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Abstract

Solving tasks for autonomous road vehicles using com-

puter vision is a dynamic and active research field. How-

ever, one aspect of autonomous transportation has received

little contributions: the rail domain. In this paper, we intro-

duce the first public dataset for semantic scene understand-

ing for trains and trams: RailSem19. This dataset consists

of 8500 annotated short sequences from the ego-perspective

of trains, including over 1000 examples with railway cross-

ings and 1200 tram scenes. Since it is the first image dataset

targeting the rail domain, a novel label policy has been de-

signed from scratch. It focuses on rail-specific labels not

covered by any other datasets. In addition to manual an-

notations in the form of geometric shapes, we also supply

dense pixel-wise semantic labeling. The dense labeling is

a semantic-aware combination of (a) the geometric shapes

and (b) weakly supervised annotations generated by exist-

ing semantic segmentation networks from the road domain.

Finally, multiple experiments give a first impression on how

the new dataset can be used to improve semantic scene

understanding in the rail environment. We present proto-

types for the image-based classification of trains, switches,

switch states, platforms, buffer stops, rail traffic signs and

rail traffic lights. Applying transfer learning, we present

an early prototype for pixel-wise semantic segmentation on

rail scenes. The resulting predictions show that this new

data also significantly improves scene understanding in sit-

uations where cars and trains interact.

1. Introduction

Autonomous driving for road vehicles is currently a

rapidly developing topic promising improvements for con-

venience and road safety. Camera-based sensors are cru-

cial components needed to solve many open tasks for au-

tonomous driving. Image/video datasets are at the center of

the current push in data-driven machine learning allowing

much progress in this field. Although the number of public

datasets for road scenes has increased over the last years,

rail applications have been left out. There is a noticeable

lack of research for autonomous trains and trams. This also

affects the safety of autonomous cars at rail intersections

and city environments where cars and trams share the same

roads. Such scenes are underrepresented in existing road

datasets (e.g. [5], [16], [2]).

In this work, we present the first public dataset for se-

mantic scene understanding of image sequences covering

the rail domain. Full pixel-wise annotations are labor-

expensive and contain many areas already covered by road

annotation datasets. Instead, we define a new geometry-

based label policy capturing relevant semantic content. This

closes crucial gaps for both road and rail vehicles with little

redundancies. Our main contributions are:

• An analysis of existing datasets to identify existing rail-

relevant data and the data gap (Section 2).

• A novel label policy for the rail domain (Section 3).

• A new dataset called RailSem19 (rail semantics dataset

2019) which is the result of an extensive data collection

campaign, frame selection, and annotation work (Sec-

tion 4; freely available at www.wilddash.cc).

• A semantic-aware automated process to join the man-

ually created geometric shape annotations and pre-

generated pixel-wise label maps (weakly supervised) to

gain annotations suitable for pixel-wise semantic seg-

mentation (Section 5). Direct use in road scenarios is

supported by our Cityscapes-compatible labels.

The experimental result Section 6 showcases tasks that

can be tackled using the new dataset. It gives strong empiri-

cal evidence that our dataset closes the previously identified

data gap. Finally, Section 7 summarizes our contributions.

2. State-of-the-Art

To the best of our knowledge, RailSem19 is the first pub-

lic dataset for solving tasks based on images from the ego-

vehicle view for the rail domain. This section summarizes
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Figure 1. Examples from RailSem19: front views from train and tram rides in varying seasons, lightings, and environments

other, more generic datasets which contain some rail cate-

gories. It is divided by three computer vision (CV) tasks

connected to semantic understanding: image classification,

object detection and dense semantic segmentation.

2.1. Classification

Bernardi et al. [3] provide a general summary of public

datasets for image classification and automatic image de-

scription. Some of the datasets also contain rail-relevant

labels:

• CIFAR 100 dataset [11] has one sub-class for trains

within the vehicles 1 superclass. There are 600 images

present in the dataset for this class. The very small size

of 32x32 pixels per image makes this dataset unfit for

robust real-world data.

