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Figure 1: “Arguing machines” framework that adds a secondary system to a primary “black box” AI system that makes

life-critical decisions and uses disagreement between the two as a signal to seek human supervision. We demonstrate that this

can be a powerful way to reduce overall system error.

Abstract

We consider the paradigm of a black box AI system that

makes life-critical decisions. We propose an “arguing ma-

chines” framework that pairs the primary AI system with a

secondary one that is independently trained to perform the

same task. We show that disagreement between the two sys-

tems, without any knowledge of underlying system design or

operation, is sufficient to improve the accuracy of the overall

system given human supervision over disagreements. We

demonstrate this system in two applications: (1) image clas-

sification and (2) large-scale real-world semi-autonomous

driving. For the first application, we apply this framework

to image classification achieving a reduction from 8.0% to

2.8% top-5 error on ImageNet. For the second application,

we apply this framework to Tesla Autopilot and demonstrate

the ability to predict 90.4% of system disengagements that

were labeled by human as challenging.

1. Introduction

Successful operation of intelligent automated systems in

real-world applications where errors are assigned extremely

high costs, such as when the systems are tasked with making

life-critical decisions, is one of the grand challenges facing

the AI community. The difficulty is not within the task it-

self, but rather in the small margin of allowable error given

the human life at stake and the large number of edge cases

that have to be accounted for in real-world operation. This

challenge has two categories of approaches: (1) improve the

accuracy of the system such that it reaches the acceptable

level of performance, or (2) integrate the system with a hu-

man supervisor that aids its operation such that the combined

system of human and machine reach the acceptable level of

performance. The former set of approaches has been the

focus of the machine learning community. The latter is the

focus of this paper.

We consider the real-world operating paradigm of a black

box AI system (termed “primary system”) that is tasked with
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making life-critical decisions. The proposed method inte-

grates the human being into the critical role of resolving

uncertainty and disagreement in decisions whose errors are

associated with high negative utility values. We demonstrate

this system in two applications: (1) an illustrative example of

image classification and (2) on large-scale real-world semi-

autonomous driving data. For the first application, we show

this framework applied to image classification achieving an

improvement from 8.0% to 2.8% top-5 error on ImageNet

over ResNet-50 network (treated as a black box). For the

second application, we apply the arguing machines frame-

work to monocular-vision-based automated steering systems.

The first is a proprietary Tesla Autopilot system equipped

in the first generation of Autopilot-capable vehicles. The

second is an end-to-end neural network trained on a large-

scale naturalistic dataset of 420 hours or 45 million frames

of autonomous driving in Tesla vehicles. We demonstrate

the ability of the overall arguing machines to predict 90.4%

of system disengagements that were deemed as “tricky” by

human annotators and thus likely to be associated with high-

probability of driver injury if not handled by the driver.

This paper demonstrates the surprising and impactful find-

ing that the disagreement between two systems, without any

knowledge of the design of either system, may have suffi-

cient information to significantly improve the performance

of the overall framework when combined with human super-

vision. This result has serious implications for the design of

effective and safe human-computer interaction experiences.

1.1. Arguing Machines Concept

The “black box” nature of AI systems is the property of

some machine learning approaches that make it difficult to

“see inside” the model inference process that makes a par-

ticular decision. This is both due to the inherent difficult

of engineering explainable AI systems [13] and the natu-

ral reluctance by companies that provide the AI system to

visualize the inner workings of the system and to reveal un-

certainty of predictions and system errors. The motivation

for this work is that there are applications in which such

errors can lead to loss of human life. Errors are inherently

part of supervised machine learning systems that seek to

generalize from patterns of the past to pattern of the present.

It is very difficult to engineer such errors out completely. We

propose to instead manage them by integrating the human

being as a supervisor. This is important for both creating a

safe interaction with an AI system, but also a more effec-

tive human-computer interaction experience that develops

an appropriate amount of trust and understanding.

Fig. 1 shows the arguing machines framework. Consider

that there is a primary AI system trained to perform a spe-

cific task. A task is defined as making a decision based on a

well-defined input. For image classification (see §3), the task

is to take an image as input and make a prediction of likeli-

hood that the image is one of a number of categories. For

autonomous steering (see §4), the task is to take a sequence

of video frames of the forward roadway and make a steering

decision. The output of this system is a decision, discrete

in the former case and continuous in the latter case. The

arguing machines framework introduces a secondary system

trained to perform the same task without any interaction

with the primary system. The disagreement between the two

systems is measured by the arbitrator and passed to a human

supervisor if the disagreement exceeds a constant predefined

threshold. This threshold controls the tradeoff between the

relative amount of human supervision and overall system

error as illustrated in Fig. 1.

