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Abstract

The semantic understanding of urban scenes is one of the

key components for an autonomous driving system. Com-

plex deep neural networks for this task require to be trained

with a huge amount of labeled data, which is difficult and

expensive to acquire. A recently proposed workaround is

the usage of synthetic data, however the differences be-

tween real world and synthetic scenes limit the perfor-

mance. We propose an unsupervised domain adaptation

strategy to adapt a synthetic supervised training to real

world data. The proposed learning strategy exploits three

components: a standard supervised learning on synthetic

data, an adversarial learning strategy able to exploit both

labeled synthetic data and unlabeled real data and finally a

self-teaching strategy working on unlabeled data only. The

last component is guided by the segmentation confidence,

estimated by the fully convolutional discriminator of the ad-

versarial learning module, helping to further reduce the do-

main shift between synthetic and real data. Furthermore

we weighted this loss on the basis of the class frequencies

to enhance the performance on less common classes. Ex-

perimental results prove the effectiveness of the proposed

strategy in adapting a segmentation network trained on syn-

thetic datasets, like GTA5 and SYNTHIA, to a real dataset

as Cityscapes.

1. Introduction

One of the key requirements for autonomous driving ap-

plications is an efficient semantic scene understanding algo-

rithm able to recognize all the various objects and regions in

the environment surrounding the car. This task is typically

solved using deep learning techniques for semantic segmen-

tation. Recent advances in deep neural networks have al-

lowed to obtain an accurate semantic understanding of road

scenes, however they typically require a huge amount of la-

beled data with pixel-level information for training and the

generation of these annotations requires a huge effort. A

recently proposed workaround for this issue is to use com-

puter generated data for training the networks. In particular,

very realistic rendering models have been realized by the

video game industry. Modified version of the games soft-

ware can be used to produce a large amount of high quality

rendered road scenarios [28, 27]. However, despite the im-

pressive quality of the video games graphics, there is still

a domain shift between the synthetic video game data and

the real world images acquired by video cameras placed on

cars. This issue needs to be addressed to build a system able

to obtain good and reliable performance in the real world

scenario.

This paper proposes an unsupervised domain adaptation

strategy based on adversarial learning to adapt an initial

learning performed on synthetic data to real world scenes.

This could potentially help shaping how autonomous vehi-

cles face road scenarios [23]. We envisage a scenario where

a large amount of annotated synthetic data is available but

no labeled real world samples are available. The proposed

method exploits an adversarial learning framework, where a

segmentation network based on the DeepLab v2 framework

[2] is trained using both labeled and unlabeled data thanks

to the combination of three different losses. The first is

a standard supervised cross-entropy loss exploiting ground

truth annotations allowing to perform an initial supervised

training phase on synthetic data. The second is an adver-

sarial loss derived from previous methods [15, 19] devel-

oped in the context of semi-supervised semantic segmenta-

tion (i.e., for dealing with datasets only partially annotated).

In this framework, we exploited a fully convolutional dis-

criminator which takes in input the semantic segmentation

from the generator network and the ground truth segmenta-

tion maps and produces a pixel-level confidence map distin-

guishing between the two types of data. It allows to train in

an adversarial setting the segmentation network using both

synthetic labeled data and real world scenes without ground

truth information. Finally, the third term is based on a self-

teaching framework inspired from [15], where the predicted

segmentation is passed through the discriminator to obtain

a confidence map and then high confidence regions are con-

sidered reliable and used as ground truth for self-teaching

the network over them.
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We trained the network on both synthetic labeled data

(using the first and second component of the loss) and on

unlabeled real world data (using the second and third com-

ponent) thus being able to obtain accurate results on real

world datasets even without using labeled real world data.

Since the various classes have different frequencies, we im-

proved the performance by weighting the loss coming from

unlabeled data in proportion to the frequency of the classes

in the dataset. This allowed to better balance the results

between the different classes and to avoid a dramatic drop

in performance on less common classes corresponding to

small objects and structures that typically represent the crit-

ical elements in the autonomous driving scenario. The ap-

proach has been trained using the synthetic datasets SYN-

THIA and GTA5 for the supervised part and the real dataset

Cityscapes for the unsupervised components and then tested

on the Cityscapes validation set, proving to achieve state-of-

the-art results on the unsupervised domain adaptation task.