• In the PASCAL VOC2012 challenge [6], the class trains

is represented by a total of 544 example images.

• The Microsoft COCO dataset [14] contains 3745 images

annotated with the class trains. The vast majority of

images from the classes traffic lights (4330) and stop

signs (1803) are taken from regular road scenes without

any rail context.

• The popular 1000 ImageNet [21] ILSVRC2017 object

categories from the Synset dataset contain labels for

freight car (1311 images), passenger car (986 images),

streetcar (1309 images), electric locomotive (1217 im-

ages), steam locomotive (1187 images), and bullet train

(1205 images) with a total of 7215 images annotated

using any of these labels. The extended Synset dataset

contains a few more leaf nodes (e.g. diesel locomotive,

tender).

• The Open Images Dataset V4 [13] is a collection of

over 9.2 million images with bounding box annotations.

Overall, 9284 images contain a total of 10506 annota-

tions for the label for train. These images are mainly

taken from passenger’s views (e.g. from the platform

towards the approaching train). They also include pic-

tures of toy and model trains. There are only two images

with both a traffic light and a train annotation. No other

road/rail-relevant label is present with an overlap of the

train label.

• There are some annotated datasets (e.g. YFCC-100M

[23], SBU1M [17]) which automatically link title and

descriptions to images from flickr, but these unmoder-

ated results contain huge label noise.

2.2. Detection

Multiple classification datasets provide bounding box

annotations for the mentioned instance classes: both MS

COCO and Open Images Dataset support all mentioned

classes. ImageNet contains a reduced set of label classes

and offers bounding boxes for the rail-relevant classes.

2.3. Semantic Segmentation

Some of the dense (i.e. pixel-wise) annotated datasets

focusing on road scenes contain also rail elements (as seen

from the car’s perspective):

• Among the 35 label classes of the Cityscapes

dataset [5], there are two specifically relevant for rail

scenarios: rail track and train. In contrast to Railsem19,

the rail track label encloses both the rails and the area

between them. Cityscapes contains 117 images with

131 annotated rail tracks and 167 images with 194 anno-

tated trains. The average area relative to the total image

area is 6.55% for rail track and 4.07% for train.

• The Mapillary Vistas dataset [16] has a far more ex-

tended label policy. The public dataset has 66 labels

while the commercial dataset contains 152 classes. For

the rail domain, the public label classes1 only include

the same two classes as Cityscapes: construction–flat–

rail-track and object–vehicle–on-rails. In the combined

training and validation sets there are 710 images with

1No public information or sample data indicates additional rail-relevant

labels in the commercial edition.
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a construction–flat–rail-track annotation and 272 an-

notations of object–vehicle–on-rails. The average area

of construction–flat–rail-track annotations is 3.79% rel-

ative to the total image area, and 2.1% for object–

vehicle–on-rails.

• The COCO-Stuff dataset [4] offers dense pixel-wise an-

notations for 182 labels from the COCO dataset. This

includes these rail-relevant labels: platform, railroad,

and train. Since platforms can be any surface other

objects stand on, only those platforms with a railroad

or train in the image are counted. In total, the dataset

contains 4761 trains with an average relative area of

19.1%, 2839 railroads with 11.6% and 1015 such plat-

forms with 11.7%.

• The KITTI dataset [2] supplies dense pixel-wise anno-

tations for Cityscapes labels. It contains 47 rail track

and 18 train annotations, with 2.26% and 2.39% aver-

age size, respectively.

Images from the rail domain in present datasets are a

mix of indoor views, road views, and images taken by

spectators. Sequences and examples taken from the ego-

perspective of a train are nearly nonexistent.

One CV task for the rail domain has been covered by

research: rail track maintenance. Specialized equipment

captures images of the rail track from the bird’s-eye view

which are used to identify cracks and imperfections in the

rails (see [8]).