1.2. RealWorld Application: Autonomous Driving

We use image classification in §3 as an illustrative case

study to demonstrate the concept of arguing machines. How-

ever, in this work, the central case study of applying the

arguing machines framework in the real world is semi-

autonomous driving (detailed in §4). We chose this appli-

cation because it is a domain where AI systems are already

making hundreds of thousands of life-critical decisions every

day in Tesla vehicles equipped with Autopilot [9] and many

other cars equipped with various degrees of automation [10].

These perception-control systems are black box AI systems

that provide very limited communication of system limits,

uncertainty, and errors to the driver. Therefore, we believe

applying the arguing machines framework in this context

may help integrate the human driver in a way that may help

save their life.

For the semi-autonomous driving case study, the role

of the primary machine is served by the first generation of

Tesla Autopilot software with the perception and steering

predictions performed by the integrated Mobileye system

[27]. The role of the secondary machine in this paper is

served by an end-to-end convolutional neural network sim-

ilar to that described and evaluated in [1] except that our

model considers the temporal dynamics of the driving scene

by taking as input some aspects of the visual change in the

forward-facing video for up to 1 second back in time (see

§4.2). The output of both systems is a steering angle. The

differences in those outputs is what constitutes the argument

based on which disengagement suggestions and edge case

proposals are made. The network model is trained on a bal-

anced dataset constructed through sampling from 420 hours

of real-world on-road automated driving by a fleet of 16 Tesla

vehicles [10] (see §4.1).

The central idea proposed in this work is that robustness

of the artificial intelligence system behind the perception and

planning necessary for automated driving can be achieved

by supplementing the training dataset with edge cases auto-

matically discovered through monitoring the disagreement

between multiple machine learning models.
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We implement and deploy the system described in

this work to show its capabilities and performance in

real-world conditions. Its successful operation is exhib-

ited in an extensive, on-road video demonstration that is

made publicly available at https://hcai.mit.edu/

arguing-machines. As Fig. 6 shows, we instrumented

a Tesla Model S vehicle with an NVIDIA Jetson TX2 run-

ning the neural network based perception-control system

and disagreement function in real-time. The input to the

system is a forward-facing monocular camera and the output

are steering commands. The large display shows steering

commands both from the primary system (Tesla) and sec-

ondary system (neural network), and notifies the driver when

a disagreement is detected.

The case studies presented in this paper have as-

sociated data, source code, and demonstration videos

that are made available on https://hcai.mit.edu/

arguing-machines.

2. Related Work

Life-critical and safety-critical systems are those whose

failure may result in loss of human life [20]. Naturally, many

domains of real-world human-machine interaction involve

risk of injury and loss of life through a long sequence of

cause and effect that is far removed from the initial deci-

sions made by the machine. In this work, we are focusing

on applications where a single erroneous decision by an AI

system has a high-likelihood of causing direct harm to a hu-

man being in a way that does not separate the initial decision

from the final negative result via a chaos of unintended con-

sequences. This latter paradigm is less amenable to analysis

[15].

The real-world application data analyzed in this work is

from the domain of autonomous vehicle perception-control

systems. Other application domains where AI systems make

life-critical decision include medicine, nuclear engineering,

aviation, and autonomous weapon systems. Medical diag-

nosis is the process in medicine that is clearly amenable to

assistance by AI systems, assuming the specific diagnosis

task can be formalized and digitally grounded in human mea-

surement data. In many cases, this process is life-critical in

that a misdiagnosis (incorrect diagnosis) can lead to bodily

harm and loss of life [18]. Such a diagnosis task can be

directly formed into an exam classification problem, allow-

ing for supervised deep learning methods to be effectively

applied. In exam classification, one or multiple images (an

exam sample) as input is matched with a single diagnostic

variable as output (e.g., disease present or not). [12] applies

deep learning to create an algorithm for automated detection

of diabetic retinopathy and diabetic macular edema in retinal

fundus photographs. [7] demonstrates classification of skin

lesions using a single CNN, trained end-to-end from images

directly to predict disease labels.