2. Related Work

Semantic segmentation of images, i.e., pixel-level label-

ing, is a very wide research field and a huge number of

approaches have been proposed for this task. A very re-

cent review can be found in [9]: current state-of-the-art ap-

proaches are mostly based on the Fully Convolutional Net-

work (FCN) model [20], notable examples are DilatedNet

[40], PSPNet [43] and DeepLab [2] which is the model em-

ployed for the generator network in this work. However,

since this paper deals with adversarial learning techniques

for semi-supervised training and on the problem of unsuper-

vised domain adaptation from synthetic to real-world data,

we will focus on techniques for these tasks in this section.

Semi-supervised learning. Semantic segmentation ar-

chitectures are typically trained on huge datasets with pixel-

wise annotations (e.g., the Cityscapes [5] or CamVid [1]

datasets), which are highly expensive, time-consuming and

error-prone to generate. To overcome this issue, semi-

supervised methods are emerging, trying to exploit weakly

annotated data (e.g., with only image labels or only bound-

ing boxes) [25, 31, 37, 39, 13, 6, 14, 32] or completely

unlabeled [24, 29, 15, 31, 19] data after a first stage of

supervised training. In particular the works of [22, 31]

have paved the way respectively to adversarial learning ap-

proaches for the semantic segmentation task and to their

application to semi-supervised learning. The recent ap-

proaches of [15, 19] propose semi-supervised frameworks

exploiting adversarial learning with a Fully Convolutional

Discriminator (FCD) trying to distinguish the predicted

probability maps from the ground truth segmentation dis-

tributions at pixel-level. These works targeted a scenario

where the dataset is only partially labeled: in their settings,

unlabeled data comes from the same dataset and shares the

same domain data distribution of labeled data. We instead

propose to tackle a scenario where unlabeled data refers to

a different dataset with a inherently different domain distri-

bution.

Domain Adaptation. In addition to the aforementioned

approaches to overcome the lack of data, an increasingly

popular alternative is represented by domain adaptation

from synthetic data. The development of sophisticated com-

puter graphics techniques enabled the production of huge

synthetic datasets for semantic segmentation purposes at a

very low cost. To this end, several synthetic datasets have

been built, e.g., GTA5 [27] or SYNTHIA [28] which have

been employed in this work. The real challenge is then

to address the cross-domain shift when a neural network

trained on synthetic data needs to process real-world images

since in this case training and test data are not drawn i.i.d.

from the same underlying distribution as usually assumed

[41, 33, 34, 10, 17]. A possible solution is to process syn-

thetic images to reduce the inherent discrepancy between

source and target domain distributions mainly using Gener-

ative Adversarial Networks (GANs) [30, 26, 38, 44, 16]

Unsupervised domain adaptation has been already

widely investigated in classification tasks [7, 8, 21, 36]. On

the other hand, its application to semantic segmentation is

still a quite new research field. The first work to inves-

tigate cross-domain urban scene semantic segmentation is

[12], where adversarial training is employed to align the

features from the different domains. In [41], a curriculum-

style learning approach is proposed where firstly the easier

task of estimating global label distributions is learned and

then the segmentation network is trained forcing that the

target label distribution is aligned to the previously com-

puted properties. Following these approaches, many works

addressed the source to target domain shift problem with

various techniques, such as cycle consistency [11], GANs

[29], output space alignment [35], distillation loss [4], class-

balanced self-training [46], conservative loss [45], geomet-

rical guidance [3] and adaptation networks [42].

3. Architecture of the Proposed Approach

The proposed approach is based on two main modules,

i.e., two different Convolutional Neural Networks (CNNs).

The first network (i.e., the generator G in the adversarial

learning framework) performs the semantic segmentation

of the given color image. For this module, we exploited

the Deeplab v2 network [2] based on the ResNet-101 model

whose weights were pre-trained1 on the MSCOCO dataset

[18]. Although we considered the Deeplab v2, notice that

our approach does not rely on specific properties of this net-

work and any network for semantic segmentation can be fit

inside the proposed learning framework. Figure 1 shows a

1We used the weights computed by V. Nekrasov available at:
https://github.com/DrSleep/tensorflow-deeplab-resnet
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Figure 1: Architecture of the proposed framework for the training of the generator network. A first stage of supervised

learning with synthetic data is followed by a second stage using also unlabeled real data to boost the performance of the

segmentation network (i.e., the generator) through the combination of 3 losses. LG,1 is a standard cross-entropy loss com-

puted on synthetic data, Ls,t
G,2 is an adversarial loss referring to a fully-convolutional discriminator network, and LG,3 is a

self-teaching loss for unlabeled real data.

general overview of the procedure used to train G exploiting

3 different losses.