Some datasets for the rail domain have been introduced

to help solve non-CV machine learning tasks. They focus

on track network topology (e.g.[12]), train configurations

(e.g. [15]), and crash prediction modelling (e.g.[1]).

3. Label Policy for Rail Applications

A new label policy is presented to fix the identified gaps

of existing semantic datasets for the rail domain. The fol-

lowing description also helps to understand the rail-specific

terminology in the rest of the paper.

The new annotations focus on four topics:

• rails: The basis for rail transportation.

• switches: Dynamic elements allowing splitting and

merging of tracks.

• traffic signs and traffic signals: Static and dynamic in-

frastructure to direct rail traffic.

• crossings, trains, and platforms: Other traffic partici-

pants and places where road/passenger interactions oc-

cur.

Other aspects like background and road traffic participants

are already covered by various road semantic segmentation

datasets mentioned in Section 2.2. One of the most unique

components of the new dataset is rail annotations. Two

types of rails are distinguished:

• rail: Rails designed to be in contact with trams and train

wheels.

• guardrail: Metal rails which have no contact to train

wheels; used to increase the structural integrity of rail

tracks

Both types of rails are typically elongated and their center-

line can be approximated using a curve. One Piecewise

Cubic Hermite Interpolating Polynomial (PCHIP)[7] spline

annotation is used for each rail. Polygon annotations of typ-

ical rail occluders are defined to capture the visual impact

of objects occluding the rails: person, car, truck, pole, and

fence. All other occluders of rails are annotated using the

generic rail-occluder label.

Switches are places where a rail track can split or two

tracks join to continue as one track. For the detection of rail-

way track switches, there are five relevant bounding box an-

notation labels: switch-left, switch-right, switch-unknown,

switch-indicator, and switch-static. The two movable rails

that form part of a switch are called blades. The switches’

state can be detected by identifying which of the two blades

is not in contact with the adjacent static rail: if the left blade

has no contact, a train traveling over the switch would be

diverted to the left side (and vice-versa for the right side).

Figure 2 illustrates this relation. The switches’ state and

thus the projected path of a rail vehicle can be detected by

identifying the gaps next to switch blades. For switches

where this visual state identification is not possible, the la-

bel switch-unknown is used. In many cases, the state of

a switch is also indicated by a nearby signal or rotating

display. These elements are labeled as switch-indicator

whereas typical motor/power boxes next to switches are la-

beled as switch-static. Static elements have no way of com-

municating the switches’ current state (left/right) but serve

as a valuable clue that a switch is nearby on the track.

The traffic signals and signs are also annotated using

bounding box annotation. The front and backside are differ-

entiated. Although the signal’s backside can sometimes re-

veal its state (e.g. for raised arms), typically the backside of

traffic signs is not descriptive and therefore not annotated.

Figure 3 showcases example sections from RailSem19 for

each annotation class.

The choice of using bounding box annotations for some

labels is based on a cost/benefit analysis to minimize total

annotation effort. Both traffic signs and traffic lights can

be reasonably annotated with axis-aligned bounding boxes

without too much negative space. They must be oriented so

that train drivers can clearly see them. Railway crossings

are annotated using bounding boxes: the surrounding rail

annotation and the clear edges between road and track bed

make more detailed polygons redundant. In addition, all rail

vehicles visible and all station platforms get full polygon

annotations.
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Figure 2. Switch explanation using image crops from RailSem19: the three panels on the left show an example for switch-left, the three

on the right a switch-right. The first panel shows the original image, the second panel the annotated rails in cyan and the area of the gap

between switch blade and outer rail in red. The last panel illustrates where the rail vehicle is driving when moving forward: switch-left

directs the train to the left; switch-right to the right.

Figure 3. Examples from RailSem19 for each class in our rail annotation label policy; f.l.t.r: rails with guardrails in the middle; switch-

indicator; switch-static; traffic-signal-front; traffic-signal-back; traffic-sign-front; crossing; train; platform; buffer-stop.

