can result in sub-optimal performance.

For example, two proposals that have almost the same area

can be assigned to two different feature maps. Such an as-

signment can make learning unstable because the propos-

als have similar areas. Hence, we consider feature maps

from the entire-scale space instead of a single-scale feature

map. Another disadvantage of the original RoIAlign is that

other levels of feature maps are discarded. Exploiting multi-

level feature maps provides more information than exploit-

ing only a single feature map. The low-level features con-

tain detailed local information, which results in high local-

ization accuracy in the fine-scale space. Furthermore, the

high-level features have rich semantic information resulting

from the large receptive field size in the coarse-scale space.

Compared with the existing RoI assignment strategy [17],

the proposed MS-RoIAlign can utilize all information from

multi-level feature maps.

The pipeline of the MS-RoIAlign is visualized in

Figure 3. The MS-RoIAlign extracts (2n+3
×2n+3,

2n+2
×2n+2, 2n+1

×2n+1, 2n×2n)-sized RoIs from upsam-

pled feature maps (P2, P3, P4, P5) for each proposal. The

extracted features go through convolutional layers followed

by subsequent upsampling layers. The RoIs are resized to

a fixed size (i.e., 2n+3
×2n+3) and aggregated by summa-

tion. Then, it is fed to the corresponding head network.

This procedure lets the following head networks fully uti-

lize the multi-scale features instead of narrowing the choice

to a single-scale feature. The n is set to 0 for the classifi-

cation and 1 for the keypoint localization to make the RoI

sizes similar to those of the Mask R-CNN [11]. Except for

the parameter n related to the size of the input RoI, the MS-

RoIAligns of the two tasks have exactly the same architec-

ture. The small difference in the RoI sizes of our method

and Mask R-CNN [11] makes no difference in terms of the

performance.

6. Multi-scale keypoint head network (MS-

KpsNet)

The human proposal features extracted by the MS-

RoIAlign are fed to the proposed MS-KpsNet which pre-

dicts heatmaps for each keypoint. To effectively utilize both

of the local- and global-scale information, the MS-KpsNet

is designed with downsampling and upsampling architec-

tures and residual skip connections.

The architecture of the MS-KpsNet is presented in Fig-

ure 4. The MS-KpsNet starts from three consecutive convo-

lutional layers and goes through two rounds of downsam-

pling. Each downsampling layer is followed by a convo-

lutional layer. The downsampled feature passes two con-

volutional layers and subsequently upsampled followed by

a residual skip connection. The forward is finished after

two rounds of upsampling and skip connection. Like the

downsampling layers, a convolutional layer is added after

each residual skip connection in the upsampling part. Max

pooling with stride and kernel size of 2 is used for down-

sampling layers and nearest neighbor with a scale factor

of 2 is used for upsampling layers. The skip connection

is a single convolutional layer. All the convolutional layers
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Methods AP
kps

AP
kps
.50 AP

kps
.75 AP

kps

M AP
kps

L AP
bb(H)

AP
bb(H)
.50 AP

bb(H)
.75 AP

bb(H)
S AP

bb(H)
M AP

bb(H)
L

Baseline 64.1 86.4 69.3 58.9 72.7 52.7 82.3 57.4 35.6 60.5 68.7

+ Only from P2 64.4 86.4 69.9 59.4 72.8 52.5 82.2 57.2 35.4 60.7 68.2

+ 1×1 conv output 64.7 86.3 70.4 59.6 73.2 52.4 82.5 56.9 35.2 60.6 68.0

+ MS-KpsNet 66.2 87.0 72.7 61.3 74.5 52.6 82.3 57.4 35.6 60.6 68.3

+ Longer training 66.5 87.5 72.5 61.5 75.0 53.4 82.8 58.3 36.1 61.5 69.3

+ MS-RoIAlign 67.4 87.7 73.5 62.1 76.0 54.8 83.4 60.1 37.4 62.8 71.2

+ Average of Top-2s 67.6 87.7 73.7 62.5 76.1 54.8 83.4 60.1 37.4 62.8 71.2

+ Test-time augmentation 70.3 89.2 76.6 65.9 77.9 56.4 84.9 61.8 39.0 64.2 72.6

+6.2 +2.8 +7.3 +7.0 +5.2 +3.7 +2.6 +4.4 +3.4 +3.7 +3.9

Table 1: Effect of various settings in terms of the performance on the MS COCO validation set. AP bb(H) means the average

precision of detection task for the human class only.