Starting from the first, the network produces a class

probability map representing for each pixel the probabil-

ity that it belongs to each class c inside the set of possible

classes C. This map can be directly used to train the network

in a supervised way exploiting the semantic ground truth

data: we used a standard cross-entropy loss (LG,1) for this

task. More in detail, given the n-th input image X
s
n from

the source (synthetic) domain, its one-hot encoded ground

truth segmentation Y
s
n and the output of the segmentation

network G(Xs
n), the loss LG,1 on the image X

s
n can be

computed as:

LG,1 = −
∑

p∈Xs
n

∑

c∈C

Y
s
n
(p)[c] · log

(

G(Xs
n)

(p)[c]
)

(1)

where p is a generic pixel in the considered image Xs
n, c

is a particular class contained in the set C of possible classes

and Y
s
n
(p)[c] and G(Xs

n)
(p)[c] are respectively the value in

the one-hot encoded ground truth and in the generator net-

work estimate related to the pixel p and the class c.

Notice that this loss can be computed only on the source

domain (i.e., on synthetic data) where the pixel-level se-

mantic ground truth is available. However, our main tar-

get is to adapt the supervised synthetic training to the real

world target domain in a unsupervised way. We exploited

an adversarial learning framework: a second CNN is intro-

duced, i.e., a discriminator network (D) that aims at dis-

tinguishing segmentation maps produced by the generator

from the ground truth ones. Differently from other adver-

sarial learning models, this network produces a per-pixel

prediction instead of a single binary value for the whole in-

put image. The discriminator D is made of a stack of 5
convolutional layers each with 4 × 4 kernels with a stride

of 2 and Leaky ReLU activation function. The number of

filters (from the first layer to the last one) is 64, 64, 128,

128, 1 and the cascade is followed by a bilinear upsampling

to match the original input image resolution. The loss of

the discriminator LD is a standard cross-entropy loss be-

tween the produced map and the one-hot encoding related

to the fake domain (class 0) or ground truth domain (class

1) depending on the fact that the input has been respectively

drawn from the generator or from ground truth data. Math-

ematically, LD is defined as:

LD = −
∑

p∈X
s,t
n

log(1−D(G(Xs,t
n ))(p)) + log(D(Ys

n)
(p))

(2)

Notice that the discriminator has to label with 0 the seg-

mentation maps produced by the generator using both syn-

thetic data from the source domain s (denoted with X
s
n) or

real world data from the target domain t (i.e., Xt
n). Thus,

it allows to exploit also the real world data in an unsuper-

vised way, and it tries to distinguish the segmentations pro-

duced by the generator G from ground truth segmentation

data (that can be only synthetic in our framework). The us-

age of both types of data is made possible by the similar

classes’ statistics of source and target datasets. Notice also

that, in principle, the task of the discriminator appears to be

24



trivially solvable by distinguishing a Dirac distributed input

(i.e., the one-hot encoded annotations) from other predic-

tion distributions. However, we have empirically observed

that the generator network produces (and is forced to pro-

duce even more by the adversarial training process) seg-

mentation maps which are very close to a Dirac distribution.

The second loss term for the training of G is Ls,t
G,2, that is

computed on the generic image Xs,t
n from the discriminator

output as:

Ls,t
G,2 = −

∑

p∈X
s,t
n

log(D(G(Xs,t
n ))(p)) (3)

This term forces the training of the generator network

in the direction of fooling the discriminator producing data

that resembles the ground truth statistics. Notice that in this

computation the image can be taken from both the source

or the target dataset (i.e., it can be both a synthetic or a real

world image): in the following of this paper, we are going

to use Ls
G,2 to refer to the loss function computed only on

data extracted from the source dataset, while Lt
G,2 refers to

the loss computed on data from the target dataset. In partic-

ular, in the second case, Lt
G,2 tries to force the generator to

adapt to the target domain and to improve the performance

by encouraging cleaner segmentations and global consis-

tency with respect to the segment shapes.

Finally, starting from the idea in [15] we exploited the

output of the discriminator D as a confidence measure rep-

resenting the reliability of the estimations performed by G.

