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Abstract

Human pose estimation has witnessed a significant ad-

vance thanks to the development of deep learning. Recen-

t human pose estimation approaches tend to directly pre-

dict the location heatmaps, which causes quantization er-

rors and inevitably deteriorates the performance within the

reduced network output. Aim at solving it, we revisit the

heatmap-offset aggregation method and propose the Offset-

guided Network (OGN) with an intuitive but effective fu-

sion strategy for both two-stages pose estimation and Mask

R-CNN. For two-stages pose estimation, a greedy box gen-

eration strategy is also proposed to keep more necessary

candidates while performing person detection. For mask

R-CNN, ratio-consistent is adopted to improve the gener-

alization ability of the network. State-of-the-art results on

COCO and PoseTrack dataset verify the effectiveness of our

offset-guided pose estimation and tracking.

1. Introduction

Human pose estimation in images and articulated pose

tracking in videos are of significance for visual understand-

ing task [32, 12]. Research community has witnessed a sig-

nificant advance from single person [3, 10, 27, 26, 28, 21,

31] to multi-person pose estimation [23, 15, 4, 22, 5], from

static images pose estimation [24, 12] to articulated track-

ing in videos [16, 14, 8, 17, 34, 11, 30, 29]. However, there

are still challenging pose estimation problems in complex

environments, such as occlusion, intense light and rare pos-

es [2, 18, 25]. Furthermore, articulated tracking encounters

new challenges in unconstrained videos such as camera mo-

tion, blur and view variants [1, 33, 35].

*The first two authors contributed equally to this work.

Previous pose estimation systems address single pre-

located person, which exploit pictorial structures model[3,

10] and deep convolutional neural network [27, 26, 28, 21,

31]. Motivated by practical applications in video surveil-

lance, human-computer interaction and action recognition,

researchers now focus on the multi-person pose estima-

tion in unconstrained environments. Multi-person pose

estimation can be categorized into bottom-up [23, 15, 4]

and top-down approaches [22, 5, 12, 29], where the lat-

ter becomes dominant participants in COCO benchmarks

[18]. Top-down approaches can be divided into two-stages

based methods and unified framework. Two-stages meth-

ods [22, 5, 29] firstly detect and crop persons from the im-

age, then perform the single person pose estimation in the

cropped person patches. Representative work of unified

framework methods is Mask R-CNN [12], which extracts

the human bounding box and predicts keypoints from the

corresponding feature maps simultaneously.

While there has been a significant advance in pose esti-

mation, quantization errors still exist in most of the mod-

ern networks. Although Google [22] proposes to simulta-

neously classify the heatmaps and regress the offset filed,

recent human pose estimation approaches [12, 5, 29] tend

to directly predict the location heatmaps. Because of the

quantization effect between input and output, performance

is inevitably deteriorated within the reduced network out-

put. While both deconv and offset can reduce quantization

errors, offset is more significant for resources-restricted ap-

plications due to its efficiency. In this paper, we revisit the

heatmap-offset aggregation method and propose the Offset-

guided Network (OGN) for both two-stages pose estimation

and unified Mask R-CNN framework. We extend modern

frameworks by adding a branch for offset prediction in par-

allel with the existing branch. Meanwhile, an intuitive but

effective fusion is adopted to obtain the final results, and we

20



propose a greedy box generation strategy to keep more nec-

essary candidates. The OGN aims at improving precision

for all sizes output especially low resolution. Our network

can output keypoints location in continuous space which re-

duces the quantization error.

In experiments, the offset-guided two-stages pose es-

timation approach reaches mAP of 74.0 on COCO test-

dev set, yielding 14% relative gain compared with [22].

On PoseTrack dataset, we achieve 67.7 MOTA using two-

stages pose input without optical flow, which is the new

state-of-the-art results in this task.

The main contributions can be described as follows:

(1) Heatmap-offset aggregation method is revisited and

we propose the OGN for both two-stages pose estimation

and Mask R-CNN. An intuitive but effective fusion strategy

is adopted to obtain the final results by merging two branch-

es.

(2) As a novel alternative to NMS, a greedy box genera-

tion strategy is adopted to keep more necessary candidates

for offset-guided two-stages pose estimation.