Aggregation AP
kps Num of params Train mem

Sum 67.6 76.3M 10.8 GB

Concat 67.6 137.2M 14.4 GB

Table 2: Performance comparison of the MS-RoIAlign with

different aggregation method. The AP is from the test result

of the MS COCO validation set. The train mem indicates

the required amount of GPU memory in the training stage.

have 3×3 kernels and are followed by the activation func-

tion (i.e., ReLU). Cross-entropy loss function L is calcu-

lated after softmax normalization as follows:

L = −

1

N

N∑

n=1

∑

i,j

H∗

n(i, j) logHn(i, j), (1)

where H∗

n and Hn are the groundtruth and estimated

heatmaps with softmax applied for nth keypoint, respec-

tively, and N denotes the number of keypoints. Groundtruth

heatmap H∗

n is encoded as a one-hot representation.

7. Implementation details

Our model is based on the official Caffe2 [15] imple-

mentation of the Mask R-CNN [9]. Following the Mask

R-CNN [11], human bounding box proposals are generated

from an independently trained RPN [17, 25] for conve-

nient ablation study and fair comparison. Note that it can

be trained in an end-to-end manner and achieves slightly

better results compared with the model trained from inde-

pendently trained RPN [9].

Training. Our model is based on ResNet-50 [12] and

all weights are initialized with a publicly released model

pre-trained on the ImageNet dataset [28]. We adopt image-

centric training [8]. For each image, we sample 512 RoIs

with positive-to-negative ratio of 1:3. For data augmenta-

tion, the length of the short side of an image is randomly

sampled between 640 and 800 pixels. Weight decay and

momentum are set to 0.0001 and 0.9, respectively. As we

used two GPUs that are smaller than that of the Mask R-

CNN [11], we used the linear scaling rule [10] to set the

learning rate and number of iterations according to the num-

ber of GPUs. Each GPU takes 2 images to generate a

mini-batch. For the classification head network, we used

the same loss function (i.e., binary cross-entropy) and ar-

chitecture (i.e., two fully-connected layers) as the Mask R-

CNN [11].

Inference. At test time, the extracted RoI bounding

boxes pass the classification head network and the estimated

bounding box refinement vector refines the coordinates of

the bounding boxes. Then, the refined bounding boxes pass

the MS-KpsNet, which differs from the parallel computa-

tion used in training. This sequential prediction speeds up

inference and improves accuracy due to the use of fewer and

more accurate RoIs. The predicted heatmaps for each body

keypoint are resized to the original RoIs and the position

of the highest response for each keypoint is identified and

warped to the final result of our model.

All the hyper-parameters are adopted from Mask R-

CNN [11] and FPN [17] without any fine-tuning.

8. Experiment

8.1. Dataset and evaluation metric

The proposed model is trained on the MS COCO [18]

training set which includes 57K images and 150K person

instances. The validation is performed on the MS COCO

validation set which includes 5K images and testing is con-

ducted on the test-dev set that includes 20K images. Fol-

lowing the public benchmark, we used the object keypoint

similarity (OKS) [26] based mAP as an evaluation metric.

The OKS defines the similarity between the coordinates of

two human body keypoints which is similar to intersection

over union in object detection.

8.2. Ablation study

We trained our model on the MS COCO training set and

validated the proposed components on the MS COCO vali-

dation set.

Multi-scale aggregation network. To demonstrate the
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Methods Backbone AP
kps

AP
kps
.50 AP

kps
.75 AP

kps

M AP
kps

L AR
kps

AR
kps
.50 AR

kps
.75 AR

kps

M AR
kps

L

Separated model-based methods

RMPE [7] - 61.0 82.9 68.8 57.9 66.5 - - - - -

G-RMI [22] ResNet-101 64.9 85.5 71.3 62.3 70.0 69.7 88.7 75.5 64.4 77.1

CPN [5] ResNet-Inception 72.1 91.4 80.0 68.7 77.2 78.5 95.1 85.3 74.2 84.3

CFN [13] Inception v2 72.6 86.1 69.7 78.3 64.1 - - - - -

Single model-based methods

CMU-Pose [2] - 61.8 84.9 67.5 57.1 68.2 66.5 87.2 71.8 60.6 74.6

Mask R-CNN [11] ResNet-50-FPN 63.1 87.3 68.7 57.8 71.4 - - - - -

AE [20] - 65.5 86.8 72.3 60.6 72.6 70.2 89.5 76.0 64.6 78.1

MSA R-CNN (Ours) ResNet-50-FPN 68.2 89.7 75.0 63.8 75.6 74.4 93.4 80.3 69.2 81.5

Table 3: Comparison with the state-of-the-art methods on the MS COCO test-dev set. Methods that involve extra training

data or use ensemble technique are excluded.