This allows to perform a sort of self-training following the

idea that the predictions of G are more reliable where D

marks them as ground truth with an higher accuracy. This

is represented by the third loss component of the generator,

defined as:

LG,3 = −
∑

p∈Xt
n

∑

c∈C

I
(p)
Tu

·W t
c · Ŷ

(p)
n [c] · log

(

G(Xt
n)

(p)[c]
)

(4)

where Ŷn is the one-hot encoded ground truth derived

from the per-class argmax of the generated probability map

G(Xn). W t
c , instead, is the weighting function on the

source domain defined as:

W t
c = 1−

∑

n|p ∈ X
s
n ∧ p ∈ c|

∑

n|p ∈ Xs
n|

, (5)

where | · | represents the cardinality of the considered set.

This set of weights serves as a balancing factor when un-

labeled data of the target set are used. Without this weight-

ing factor, unlabeled data would lead the model to mislead

rare and tiny objects (such as traffic lights or pole) as fre-

quent and large ones (such as road, building). Notice that

the term comes into play when using unlabeled data of the

target domain but the class frequencies have to be computed

on the labeled data of the source domain since we need the

ground truth labels to evaluate it. This calculation has only

to be performed a priori and it is not changed as the learning

progresses.

Finally, I
(p)
Tu

is an indicator function defined as:

I
(p)
Tu

=

{

1, if D(G(Xt
n))

(p) > Tu

0, otherwise
(6)

with Tu being a threshold for the pixel-wise confidence

maps generated by the discriminator in response to the data

produced by the generator. We empirically set Tu = 0.2
being a reasonable value. This term is intended to enhance

the learning process in a self-taught manner using unlabeled

data of the target domain.

To conclude, a weighted average of the three losses is

used to train the generator exploiting the proposed adver-

sarial learning framework, i.e.:

Lfull = LG,1 + ws,tLs,t
G,2 + w′LG,3 (7)

We set the weighting parameters empirically to balance

between the three components as ws = 0.01, wt = 0.001
to give less weight in case of unlabeled data and w′ = 0.1.

The discriminator is fed both with ground truth labels

and with the generator output computed on a mixed batch

containing both labeled and unlabeled data and is trained

aiming at minimizing LD. Concerning the generator, in-

stead, during the first 5000 steps LG,3 is disabled (i.e., w′

is set to 0) thus allowing the discriminator to enhance its

capabilities to produce higher quality confidence maps be-

fore using them. After this, the training process continues

up to 20000 steps with all the three components of the loss

enabled.

4. Datasets

In this section, we introduce the datasets used to evalu-

ate the performance of the proposed unsupervised domain

adaptation framework. Our target is to show how it is possi-

ble to train a semantic segmentation network in a supervised

way on synthetic datasets and then apply unsupervised do-

main adaptation to real data in autonomous driving scenar-

ios. Thus, we used two publicly available synthetic datasets,

namely GTA5 [27] and SYNTHIA [28] for the supervised

part of the training, while the unsupervised adaptation and

the result evaluation have been performed on the real world

Cityscapes [5] dataset. In general we followed the same

evaluation scenarios of the competing approaches for fair

comparison [12, 29, 41].

GTA5 [27] is a huge dataset composed by 24966 photo-

realistic synthetic images with pixel level semantic annota-

tion. The images have been recorded from the prospective

of a car in the streets of virtual cities (resembling the ones
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in California) in the open-world video game Grand Theft

Auto 5. Being taken from a high budget commercial pro-

duction they have an impressive visual quality and are very

realistic. In our experiments, we used 23966 images for

the supervised training and 1000 images for validation pur-

poses. There are 19 semantic classes which are compatible

with the ones of the Cityscapes dataset. The original res-

olution of the images is 1914 × 1052 px but we rescaled

and cropped them to the size of 375 × 750 px for memory

constraints before being fed to the architecture.

SYNTHIA [28] is a very large dataset of photo-realistic

images. It has been produced with an ad-hoc rendering en-

gine, allowing to obtain a large variability of the images.

On the other hand, the visual quality is not the same of

the commercial video game GTA5. We used the SYNTHIA-

RAND-CITYSCAPES version of the dataset, which contains

9400 images with annotations compatible with 16 of the 19
classes of Cityscapes. These images have been captured on

the streets of a virtual European-style town in different en-

vironments under various light and weather conditions. As

done in previous approaches, we randomly extracted 100
images for validation purposes from the original training

set, while the remaining part, composed by 9300 images, is

used for the supervised training of our networks. Again, the

images have been rescaled and cropped from the original

size of 760 × 1280 px to 375 × 750 px. For the evalua-

tion of the proposed unsupervised domain adaptation on the

Cityscapes dataset, only the 16 classes contained in both

datasets are taken into consideration.