(3) In experiments, the offset-guided two-stages pose es-

timation approach reaches mAP of 74.0 on COCO test-dev

set with a single model, yielding 14% relative gain com-

pared to [22]. Furthermore, we achieve 67.7 MOTA on

PoseTrack dataset without optical flow, which is the new

state-of-the-art results in this task.

2. Related Works

2.1. Single person pose estimation

Single person pose estimation is a task that predicts the

pose of a single person in an image. Conventional method-

s [3, 10] exploit pictorial structure model which expresses

the human body as a tree-structured graphical model. [3]

claims that the right selection of components for both ap-

pearance and spatial modeling is crucial. The Deformable

Part Model (DPM) [10] adopts HOG feature to implemen-

t this idea. Recently, this task has been advanced rapidly

for the development of deep convolution neural networks.

[27] firstly tries to utilize CNN and they prefer to directly

regress coordinates of body parts. More recently, researches

on this task choose to regress some heat maps, which each

stands for a body part. [26] is the first work which solves

the problem by using CNN and graphical models to predict

heat maps of each body part. With the continuous work of

many researchers, some novel architectures like CPM [28],

Stacked Hourglass [21] and PRMs [31] are used to achieve

state-of-the-art results.

2.2. Multi­person pose estimation

Motivated by practical applications, researchers now fo-

cus on multi-person in unconstrained environments. Multi-

person pose estimation can be categorized into bottom-up

and top-down approaches where the latter becomes domi-

nant participants in COCO benchmarks [18].

bottom-up Bottom-up architecture based methods first

detect body parts and then associate corresponding body

parts with specific human instances. The typical methods

are DeepCut [23] and DeeperCut [15]. The former adopts

an integer linear programming based method and the later

improves DeepCut via utilizing image-conditioned pairwise

terms. [4] predicts heatmaps of body parts and a set of 2D

vector fields of part affinities and parses them by greedy in-

ference to generate the final results.

Top-down Top-down approaches can be divided into two-

stages based methods and unified framework. Two-stages

methods [24, 22, 5, 29] first detect and crop persons from

an image, then perform single person pose estimation in the

cropped person patches. [24] follows this two-step frame-

work by using pictorial structure models based method.

[22] combines classification and regression tasks which re-

spectively predicts the offset vector and location heatmap

of each body part. [5] proposes a cascaded pyramid net-

work containing global pyramid network and pyramid re-

fined network which aims for online hard key points min-

ing. Representative work of unified framework methods is

Mask R-CNN [12] that builds an end-to-end framework and

yields an impressive performance.

3. Overview of offset-guided network

For pose estimation, it is noticed that the precision of

keypoints localization is limited by the size of network out-

put. During the downsampling process, there exists a quan-

tization error. OGN is utilized to address this problem. We

verify the effectiveness of OGN for two-stages pose esti-

mation (shown in Figure 1) and extended Mask R-CNN

framework (Figure 2). Following [22], the regions of in-

terest (ROIs) detected and cropped by person detector are

fed to the pose estimator, where the offset regression branch

guides heatmap classification branch to refine the pose loca-

tion. Differently, two deconv layers [29] are used to enlarge

the heatmaps by four times and an intuitive but effective

fusion is adopted to obtain the final results. Meanwhile, in

extended Mask R-CNN as shown in Figure 2, the ROIs from

RPN are firstly extended to a fixed ratio and then ROI-Align

is used to extract the feature in each extended ROIs. Final-

ly, a score map and an offset map are predicted and fused to

obtain the final location of keypoints.

3.1. Offset­guided two­stages Pose Estimation

We first address the OGN for two-stages pose estimation

framework. For the first stage, the results of the person de-

tector are crucial for subsequent pose estimator. However,
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Figure 1: Offset-guided two-stages pose estimation network. It consists of three main components: (a) the person detector,

(b) extracting features using ResNet, (c) the process of refinement and fusion

the box with a lower score may have higher IoU with ground

truth and may be eliminated by the subsequent NMS [20]

process. Therefore, a Greedy Box Generation (GBG) strat-

egy is proposed to retain more necessary candidates. For

the second stage, two branches are used to obtain the final

results. The offset regression branch guides heatmap clas-

sification branch to approach the ground truth. Meanwhile,

the heatmap classification branch guides offset regression

branch to focus on the neighborhood of ground truth.