2.1. Ensemble of Neural Networks

The idea of multiple networks collaborating or competing

against each other to optimize an objective have been imple-

mented in various contexts. For example, multiple networks

have been combined together in order to improve accuracy

[22] as have traditionally been explored in machine learning

as ensembles of classifiers. For deep neural networks, [32]

propose a technique that provides a way of approximately

combining exponentially many different network architec-

tures. Recent work [14] combine six models of different

depth to form an ensemble. [34] independently trained seven

versions of the same network with same initialization, which

only differ in sampling methodologies and the randomized

input image order. In these approaches, decision-level fusion

is performed across many classifiers in order to increase

accuracy and robustness of the overall system.

Besides, ensemble can also be done on the dataset-level.

Early statistical sampling methods such as [6] can be used

to improve the performance and get the confidence interval

of a model. [8, 30] use the method to test whether the per-

formance of different networks is statistically significantly

different, and obtain the confidence interval of error rate.

Moreover for computer vision specifically, various ensem-

ble methods can be done on input-level, such as averaging

prediction of five different crops and their horizontal reflec-

tions [21], multi-scale multi-crop prediction [34, 14, 31],

are commonly used to increase accuracy and robustness of

the whole system during testing. However, [34] also note

that such terminology may not be necessary in real-world

applications, as the benefit of which becomes marginal after

a reasonable number.

Alternatively, generative adversarial networks

(GANs) [11] have two different networks working against

each other for representation learning and subsequent

generation of samples from those learned representations,

including generation of steering commands [23]. Neural

networks have also been used in different environments

at the same time [24] to learn from them in parallel, or,

as in our work, to look at what the disagreement to other

systems reveals about the underlying state of the world the

networks operate in. Although not directly referred in our

work, the above research share the similar idea of using the

disagreement between different systems, and indicates that

there is much information contained in such disagreement.

2.2. EndtoEnd Approaches to Driving

In contrast to modular engineering approaches to self-

driving systems, where deep learning only plays a role for

the initial scene interpretation step [17], it is also possible to

approach driving as a more holistic task that can possibly be

solved in a data-driven way by a single learner: an end-to-end

neural network. First attempts were made almost 30 years

ago [28], long before the recent GPU-enabled performance
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breakthroughs in deep learning [21].

A similar, but more modern approach using deeper, con-

volutional nets has been deployed in an experimental vehicle

by NVIDIA [1], and further improvements to that were made

using various forms of data augmentation [29]. A more ad-

vanced approach [36] formulates autonomous driving as a

vehicle egomotion prediction problem, and uses an end-to-

end sequence model built upon a scene perception model.

They also show that by training scene perception alone as a

side task further improves the whole system. Recently, [19]

studies the visual explanations and network’s behavior in

end-to-end driving, by using a visual attention model to train

a convolutional network from images to steering angle.

3. Arguing Machines for Image Classification

The ImageNet Dataset [5] and Challenge [30] has become

the standard benchmark for large-scale object recognition,

allowing significant algorithmic advances in large-scale im-

age recognition and retrieval. Most of the state-of-the-art

approaches [21, 31, 14] are variants of deep convolutional

neural network architectures. However, although signifi-

cant strides toward solving the image classification problem

have been taken, the systems are still far from perfection.

We chose image classification as the illustrative case study

because it is one of the best studied problems in artificial

intelligence, and yet even in this well-studied problem space,

we can demonstrate improvement by integrating human su-

pervision via the arguing machines framework.

If we consider the general process of decision making,

aggregating ideas from multiple sources strengthens the gen-

eralizability of the decision. A single source is likely to be

biased due to factors of data selection or underlying model

specifics. This concept is widely used in machine learning al-

gorithms to improve performance. Despite the fact that deep

neural networks models themselves are ensembles of linear

functions with non-linear activations, unsupervised ensem-

ble methods such as bootstrap [6], bagging [3], dropout [32]

and supervised ones such as stacking [35, 4] can be utilized

to improve the generalization accuracy of the overall system.

In this paper we consider the idea that in collaborative

decision making, disagreement may contain as much if not

more critical information than agreement, especially when

the individual decision makers are very good at the task in

question. We explore this kind of disagreement in a ma-

chine learning scenario, and seek to leverage the information

behind such disagreement in order to improve the overall

performance of the system..