Cityscapes [5] is the target dataset for our domain adap-

tation framework. It is composed by 2975 high resolution

color images captured on the streets of 50 different Euro-

pean cities. They have pixel level semantic annotation with

34 classes overall. Since the labels of the original test set are

not available, we exploited the original training set (without

the labels) for unsupervised training and used the 500 im-

ages in the original validation set as a test set, as done also

by other recent approaches.

More in detail, the semantic labels have been used just

for testing purposes, while the labels of training data have

not been used since we aim at proposing a fully unsuper-

vised adaptation strategy. As for the other datasets, the orig-

inal high resolution images have been resized to 375× 750
px for memory constraints. The testing was instead carried

out on the original resolution of 2048× 1024 px.

5. Experimental Results

The target of the proposed approach is to adapt a deep

network trained on synthetic data to real world scenes. To

evaluate the performance on this task we performed two

different sets of experiments. In the first experiment we

trained the network using the scenes from the GTA5 dataset

to compute the supervised loss LG,1 and the adversarial loss

Ls
G,2. Then we used the training scenes of the Cityscapes

dataset for the unsupervised domain adaptation: no labels

from Cityscapes have been used and when dealing with this

dataset we only computed the losses Lt
G,2 and LG,3. Fi-

nally we evaluated the performance on the validation set

of Cityscapes. In the second experiment we performed the

same procedure but we replaced the GTA5 dataset with the

SYNTHIA one.

The proposed architecture has been implemented using

TensorFlow and more material is available at http://

lttm.dei.unipd.it/paper_data/semanticDA.

The generator network G (that is a Deeplab v2 network)

has been trained as proposed in [2] using the Stochastic

Gradient Descent (SGD) optimizer with momentum set to

0.9 and weight decay to 10−4. The discriminator D has

been trained using the Adam optimizer. The learning rate

employed for both G and D started from 10−4 and was

decreased up to 10−6 by means of a polynomial decay

with power 0.9. We trained the two networks for 20000
iterations on a NVIDIA Titan X GPU. The longest training

inside this work, i.e., the one with all the losses enabled,

took about 10 hours to complete.

To measure the performance, we compared the pre-

dictions on the Cityscapes validation set with the ground

truth labels and computed the mean Intersection over Union

(mIoU) as done by most competing approaches [12, 4, 35].

Table 1 refers to the first experiment (i.e., using GTA5

for the supervised training). It shows the accuracy of the

proposed approach when exploiting different domain adap-

tation strategies and compares it with some state-of-the-art

approaches. By simply training the network in a supervised

way on the GTA5 dataset and then performing inference on

real world data from the Cityscapes dataset we obtained a

mIoU of 27.9%. The adversarial learning framework on

synthetic data (i.e., the contribution of Ls
G,2) allows to im-

prove the mIoU to 29.3%. By looking more in detail to the

various class accuracies it is possible to see that the accu-

racy has increased on some of the most common classes cor-

responding to large structures, while the behaviour on low

frequency classes corresponding to small objects is more

unstable (some improve but others have a lower accuracy).

For this reason in the third loss component related to the

self-teaching, the class weights have been taken into ac-

count. Thanks to this when using the full framework with

all the losses the mIoU increases to 30.4% and in partic-

ular it is possible to appreciate a large performance boost

on many uncommon classes corresponding to small objects

and structures.

By comparing with state-of-the-art approaches, it is pos-

sible to see how the method of Hung et al. [15], based on a

similar framework, achieves an accuracy of 29%, lower than

our approach mostly because it struggles with small struc-

tures and uncommon classes. The method of [12] has even
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Ours (LG,1 only) 45.3 20.6 50.1 9.3 12.7 19.5 4.3 0.7 81.9 21.1 63.3 52.0 1.7 77.9 26.0 39.8 0.1 4.7 0.0 27.9

Ours (LG,1, Ls
G,2 only) 61.0 18.5 51.6 15.4 12.3 20.5 1.4 0.0 82.6 24.7 61.0 52.1 2.2 78.5 25.9 41.5 0.4 8.0 0.1 29.3