3.1.1 Greedy Box Generation Strategy

We adopt Mask R-CNN [12] as the person detector that

achieves AP 51.7 of 80 categories detection on the COCO

val2017. Different from most of the other approaches, we

propose a greedy box generation (GBG) strategy as a novel

alternative to Non-Maximum Suppression (NMS) [20]. It

prefers to retain redundant boxes which helps us to get bet-

ter pose selected by OKS+IOU NMS after pose estimation.

Specifically, no filtering strategies including NMS are used

in both RPN and R-CNN phase. As a result of person de-

tection, thousands of boxes are put out as candidates. The

sequential selection of candidates can be described as fol-

lows. Firstly, based on the task limitation, we filter out the

boxes whose size are smaller than the minimum threshold.

Then, those boxes whose confidence score is larger than 0.8

are picked out. We argue those boxes are reliable and call

them equivalent ground truth (EGT). After that, the other

predicted boxes who has a IoU < 0.5 with all EGT are

eliminated. Finally, all of the rest boxes are divided into

groups where every box has a IoU >= 0.7 with each other,

and top N of each group (we use N = 4) are preserved.

By adopting GBG strategy, we tend to keep the boxes with

score relatively small but localization more accurate.

3.1.2 Offset-guided Network

In this work, we utilize ResNet [13] as the backbone of the

offset-guided network. Our offset-guided architecture ad-

dresses two main problems. Firstly, in order to preserve

more local details, deconv layers are appended for higher

resolution. In our practice, two deconv layers are used to

enlarge the feature maps by four times. Secondly, follow-

ing [22], we adopt an approach combining classification and

regression branches to obtain the final pose results which

helps to reduce quantization errors. We denote the number

of keypoints by K. A convolution layer of K = 17 chan-

nels is adopted to output coarse location, and a convolution

layer of 2K channels to regress the offset for a fine posi-

tion. For each predicted position xi and each GT key point

gk, the target label for the classification head is:

Hc =

{

1 ||xi − gk|| <= R
0 ||xi − gk|| > R

(1)

The target label for the x-axis of offset is:

Hr =

{

(gk − xi)/R ||xi − gk|| <= R
0 ||xi − gk|| > R

(2)

And the same is y-axis. The classification head considers

the whole heatmaps, while the offset loss is only computed

within a disk of radius R from each keypoint. Our insight

is that these two heads can revise each other. The regres-

sion head helps to revise the coarse location of keypoints.

The classification head helps to exclude the invalid regions,

so the regression head can focus on learning offset with-

in a small range. Besides, this heatmap-offset aggregation

method outputs result in continuous space which eliminates

the quantization errors. As shown in Figure 1, the OGN can

be split into three stages. In experiments, the OGN dramat-

ically improves the performance in a large range of output

resolutions, especially for low resolution.

3.1.3 Inference

Inspired by [9], to make the pose estimator adapted to

the boxes generated by our person detector, we mix up the

predicted boxes and ground truth boxes. With this strategy,

our pose estimator can adapt to the variance of box location

distribution and perform better while testing. Once those

ROIs are provided, the cropped areas from the original im-

age will be sent to a single pose estimator. In our practice,

ResNet is used to extract features and some deconv layer-

s [29] is added to pursue higher resolution. Smooth L1 is
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used as the loss function for both classification and regres-

sion. In addition, we employ a Gaussian filter to make the

output heatmaps smoother. The final results are obtained by

merging two branches using an intuitive but effective fusion

method.

For classification branch, each key point is predicted by

a heatmap Lk ∈ RW∗H (W,H is the width and height of

the final heatmap respectively). The other branch is used

to generate 2K heatmaps. Every pair of them stands for

the x, y offset for the corresponding position in Lk , and

these heatmaps are denoted by Okx, Oky . Each Okx and

Oky have the same size with Lk. Firstly, we find the maxi-

mum score in each Lk and mark them as coarse localization

(Tw, Th).

(Tw, Th) = argmax(Lk), k = 1, 2, ..., k (3)

Then, the corresponding offsets Okxw
, Oky

h
in Okx and

Oky are obtained. Finally, the output can be denoted as:

(Fx, Fy) = (Tw +Okxw
R, Th +Oky

h
R) (4)

352

256

Ratio-consistent RoI-Align
Initial score map

Predicted offset map

Final score map

Figure 2: The framework of the offset-guided Mask R-

CNN. The ROIs from RPN are firstly extended to a fixed

ratio and then ROI-Align is used to extract the feature in

each extended ROIs. Then a score branch and an offset

branch are predicted and fused to obtain the final location

of keypoints.