In this section, we illustrate the idea of arguing machines

with a toy experiment on ImageNet Dataset. The arguing

machines framework is proposed as follows. Suppose, there

exists a state-of-the-art black-box AI system (primary sys-

tem) whose accuracy is great but not perfect. In order to

safely use or test the system, we propose to have a secondary

system that can argue with the primary system. When dis-

agreement arises between two systems, we regard it as a

difficult case and mark it as needing human supervision. The

purpose of arguing machines is to improve the system per-

formance with minimal human effort, especially when the

primary system is a black-box and gives no other information

except the final output.

The experiment in this section is a common image classi-

fication task. We take two popular image recognition mod-

els, VGG [31] and ResNet [14]. Specifically, we treat a

single ResNet-50 model as the black-box and a VGG-16

model as an end-to-end deep learning model. The models

are pre-trained and we obtain the prediction results from

single center-cropped images in the ImageNet validation set.

The arguing machines arbitrator detects the disagreement

when the top predictions of two systems differ. In this exper-

iment, ResNet and VGG disagree on 11645 images, which

is 23.3% of the whole validation set. For the results of ar-

guing machines, we assume with human taking look at the

disagreement cases, the classification is always correct. We

also propose a baseline method that with the same amount

of images send to human verification (always correct), but

randomly selected. We evaluate both the top-1 error and the

top-5 error. The results are shown in Table 1.

Table 1: Experimental results on ImageNet-val set.

Method
Top-1

Error (%)

Top-5

Error (%)

ResNet-50 (primary system) 25.2 8.0

VGG-16 (secondary system) 29.0 10.1

Ensemble: ResNet-50, VGG-16 24.4 7.8

Random Arbitrator 19.3 6.2

Arguing Machines 10.7 2.8

The results show that with the arguing machines frame-

work, the performance of a state-of-the-art image recognition

system can be significantly improved, even when we treat it

as a black-box system.

Table 2 shows the analysis of arguing machines in this

context. With less than a quarter of images verified by a

human supervisor, the arguing machines framework is able

to detect more than half of the failure cases in both top-1 and

top-5 tasks, even given the fact that both systems already

have very strong performance. Such results also indicate that

although two deep convolutional neural networks are trained

on the same dataset, with similar architectures featuring a

combination of convolutional layers, fully connected layers,

dropout layers, etc., the behavior of the two trained systems

is quite different, as they do not fail the same way during

testing. This is a surprising and fascinating result that re-

veals the predictive power of disagreement between artificial
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Figure 2: ImageNet examples where the primary system (ResNet) and secondary system (VGG) disagree on the image

classification task. The ground truth and correct classifications are shown in blue. Incorrect classifications are shown in red.

Table 2: Performance analysis of arguing machines.

Task Precision (%) Recall (%)

Top-1 Classification 62.4 57.6

Top-5 Classification 22.2 64.6

intelligence systems.

The precision of top-5 classification is much lower than

top-1, because the two systems can be both correct even if

they disagree on the top prediction. However the recall for

both top-1 and top-5 tasks are consistently high, indicating

that even with the simpler classification task, where systems

fail less often, the arguing machines framework can still

detect many of the failure cases with disagreements and in

so doing significantly reduce the error.

Examples of disagreements between the primary and sec-

ondary systems on the image classification task are shown in

Fig. 2. More examples, including disagreement over object

detection and classification in video, are available online at

https://hcai.mit.edu/arguing-machines.

4. Arguing Machines for Semi-Autonomous

Driving

Software is taking on greater operational control in mod-

ern vehicles and in so doing is opening the door to machine

learning. These approaches are fundamentally hungry for

data, based on which, they aim to take on the higher level per-

ception and planning tasks. As an example, over 15 million

vehicles worldwide are equipped with Mobileye computer

vision technology [33], including the first generation Au-

topilot system that serves as the “primary machine” in this

work.

Given the requirement of extremely low error rates and

need to generalize over countless edge cases, large-scale

annotated data is essential to making these approaches work

in real-world conditions. In fact, for driving, training data

representative of all driving situations may be more impor-

tant than incremental improvements in perception, control,

and planning algorithms. Tesla, as an example, is acknowl-

edging this need by asking its owners to share data with the

company for the explicit purpose of training the underly-

ing machine learning models. Our work does precisely this,

applying end-to-end neural network approaches to training

on large-scale, semi-autonomous, real-world driving data.