Ours (Lfull) 54.9 23.8 50.9 16.2 11.2 20.0 3.2 0.0 79.7 31.6 64.9 52.5 7.9 79.5 27.2 41.8 0.5 10.7 1.3 30.4

Hoffman et al. [12] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

Hung et al. [15] 81.7 0.3 68.4 4.5 2.7 8.5 0.6 0.0 82.7 21.5 67.9 40.0 3.3 80.7 34.2 45.9 0.2 8.7 0.0 29.0

Table 1: Mean intersection over union (mIoU) on the different classes of the original Cityscapes validation set. The ap-

proaches have been trained in a supervised way on the GTA5 dataset and then the unsupervised domain adaptation has been

performed using the Cityscapes training set.
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Ours (LG,1 only) 10.3 20.5 35.5 1.5 0.0 28.9 0.0 1.2 83.1 74.8 53.5 7.5 65.8 18.1 4.7 1.0 25.4

Ours (LG,1, Ls
G,2 only) 9.3 19.3 33.5 0.9 0.0 32.5 0.0 0.5 82.3 76.9 54.7 5.5 64.9 17.0 5.7 3.9 25.4

Ours (Lfull) 78.4 0.1 73.2 0.0 0.0 16.9 0.0 0.2 84.3 78.8 46.0 0.3 74.9 30.8 0.0 0.1 30.2

Hoffman et al. [12] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.1

Hung et al. [15] 72.5 0.0 63.8 0.0 0.0 16.3 0.0 0.5 84.7 76.9 45.3 1.5 77.6 31.3 0.0 0.1 29.4

Table 2: Mean intersection over union (mIoU) on the different classes of the original Cityscapes validation set. The ap-

proaches have been trained in a supervised way on the SYNTHIA dataset and then the unsupervised domain adaptation has

been performed using the Cityscapes training set.

lower performance, however it is also based on a different

generator network with lower accuracy (i.e, the method of

[40]).

Figure 2 shows the output of the different versions of our

approach and of the method of [15] on some sample scenes.

The supervised training leads to reasonable results but some

small objects get lost or have a wrong shape (e.g., the rid-

ers in row 1). Furthermore, some regions of the street and

of structures like the walls are corrupted by noise (see the

street in the last two rows or the fence on the right in row 3).

The adversarial loss Ls
G,2 reduces these artifacts but there

are still issues on the small objects (e.g., the rider in the

fifth row) and the boundaries are not always very accurate

(see the fence in the third row). The complete model leads

to better performance, for example in the images of Fig-

ure 2 the people are better preserved and the structures have

better defined edges. Finally the approach of [15] seems to

lose some structures (e.g., the fence in the third row) and

has issues with the small objects (the riders in row 5 get

completely lost) as pointed out before.

By using the SYNTHIA dataset as source dataset, the do-

main adaptation task is even more challenging if compared

with the GTA5 case since the computer generated graphics

are less realistic. Table 2 shows that by training the network

G in a supervised way on the SYNTHIA dataset and then

performing inference on the real world Cityscapes dataset, a

mIoU of 25.4% can be obtained. This value is smaller than

the mIoU of 27.9% obtained by training G on the GTA5

dataset. This result confirms that the GTA5 dataset has a

smaller domain shift with respect to real world data, when

compared with the SYNTHIA dataset (GTA5 data, indeed,

have been produced by a more advanced rendering engine

with more realistic graphics). Under this training scenario,

the proposed adversarial loss Ls
G,2 does not bring to note-

worthy improvements in the domain adaptation task, indeed

the mIoU is equal to the baseline. On the other hand, by

adding the self-taught loss LG,3 , a noticeable improvement

to a mIoU of 30.2% can be obtained.

Our domain adaptation framework is able to outperform

the compared state-of-the-art approaches. The method of

Hung et al. [15], that exploits the same generator architec-

ture of our approach, obtains a mIoU equal to 29.4%, lower

than our method. The method of [12] appears to be again

the less performing approach. In this comparison, it is even

less accurate than our baseline, but it employs a different

segmentation network.