3.1.4 Discussion

Compared to [22], our method emphasizes simplicity and

effectiveness. [22] adopts logistic loss for the classification

head and Hober robust loss for the regression head, while

only the Smooth L1 loss is used for both of them in this

paper. The totally different loss types in [22] introduce a

hyper-parameter to keep loss balanced. In contrast, we on-

ly need to simply add the loss of the two branches togeth-

er. When it comes to the process of fusion, [22] adopts

Hough voting strategy while we directly select the maxi-

mum prediction. What is more, our network can still con-

verge well without any intermediate supervision while [22]

adds an extra heatmap to contribute auxiliary loss. From

these perspectives, OGN can be easily transferred to other

frameworks like Mask R-CNN [12]. Our approach is not

only simple and intuitive, but also effective. In Section 4.1,

comprehensive experiments are conducted to verify the ef-

fectiveness.

3.2. Offset­guided Mask R­CNN

Besides the above two-stages pose estimation, the effec-

tiveness of the OGN is also evaluated on Mask R-CNN,

which is an end-to-end framework producing results of de-

tection and pose estimation simultaneously. [12] models

the location of a keypoint as a one-hot mask and produces

K masks for each keypoint based on the feature from ROI-

Align. However, ROI-Align will output distorted feature

map in different degrees if the ratios of ROIs are different,

which increases the training difficulty of subsequent pre-

diction head. And the resulting one-hot map may be less

accurate due to the small resolution of the feature map.

Therefore, this paper proposes two techniques to im-

prove the performance of human pose estimation of Mask

R-CNN. The first one is to transform all human ROIs into a

fixed ratio by extending the width or height of ROIs, which

makes sure the ROIs fed into prediction head fall into the

same distribution of ratio and improve the ability of gener-

alization. This strategy is denoted as ratio-consistent in the

following sections. The second one is that the human pose

is predicted with a score map and an offset map. Specially,

the prediction with the max response in the score map rep-

resents the coarse prediction location, and the offset map

further refines it to a finer location. Here the score map is

the same as the score map in single person pose estimation

model mentioned in Section 3.1 and we also use Smooth L1

loss as the optimization target. The extended Mask R-CNN

framework is illustrated in Figure 2.

4. Experiments

In this section, the performance of the proposed offset-

guided network is evaluated on COCO and PoseTrack

dataset.

4.1. Results on COCO dataset

Experiments are firstly conducted on the COCO [18]

benchmark which requires both person detection and body

parts localization in uncontrolled conditions. The COCO

dataset contains more than 200k images and 250k person

instances splitting into train, validation and test sets. Abla-

tion study is conducted on the validation set. To compare

with other methods, we provide final results on both test-

dev and test-challenge2018. The qualitative results of the

COCO dataset are shown in Figure 4.
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Table 1: Ablation study on the COCO val2017 set (* indicates that flip test is used). Method (a) reduces the number of

deconv layers to one in MSRA [29] published source code. Method (b) comes from [29]. Based on our network, method (c-l)

conduct experiments on offset, GBG strategy, input size and deconv layers.