Method APkps Running time Train mem

CPN-50 67.3 0.10 + 0.21 7.9 + 10.5 GB

Mask R-CNN 63.1 0.17 7.7 GB

Mask R-CNN+ 67.0 0.31 14.2 GB

MSA R-CNN (Ours) 67.6 0.21 10.8 GB

Table 4: Computational complexity comparison with the

state-of-the-art top-down methods. The AP is from the test

result on the MS COCO validation set. The running time

is the number of seconds required to process an image and

the train mem indicates the amount of the GPU memory

consumption in the training stage. For CPN-50, the former

and latter results are from the human detector and the pose

estimation model, respectively.

validity of the multi-scale aggregation, we compared the

performances of the baseline model [11] and the proposed

MSA R-CNN in Table 1.

1) Baseline model. We employed ResNet-50-based

Mask R-CNN [11] as the baseline model.

2) Only from P2. When all human bounding box pro-

posals are extracted from the finest-scale feature map (P2),

not from the assigned feature map according to size [17],

the performance is slightly improved. This may be because

the keypoint localization task prefers features from large up-

sampled feature maps. Although the extracted RoI size is

the same regardless of whether it is from the P2 to the P5,

the detailed local and fine-scaled information from the P2

is helpful for accurate keypoint localization.

3) 1×1 conv output. In the output part of the original

keypoint head network, we used a deconv layer followed

by an 1×1 conv layer to generate heatmaps for each joint

instead of a single deconv layer. This is to separate the

two tasks, which upsample the feature map and estimate

the heatmap.

4) MS-KpsNet. When the proposed MS-KpsNet is in-

troduced, the performance increases by 1.5 AP. This shows

the usefulness of the MS-KpsNet that is designed to effec-

tively utilize multi-scale information.

5) Longer training. For stable convergence, we scaled

the training schedule by approximately 1.44 times, which

slightly improves performance.

6) MS-RoIAlign. The MS-RoIAlign increases perfor-

mance by 0.9 AP which shows utilizing multi-scale features

is better than relying on a single-scale feature.

7) Average of Top-2s. To improve performance of the

keypoint localization at high precision thresholds, we select

top-2 grid with the highest probability from the estimated

heatmap. Then, the weighted average of the locations of the

selected grids based on their probability becomes the final

location of each keypoint.

8) Test-time augmentation. The multi-scale test-

time augmentation is commonly used to boost the perfor-

mance [20, 2]. It averages heatmaps from multiple sizes

of an input image, which makes the model robust to scale

variations.

All the proposed methods obtain 6.2 AP improvement

compared with the baseline model.

Aggregation method. We explore the best aggregation

method in the MS-RoIAlign in terms of the performance

and computational complexity. We compared our aggrega-

tion method (i.e., summation) with concatenation which is

used in CFN [13]. When concatenation is used, the upsam-

pled RoIs are concatenated along the channel dimension.

The first three feature map dimension of the MS-KpsNet

are changed to 1024, 1024, and 512 in response to the in-

creased number of channels. As Table 2 shows, there is

a marginal performance difference between concatenation

and summation although concatenation requires more pa-

rameters and consumes more GPU memory in the training

stage. Therefore, we used summation as the aggregation

method in the MS-RoIAlign.

8.3. Comparison with the state­of­the­art methods

We compared the performance of the MSA R-CNN on

the MS COCO [18] test-dev set with that of recent state-of-

the-art methods including RMPE [7], CMU-Pose [2], Mask
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R-CNN [11], Associative Embedding (AE) [20], CFN [13],

G-RMI [22], and CPN [5]. Table 3 shows the performance

comparison.

Our MSA R-CNN outperforms all the single model-

based methods. We additionally tried to compare the

proposed MSA R-CNN with a recently introduced single

model-based method, MultiPoseNet [16]. As they only re-

ported the performance using ensemble on the test-dev set,

we compare our MSA R-CNN with the MultiPoseNet [16]

on the validation set without ensemble and testing time aug-

mentation. Our ResNet-50-based model achieves 67.6 mAP

while their ResNet-50-based model achieves 62.3 mAP.