The resulting model serves as an observer and critic of the

primary system with the goals of (1) discovering edge cases

in the offline context and (2) bringing the human back into

the loop when needed in the online context.

We perform two evaluations in our application of arguing

machines to semi-autonomous driving. First, we evaluate

the ability of the end-to-end network to predict steering

angles commensurate with real-world steering angles that

were used to keep the car in its lane. For this, we use dis-

tinct periods of automated lane-keeping during Autopilot

engagement as the training and evaluation datasets. Second,

we evaluate the ability of an argument arbitrator (termed

“disagreement function”) to estimate, based on a short time

window, the likelihood that a transfer of control is initiated,

whether by the human driver (termed “human-initiated”) or

the Autopilot system itself (termed “machine-initiated”). We

have 6,500 total disengagements in our dataset. All disen-

gagements (whether human-initiated or machine-initiated)

are considered to be representative of cases where the vi-

sual characteristics of the scene (e.g., poor lane markings,

complex lane mergers, light variations) were better handled

by a human operator. Therefore, we chose to evaluate the

disagreement function by its ability to predict these disen-

gagements, which it is able to do with 90.4% accuracy (see

Fig. 4).
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4.1. Naturalistic Driving Dataset

The dataset used for the training and evaluation of the end-

to-end steering network model comprising the “secondary

machine” is taken from a large-scale naturalistic driving

study of semi-autonomous vehicle technology [10]. Specif-

ically, we used 420 hours of driving data where a Tesla

Autopilot system was controlling both the longitudinal and

lateral movement of the vehicle.
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Figure 3: Visualization on one illustrative example of each

of the 5 neural network preprocessing models evaluated in

this paper.

This subset of the full naturalistic driving dataset served

as ground truth for automated lane keeping. In other words,

given the operational characteristics of Autopilot, we know

that the vehicle only leaves the lane in two situations: (1)

during automated lane changes and (2) as part of a “disen-

gagement” where the driver elects or is forced to take back

control of the vehicle. We have the full enumeration of both

scenarios. The latter is of particular interest to the task of

arguing machines, as one indication of a valuable disagree-

ment is one that is associated with a human driver feeling

sufficiently uncomfortable to elect to take back control of the

vehicle. There are 6,500 such instances of disengagement

that are used for evaluating the ability of the disagreement

function to discover edge cases and challenging driving sce-

narios as discussed in §4.3.

4.2. EndtoEnd Learning of the Steering Task

Our model, which is inspired by [1] uses 5 convolutional

layers, the first 3 with a stride of 2× 2 and 5× 5 kernels and

the remaining 2 keeping the same stride, while switching to

smaller 3 × 3 kernels. On top of that, we add 4 fully con-

nected layers going down to output sizes of 100, 50, 10, and

1, respectively. Throughout the net ReLU activations [25]

are used on the layers. In addition, we use Dropout [21] as

regularization technique on the fully connected layers. The

net is trained using an RMSprop [16] optimizer minimizing

the mean squared error between predicted and actual steering

angle.

Since a large part of driving - and therefore also our

dataset - consists of going straight, we had to specifically

select input images to remove that imbalance, and resulting

bias towards lower steering angle values the net would learn

otherwise. To accomplish this dataset balancing task, we

calculate a threshold using the minimum number of available

frames in steering angle ranges of one degree. This thresh-

old is then used within the range of interest of [−10◦, 10◦]
steering angle to allow at max threshold frames get selected

to achieve a balance. This results in about 100,000 training

and 50,000 validation frames.

Figure 4: The tradeoff between false accept rate (FAR) and

false reject rate (FRR) achieved by varying the constant

threshold used to make the binary disagreement classifica-

tion. The red circle designates a threshold of 10 that is

visualization on an illustrative example in Fig. 5.

For the input to the neural network we considered 5 dif-

ferent preprocessing methods (see Fig. 3) - referenced as M1

- M5 in the following sections - each producing a 256× 144
image with 3 channels. M5 uses the method proposed in [1]

as a comparison, consisting of the RGB channels of a single

frame. M4 uses the same single frame, but precomputes

edges on each color channel.