Method Network
Input

Size
Deconv

Feature

Stride
Offset GBG AP AP0.5 AP0.75 APm APl

a ResNet-50(MSRA)* 256x192 1 16 ✗ ✗ 52.0 88.8 58.2 51.5 53.1

b ResNet-50(MSRA)* 256x192 2 8 ✗ ✗ 68.2 - - - -

c ResNet-50 256x192 2 8 ✓ ✗ 69.7 88.2 77.2 66.0 75.8

d ResNet-50 256x192 1 16 ✓ ✗ 67.7 90.3 74.6 64.5 72.9

e ResNet-50 352x256 1 16 ✓ ✓ 70.4 90.5 76.4 67.0 75.8

f ResNet-50 384x288 1 16 ✓ ✓ 70.7 88.5 77.4 66.3 77.6

g ResNet-50 512x384 1 16 ✓ ✓ 71.7 88.7 77.7 67.0 79.0

h ResNet-50 512x384 1 16 ✓ ✗ 71.3 88.6 77.7 67.3 78.5

i ResNet-50 384x288 2 8 ✓ ✓ 71.6 89.0 78.3 67.3 78.5

j ResNet-50 512x384 2 8 ✓ ✓ 73.0 91.5 79.6 68.8 78.8

k ResNet-101 512x384 2 8 ✓ ✓ 73.8 91.6 79.6 70.0 79.7

l ResNet-152 512x384 2 8 ✓ ✓ 74.0 91.5 79.7 70.1 79.9

Train details Our offset-guided two-stages model is pre-

trained on the Imagenet [7] classification dataset. For da-

ta augmentation, random flip, rotation (±30◦) and scale

(0.9∼1.2) on original image are adopted. Considering the

peculiarity of multi-person pose estimation task, we use a

ROI based sampling strategy to improve the model’s gen-

eralization ability. Eight TITAN X GPUs and batch size of

64 are used. For every iteration, we randomly choose two

images for each GPU and four ROIs for each image. The

whole train process contains 22 epochs. The learning rate is

0.02 and drops twice at the 17th epoch and the 21st epoch

with the decay of 0.1, SGD optimizer is used.

Test details The test is conducted on the COCO val2017,

test-dev and test-challenge2018. Following our GBG strat-

egy, all ROIs generated by detected boxes are adjusted to

a fixed ratio 3:4. For post-processing, a Gaussian filter is

used to smooth the heatmaps at first. Then following [5],

we use the product of box score and pose score as the final

score for the sorting mechanism. Finally, NMS [20] based

on IoU = 0.6 and OKS = 0.75 is employed.

4.1.1 Ablation study

Ablation study is conducted on the COCO val2017 set. Off-

set, GBG, Resolution and network depth are considered as

shown in Table 1.

1. Offset Network with low resolution output is of signif-

icance for resources-restricted applications due to its

efficiency. From method (a, d), it can be seen that

stride = 16 will inevitably deteriorate the perfor-

mance if offset is not considered. Performance can be

improved by 15.7 AP when considering offset. When

stide = 8, our OGN method (c) improves MSRA

baseline method (b) by 1.5 AP. As shown in Table 3,

our offset-guided architecture also improves Mask R-

CNN by 2.1 AP.

2. GBG From the comparison of methods (g, h), the AP

can be improved by 0.4 using our GBG strategy.

3. Resolution Resolution is affected by input size and

network stride. Comparing methods (e, f, g) with each

other, one can find that larger network input produces

better results within certain range. As input size grows,

the AP increases by 0.3 and 1.0 respectively. Deconv

layers can reduce the network stride as shown in meth-

ods (f, i) and (g, j). Similarly with [29], AP increases

by 0.9 from method f to i. When adopting larger input

size, our final AP can increase by 1.3 from method g

to j.

4. Network depth Comparison of methods (j, k, l) ex-

poses that performance benefits from deeper network.

Changing network depth, AP can increase by 0.8 from

ResNet-50 to ResNet-101 and 1.0 from ResNet-50 to

ResNet-152.

4.1.2 Comparison with state-of-the-art results

The proposed OGN method participates in both COCO

Keypoints 2017 and 2018 challenges. In 2017, the per-

formance of our single model is 71.3 AP, and our final re-

sult reaches 72.8 AP on test-dev set when state-of-the-art

is 73.0. In 2018, as shown in Table 2, our single mod-

el method, without additional training data and ensemble,

achieves new state-of-the-art performance on the COCO

test-dev set with 74.0 AP, which yields 14% relative gain

compared to [22]. Comparing with the previous state-of-

the-arts [29], our approach improves the results by 0.2 AP.

Our result with 100k additional data and the ensemble of

ResNet [13], ResNext [19], Xception [6] achieves 75.9 AP.

In test-challenge set, our result ranks the 3rd by 74.1 AP

among COCO leaderboard when submitted.
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Figure 3: Qualitative results of the PoseTrack dataset. In each frame, bounding box and pose of the human are illustrated,

where the same color boxes indicate the same identity.

Table 2: Pose estimation performance with single model on

the COCO test-dev set.