Moreover, their model with deeper backbone network (i.e.,

ResNet-101) achieves 63.9 mAP which is still lower than

ours. This comparison clearly shows the proposed MSA

R-CNN outperforms all the single model-based methods.

On the other hand, the proposed method performs

slightly worse than recent state-of-the-art top-down meth-

ods [13, 5] that require an additional human detection

model. As our model contains both of the human detector

and keypoint localization network, a limit exists in the use

of computational resources such as GPU memory, which

poses a limitation in obtaining better performance. This pre-

vents us from utilizing well-known factors for performance

boosting such as a deeper backbone network [17].

By contrast, separated model-based methods train and

test the human detector and pose estimation model sepa-

rately. Accordingly, a computational resource limitation

exists for each model and not the combined model. The

increased computational resource limitation can be used for

performance enhancement. For example, recent state-of-

the-art top-down methods use very deep network-based hu-

man detectors [11, 25, 23], which consume a large amount

of computation resource. The CPN used human detection

results from the MegDet [23] which is trained on 128 GPUs.

The MegDet [23] obtains 50.5 AP on the MS COCO [18]

detection validation set for all classes whereas our base-

line (i.e., ResNet-50-based Mask R-CNN) obtains 37.3 AP.

Moreover, their keypoint localization models not only can

use very deep backbone networks including ResNeXt [34]

and ResNet-Inception [29], but also can be designed with as

highly sophisticated network architecture [13, 5].

Figure 5 shows the qualitative results of our MSA R-

CNN on the MS COCO [18] keypoint detection test-dev set.

8.4. Computational complexity

We compared the accuracy and computational complex-

ity of the proposed method with those of the Mask R-CNN,

very deep backbone based-Mask R-CNN [11] (i.e., Mask R-

CNN+) and the basic model of the CPN [5] (i.e., CPN-50)

in Table 4. Among the separated model-based methods, we

chose the CPN because it released the code and achieved

top performance. The Mask R-CNN+ uses ResNeXt-101-

FPN [34, 17] as a backbone network and CPN-50 is based

on the ResNet-50 [12]. We use the same backbone based

object detector with ours (i.e., ResNet-50-FPN-based Mask

R-CNN) as the human detector of the CPN-50 because the

human detector code of the CPN (i.e., MegDet [23]) is un-

available. For a fair comparison, ensembling, and keypoint

rescoring, and test time augmentation techniques are ex-

cluded.

As Table 4 shows, our method achieves the best accuracy

with the least amount of computational resource in both of

the training and testing stages compared with the Mask R-

CNN+ and CPN-50. The CPN-50 requires 48% longer run-

ning time in the testing stage and 70% more GPU memory

in the training stage to achieve similar accuracy with the

MSA R-CNN. Considering that the CPN-50 is the simplest

model of the CPN with a basic human detector, previous

separated model-based systems require a huge amount of

computation to achieve the state-of-the-art performance.

Furthermore, compared with the Mask R-CNN, the MSA

R-CNN increases the computational complexity by approx-

imately 30% whereas the Mask R-CNN+ increases it by

around 80% in both of the training and testing stages. This

result indicates that the proposed modules in the MSA R-

CNN (i.e., MS-RoIAlign and MS-KpsNet) efficiently in-

creases accuracy compared with using deeper backbone net-

work which is the most widely used strategy for accuracy

improvement [11, 12, 17].

9. Conclusion

We proposed a novel and powerful network, MSA R-

CNN, for 2D multi-person pose estimation. In contrast

to previous top-down methods, the proposed method per-

forms human detection and keypoint localization in a single

model. This unified model allows us to save a large amount

of computations compared with the separated model-based

methods. Also, to effectively utilize multi-scale infor-

mation, the MS-RoIAlign and MS-KpsNet are proposed,

which extract multi-scale features and aggregate them. MS-

RoIAlign and MS-KpsNet obtain remarkable performance

improvements. Our method outperforms all the existing sin-

gle model-based methods and achieved comparable results

to those of the separated model-based methods on the chal-

lenging benchmark. Codes will be released for reproduc-

tion.
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Figure 5: Qualitative results of our MSA R-CNN on the MS COCO test-dev dataset.
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