To improve the accuracy beyond that, for input methods

M1 to M3 we use a temporal component, meaning multiple
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Figure 5: Illustrative example showing snapshots of the

forward roadway, plots of the steering angles suggested by

the primary machine (black line) and secondary machine

(blue line), and a plot of the disagreement function along

with a threshold value of 10 that corresponds to the red circle

in Fig. 4.

frames, to improve situation awareness. M3, in addition to

the current frame, also looks 10 and 20 frames back and

provides the grayscale version of them as the input image

channels. M2 goes beyond that and, in addition to using

multiple frames as input, also subtracts them from each other,

which helps with an implicit input normalization, as well as

automatically highlighting the important moving parts like

lane markings. The exact mathematical formulation of the

input is:

It = {(Ft − Ft−10), (Ft − Ft−5), (Ft − Ft−1)} (1)

where It and Ft are the input to the neural network and the

video frame at time t. The unit of time is 1 video frame or

33.3 milliseconds given the 30 fps video used in this work.

In (1), each channel is based on the current frame, but also

incorporates a “flashback” to another frame further back.

M1 does not use “flashbacks”, but instead looks at the

changes that happened over a series of time segments - each

10 frames long, as follows:

It = {(Fi−20 − Fi−30), (Ft−10 − Ft−20), (Ft − Ft−10)}
(2)

To evaluate the network using the different preprocessing

methods, we compute the mean absolute steering angle error

over the validation set. The results are shown in Fig. ??.

Precomputing edges (M4) already leads to improved per-

formance over just supplying the RGB image (M5), and

providing temporal context (M1-M3) does even better, with

“flashbacks” (M2) performing better than just providing mul-

tiple frames (M3), and comparing time segments (M1) per-

forming best. For the evaluation of the disagreement function

in §4.3, we use M1.

1. Monocular Camera

2. Real-Time Perception-Control 

System (Neural Network)

3. Disagreement Notification

4. Steering Commands from

Tesla (Autopilot or Human)

and Neural Network

5. Temporal Difference Input

to Neural Network

1

2

3

4

5

Figure 6: Implementation and evaluation of the system pre-

sented in this paper. The primary perception-control system

is Tesla Autopilot. The secondary perception-control system

is an end-to-end neural network. We equipped a Tesla Model

S vehicle with a monocular camera, an NVIDIA Jetson TX2,

and an LCD display that shows the steering commands from

both systems, the temporal difference input to the neural

network, and (in red text) a notice to the driver when a dis-

agreement is detected.

4.3. Disagreement and Edge Case Discovery

The goal for the disagreement function is to compare the

steering angle suggested by the “primary machine” (Autopi-

lot) and the “secondary machine” (neural network) and based

on this comparison to make a binary classification of whether

the current situation is a challenging driving situation or not.

The disagreement function can take many forms including

modeling the underlying entropy of the disagreement, but the

function computed and evaluated in this work purposefully

took on a simple form through the following process:

1. Normalize the steering angle for both the primary and

secondary machines to be in [−1, 1] normalized by the

range [−10, 10] and all angles exceeding the range are

set to the range limits.

2. Compute the difference between the normalized steer-

ing suggestions and sum them over a window of 1 sec-

ond (or 30 samples).

152



3. Make the binary classification decision based on a dis-

agreement threshold δ.

The metrics used for evaluating the performance of the

disagreement system are false accept rate (FAR) and false

reject rate (FRR). Where the detection event of interest is

the Autopilot disengagement. In other words, an “accept”

is a prediction that this moment in time is likely to be as-

sociated with a disengagement and can thus be considered

an edge case for the machine learning system. A “reject”

is a prediction that this moment in time is not likely to be

associated with a disengagement. In order to compute FAR

and FRR measure for a given value of δ, we use classifica-

tion windows evenly sampled from disengagement periods

and non-disengagement periods. A disengagement period is

defined as the 5 seconds leading up to a disengagement and

1 second following it.

The illustrative example in Fig. 5 shows the temporal

dynamics of the two steering suggestions, the resulting dis-

agreement, and the role of δ in marking that moment leading

up to the disengagement as an edge case. The ROC curve in

Fig. 4 shows, by varying δ, that the optimal mean error rate is

0.096, and is achieved when δ = 10. This means that given

any 1 second period of Autopilot driving in our test dataset,

the difference function can predict whether a disengagement

will happen in the next 5 seconds with 90.4% accuracy. This

is a promising result that motivates further evaluation of

the predictive power of the disagreement function both on a

larger dataset of Autopilot driving and in real-world on-road

testing.