Method AP AP0.5 AP0.75 APm APl AR

CMU-Pose[4] 61.8 84.9 67.5 57.1 68.2 -

Mask-RCNN[12] 63.1 87.3 68.7 57.8 71.4 -

G-RMI[22] 64.9 85.5 71.3 62.3 70.0 69.7

CPN[5] 72.1 90.5 78.9 67.9 78.1 78.7

MSRA[29] 73.8 91.7 81.2 70.3 80.0 79.1

Ours-2017 71.3 91.0 78.3 67.9 76.3 74.4

Ours-2018 74.0 91.1 81.1 69.8 80.5 79.7

Table 3: Compared with Mask R-CNN on the test-dev set.

Method AP AP0.5 AP0.75 APm APl AR

Mask R-CNN[12] 63.1 87.3 68.7 57.8 71.4 -

Extended Mask R-CNN 65.2 88.2 70.9 61.8 71.7 69.8

4.2. Results on PoseTrack dataset

Experiments about pose estimation and tracking on

PoseTrack dataset are also conducted. Ablation study on

offset-guided Mask R-CNN is conducted. Similar tracking

strategy as [11] is adopted except that the appearance in-

formation is taken into account. Specifically, we utilize the

metric which integrates the spatial cue and the appearance

cue. IoU is adopted to measure the spatial similarity and

human Re-identification model is utilized to extract the ap-

pearance feature of the targets. Furthermore, the Euclidean

distance is adopted to measure the appearance similarity.

4.2.1 Ablation study

We evaluate the proposed ratio-consistent strategy and

offset-guided Mask R-CNN on PoseTrack val2017 dataset.
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Figure 4: Qualitative results of the COCO dataset. In each frame, bounding box, keypoints and skeleton are denoted by

rectangle, dot and line separately.

The results are illustrated in Table 4. We conduct experi-

ments in three aspects including offset, ratio-consistent and

the type of loss to optimize.

1. Offset Comparing method a with [11], the perfor-

mance improvement is 3.7 mAP, which proves the ef-

fectiveness of OGN.

2. Ratio-consistent Similar to single person pose, the ra-

tio of ROIs in this model is extended to 352 × 256.

It brings another 1.6 mAP improvement comparing to

method a.

3. Loss We regress the score maps of keypoint location

and offset map with Smooth L1 loss. With this tech-

nique, 66.7 mAP is obtained. Our final results on

val2017 outperform [11] by 0.8 mAP.

4.2.2 Comparison with state-of-the-art results

As shown in Table 5, without optical flow, there is an im-

provement of MOTA over existing best method [29] by 2.3

on PoseTrack val2017. If the optical flow is adopted, the

Table 4: Ablation study of extended Mask R-CNN on Pose-

Track val2017 set. The backbone is ResNet-101. The result

of FAIR is from [11].

Method Loss Type
Ratio

Consistent

Offset-guided

Refinement

mAP

Total

FAIR softmax ✗ ✗ 60.6

a softmax ✗ X 64.3

b softmax X X 65.9

c Smooth L1 X X 66.7

MOTA improvement is 4.7. Meanwhile, Our approach ob-

tains state-of-the-art performance on test2017 set. The qual-

itative results of the PoseTrack dataset are shown in Figure

3.

5. Conclusion

In this paper, we revisit the heatmap-offset aggregation

method for pose estimation and propose the Offet-guided

network (OGN) for both two-stages approaches and Mask

R-CNN. The OGN is designed to reduce errors caused by

the quantization effect between network input and output.

A novel alternative to NMS for two-stages network is pro-

posed which named GBG. For offset-guided Mask R-CNN,

ratio-consistent is adopted to improve the model’s ability of
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Table 5: Multi-person pose estimation and tracking perfor-

mance on PoseTrack 2017 dataset. We adopt the same opti-

cal flow method as MSRA.

Method Dataset
Total

mAP

Total

MOTA

MSRA [29] validation 76.7 65.4

FAIR [11] validation 64.1 55.2

PoseFlow [30] validation 66.5 58.3

Ours (Mask R-CNN) validation 66.7 60.7

Ours (two stages) validation 75.1 67.7

Ours (two stages with optical flow) validation 76.7 70.1

MSRA [29] test 74.6 57.8

FAIR [11] test - 51.8

PoseFlow [30] test 63.0 51.0

Ours(Mask R-CNN) test 63.9 57.4

Ours(two stages) test 72.6 59.2

Ours(two stages with optical flow) test 74.8 61.6

generalization. State-of-the-art results are achieved on both

COCO and PoseTrack dataset.
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