Figure 3 shows the output of the different versions of

our approach and of the method of [15] on some sample

scenes. The first thing that can be noticed by looking at the

qualitative results of the baseline supervised version is that
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road sidewalk building wall fence pole traffic light traffic sign vegetation terrain

sky person rider car truck bus train motorcycle bicycle unlabeled

image annotation baseline (LG,1) +Ls
G,2 Hung et al. [15] Lfull

Figure 2: Semantic segmentation of some sample scenes extracted from the Cityscapes validation dataset. The network has

been trained using GTA5 with annotations and Cityscapes for the unsupervised part (best viewed in colors).

image annotation baseline (LG,1) +Ls
G,2 Hung et al. [15] Lfull

Figure 3: Semantic segmentation of some sample scenes extracted from the Cityscapes validation dataset. The network has

been trained using SYNTHIA with annotations and Cityscapes for the unsupervised part (best viewed in colors).
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by training on the SYNTHIA dataset some classes as side-

walk and road are highly corrupted. It is evident that a sim-

ple synthetic supervised training starting from this dataset

would bring to a network which can not be used in an au-

tonomous vehicle scenario. This is probably caused by the

not completely realistic representation of streets and side-

walks in the SYNTHIA dataset, where their textures are

often very unrealistic. Additionally, while the positioning

of the camera in the Cityscapes dataset is always fixed and

mounted on-board inside the car, in SYNTHIA the camera

is placed in different positions. For example, the pictures

can be captured from inside the car, from cameras looking

from the top or from the side of the road.

Similarly to the baseline approach, the adversarial loss

Ls
G,2 is unable to adapt the network to the real domain, in-

deed the class road remains very badly detected also after its

usage. Differently, Figure 3 shows how unsupervised data

and the self-teaching component of the third loss allows to

avoid all the artifacts on the road surface by reinforcing the

segmentation network to capture the real nature of this class

in the Cityscapes dataset. Also Hung’s method [15] is able

to correctly reconstruct the class road, avoiding the noise

present in the baseline, but it suffers on small classes where

it is outperformed by the proposed method. This is clearly

visible on rows 4 and 5 of Figure 3, where our method is

able to locate more precisely small classes as person.

5.1. Ablation Study

In this section, we are going to analyze the contributions

of the various terms controlling the optimization in the pro-

posed framework. Table 3 collects the results of this anal-

ysis on the Cityscapes validation split when using GTA5 as

source dataset for the supervised part.

As it is possible to notice from Table 3, the generator

network trained in a supervised way with the standard cross

entropy loss (i.e., using only LG,1) is the less performing

strategy achieving a mIoU of 27.9%. Some improvements

can be obtained by adding the adversarial term Ls
G,2 in the

loss function, that is by exploiting also adversarial learning

on the source dataset. In this case, the segmentation net-

work is more accurate achieving a mIoU of 29.3%. The

domain adaptation using adversarial learning on the target

dataset only, i.e., Lt
G,2 in combination with LG,1 obtains

results very similar to the baseline approach. Instead, the

exploitation of the self-teaching module LG,3 (without ad-

versarial learning) allows to perform some adaptation to the

segmentation network obtaining a mIoU of 28.7% (the main

issue is the low performance on the road class since it is

not able to remove the noise of the baseline method on it).

The last row contains the results of the complete version of

our approach, where all the aforementioned components are

taken in consideration. We can appreciate that the full com-

bination is able to outperform the exploitation of each of the

single components and achieves a mIoU of 30.4%.

LG,1 Ls
G,2 Lt

G,2 LG,3 mIoU

X 27.9
X X 29.3
X X 27.9
X X 28.7
X X X X 30.4

Table 3: Mean intersection over union (mIoU) of some con-

figurations of our framework on the Cityscapes validation

set using GTA5 as source dataset.

6. Conclusions

In this paper, a novel scheme to perform unsupervised

domain adaptation from synthetic urban scenes to real

world ones has been proposed. Two different strategies

have been used to exploit unlabeled data: firstly an adver-

sarial learning framework based on a fully convolutional

discriminator and secondly a self-teaching strategy based

on the assumption that predictions labeled as highly con-

fident by the discriminator are reliable. Experimental re-

sults on the Cityscapes dataset prove the effectiveness of

the proposed approach. In particular, we obtained good re-

sults also on challenging uncommon classes thanks to the

class frequency dependent weighting of the self-teaching

loss. This could enhance autonomous navigation in sce-

narios with tiny objects which can help characterizing the

environment.

Further research will be devoted to test the proposed

framework on other datasets and to the exploitation of dif-

ferent backbone networks. Additionally, we will investigate

some improvements to the self-teaching strategy and to the

exploitation of generative models to produce more realistic

and refined synthetic training data to be fed to the frame-

work.
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