4.4. OnRoad Deployment

As part of exploring and validating the concept of arguing

machines we also built a version that runs real time inside

a car. This system consists of a NVIDIA Jetson TX2 to run

the model, a 23 inch high resolution screen for the human

interface attached over the center stack of a Tesla Model S

with Autopilot version 1, a custom interface to connect to

the vehicle CAN bus to get its current steering angle and

a dashboard-mounted Logitech C920 camera capturing the

forward roadway scene at 720p resolution at 30fps.

The system uses OpenCV’s camera capture module [2]

to get a live, real-time video stream of the road scene from

the C920 camera. The captured image is stored in a short-

term, dynamic, temporally-sorted buffer structure and uses

that buffer structure to assemble the right combination of

frames. In this case, we used our best network model (M1),

where frames that are 10, 20 and 30 frames back in time

are combined with the current frame to compute the input

for the neural network. The in-car neural network uses

the same network layout as described above, running an

optimized PyTorch [26] implementation on the Jetson TX2’s

Tegra Parker SoC with a Pascal GPU compute chip. The

steering angle computed by the neural network and the one

captured from Tesla’s autopilot system are then fed into the

actual disagreement measurement routine and additionally

displayed on the center stack mounted screen. In addition,

in case of a severe disagreement, the system also displays a

“disagreement detected” warning on the same screen.

Even though this system is a proof of concept, it achieves

a latency from camera input to screen GUI update of less

than 200 milliseconds, while performing neural network

inference in real time. During an on-road demonstration

during evening rush hour it appears to work reliably and help

to warn the driver of oncoming difficult situations in multiple

instances. The video of the demonstration is available online

at https://hcai.mit.edu/arguing-machines.

5. Conclusion

This work proposes a framework for integrating a human

supervisor into the decision making process of a black box

AI system that is tasked with making life critical decision.

We demonstrate this framework in two applications: (1) an

illustrative example of image classification and (2) on large-

scale real-world semi-autonomous driving data. For the first

application, we apply this framework to image classifica-

tion achieving a reduction from 8.0% to 2.8% top-5 error

on ImageNet. For the second application, we apply this

framework to Tesla Autopilot and demonstrate the ability to

predict 90.4% of system disengagements that were labeled

by human annotators as challenging and needing human

supervision. Finally, we implement, deploy, and demon-

strate our system in a Tesla Model S vehicle operating in

real-world conditions.

Acknowledgments

This work was in part supported by the Toyota Class

Action Settlement Safety Research and Education Program.

The views and conclusions being expressed are those of the

authors, and have not been sponsored, approved, or endorsed

by Toyota or plaintiffs class counsel.

References

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner,

B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,

J. Zhang, et al. End to end learning for self-driving cars.

arXiv preprint arXiv:1604.07316, 2016. 2, 4, 6

[2] G. Bradski. The opencv library. Dr. Dobb’s Journal: Soft-

ware Tools for the Professional Programmer, 25(11):120–123,

2000. 8

[3] L. Breiman. Bagging predictors. Machine learning,

24(2):123–140, 1996. 4

[4] L. Breiman. Stacked regressions. Machine learning, 24(1):49–

64, 1996. 4

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

153



Computer Vision and Pattern Recognition, 2009. CVPR 2009.

IEEE Conference on, pages 248–255. IEEE, 2009. 4

[6] B. Efron. Bootstrap methods: another look at the jackknife.

In Breakthroughs in statistics, pages 569–593. Springer, 1992.

3, 4

[7] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M.

Blau, and S. Thrun. Dermatologist-level classification of skin

cancer with deep neural networks. Nature, 542(7639):115,

2017. 3

[8] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams,

J. Winn, and A. Zisserman. The pascal visual object classes

challenge: A retrospective. International journal of computer

vision, 111(1):98–136, 2015. 3

[9] L. Fridman. Tesla vehicle deliveries and autopilot mileage

statistics, 2018. 2

[10] L. Fridman, D. E. Brown, M. Glazer, W. Angell, S. Dodd,

B. Jenik, J. Terwilliger, J. Kindelsberger, L. Ding, S. Seaman,

H. Abraham, A. Mehler, A. Sipperley, A. Pettinato, L. An-

gell, B. Mehler, and B. Reimer. MIT autonomous vehicle

technology study: Large-scale deep learning based analysis

of driver behavior and interaction with automation. CoRR,

abs/1711.06976, 2017. 2, 6

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio. Generative

adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,

N. D. Lawrence, and K. Q. Weinberger, editors, Advances in

Neural Information Processing Systems 27, pages 2672–2680.

Curran Associates, Inc., 2014. 3

[12] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu,

A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams,

J. Cuadros, et al. Development and validation of a deep learn-

ing algorithm for detection of diabetic retinopathy in retinal

fundus photographs. Jama, 316(22):2402–2410, 2016. 3

[13] D. Gunning. Explainable artificial intelligence (xai). Defense

Advanced Research Projects Agency (DARPA), nd Web, 2017.

2

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 770–778,

2016. 3, 4

[15] R. C. Hilborn. Sea gulls, butterflies, and grasshoppers: A

brief history of the butterfly effect in nonlinear dynamics.

American Journal of Physics, 72(4):425–427, 2004. 3

[16] G. Hinton, N. Srivastava, and K. Swersky. Neural networks

for machine learning lecture 6a overview of mini–batch gra-

dient descent. 2012. 6

[17] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song,

J. Pazhayampallil, M. Andriluka, P. Rajpurkar, T. Migimatsu,

R. Cheng-Yue, et al. An empirical evaluation of deep learning

on highway driving. arXiv preprint arXiv:1504.01716, 2015.

3

[18] G. Kendrey, B. Szende, K. Lapis, T. Marton, B. Hargitai,

F. Roe, and P. Lee. Misdiagnosis of lung cancer in a 2000

consecutive autopsy study in budapest. General & diagnostic

pathology, 141(3-4):169–178, 1996. 3

[19] J. Kim and J. Canny. Interpretable learning for self-driving

cars by visualizing causal attention. In The IEEE International

Conference on Computer Vision (ICCV), Oct 2017. 4

[20] J. C. Knight. Safety critical systems: challenges and direc-

tions. In Software Engineering, 2002. ICSE 2002. Proceed-

ings of the 24rd International Conference on, pages 547–550.

IEEE, 2002. 3

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012. 3, 4, 6

[22] A. Krogh, J. Vedelsby, et al. Neural network ensembles,

cross validation, and active learning. Advances in neural

information processing systems, 7:231–238, 1995. 3

[23] A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer. Imi-

tating driver behavior with generative adversarial networks.

In IEEE Intelligent Vehicles Symposium, 2017. 3

[24] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap,

T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In International

Conference on Machine Learning, pages 1928–1937, 2016. 3

[25] V. Nair and G. E. Hinton. Rectified linear units improve

restricted boltzmann machines. In Proceedings of the 27th

international conference on machine learning (ICML-10),

pages 807–814, 2010. 6

[26] A. Paszke, S. Gross, and S. Chintala. Pytorch, 2017. 8

[27] U. Pirzada. Tesla autopilot - an in-depth look at the technology

behind the engineering marvel, Dec 2015. [Online; posted

3-Dec-2015]. 2

[28] D. A. Pomerleau. Alvinn: An autonomous land vehicle in

a neural network. In D. S. Touretzky, editor, Advances in

Neural Information Processing Systems 1, pages 305–313.

Morgan-Kaufmann, 1989. 3

[29] S. Ross, G. J. Gordon, and D. Bagnell. A reduction of imi-

tation learning and structured prediction to no-regret online

learning. In AISTATS, volume 1, page 6, 2011. 4

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Ima-

genet large scale visual recognition challenge. International

Journal of Computer Vision, 115(3):211–252, 2015. 3, 4

[31] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 3, 4

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neural

networks from overfitting. The Journal of Machine Learning

Research, 15(1):1929–1958, 2014. 3, 4

[33] G. Stein, E. Dagan, O. Mano, and A. Shashua. Collision

warning system, Oct. 27 2015. US Patent 9,168,868. 5

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper

with convolutions. In Computer Vision and Pattern Recogni-

tion (CVPR), 2015. 3

[35] D. H. Wolpert. Stacked generalization. Neural networks,

5(2):241–259, 1992. 4

[36] H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end learning

of driving models from large-scale video datasets. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), July 2017. 4

154