4. Creating a new Dataset

A large collection of suitable video sequences showing

rail sequences from the ego-vehicle’s point of view forms

the foundation of the RailSem19 dataset. A lot of data is

available thanks to a large online community of rail enthu-

siasts who upload driver’s cabin videos. Over 1000 suit-

able sequences have been identified for RailSem19 through

contacts via railway community portals and search engines.

Their authors have either released videos under a permis-

sive license, or they have given explicit consent to allow the

inclusion of short samples to the dataset. In the end, agree-

ments have been made for 530 sequences covering over 350

hours of rail and tram traffic from 38 different countries,

in all four seasons, and under varying weather conditions.

The huge variety of camera models, mounting positions,

and different lighting conditions also increase dataset vari-

ability. Figure 1 illustrates the variations of scenes present

in RailSem19.

Selecting a diverse set of center frames from the large

set of sequences poses an additional challenge. The dataset

should contain little redundancy but have many examples

of the objects mentioned in the label policy. For this

task, a new fast image similarity measure has been created

specifically tuned for ego-motion sequences: egodist. The

proposed metric works by calculating normalized cross-

correlation between adjacent frames and central crops of

adjacent frames. The central crops approximate image ar-

eas that are visible if the ego-vehicle moves forward by an

assumed frame motion. The position and sizes of the crops

have been tuned manually to match the egomotion created

by the sequence’s framerate. By resizing these patches to a

small image size of 64× 36 pixels, the following computa-

tions are sped up while small variations in image noise can

be ignored. Three image similarities are computed: egodist

of adjacency frames for the lower third of the image near-

est to the train, the egodist of adjacent frames for the full

height, and the maximum egodist with a random subsample

of 84 frames from the whole sequence. An interactive in-

terface is used to choose appropriate thresholds for each of

the similarities to remove data automatically. This approach

works well to focus on frames where crossings, platforms,

and rail switches are largest in the image. Predictably, it has

some serious problems with fast curves. During the first

phase, approx. 60000 frames have been automatically se-

lected from roughly half a million initial frames grabbed

from all image sequences using constant framerates. All re-

sults are inspected visually and again about 80% of frames

have been removed. In total, this process allowed to create

a diverse subset of about 10100 frames with little redun-

dancies in a manageable time frame. The resulting frames

are annotated and multiple rounds of quality assurance are

performed to achieve a consistently high level of quality.

A small subset of frames is held back for the creation of

upcoming challenges resulting in the final number of 8500

frames with over 110000 annotations for RailSem19 (see

Table 1 for details).

5. Generating dense labels

For many background labels and some object labels,

current state-of-the-art semantic segmentation solutions for

road scenes can infer labels with a mean intersection-over-

union (IoU) of well over 90%. A hand-selected subset of

inference results is used as a backdrop for the rasterizing

of geometric rail labels to generate dense annotations for

pixel-wise semantic segmentation training and testing.

Rasterizing polygon annotations is straightforward.

Bounding box annotations are processed in a two-step ap-

proach: if there is at least 50% overlap between bounding

box area and the inferred reference result, then the inter-

section between the two annotations is used in the resulting
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Table 1. Number of annotations per class for Railsem19; cursive labels are rail occluders.

label buffer-

stop

crossing guard-

rail

train-

car

platform rail switch-

ind.

switch-

left

switch-

right

switch-

unknown

switch-

static

count 218 2885 4873 1951 2482 58322 2007 1965 2083 2491 2519

label track-

sign-

front

track-

signal-

back

track-

signal-

front

person-

group

car fence person pole rail-

occluder

truck

count 7404 3448 5768 62 172 291 234 10875 3920 11

image. Otherwise, the full bounding box area is filled with

the respective label. However, rasterizing the spline rail an-

notations poses three challenges:

• Rail thickness is unknown (splines have no width).

• Information for pairing rails into rail tracks is missing.

• Rail trackbed extent surrounding the rails is missing.

Figure 4 illustrates steps used to solve these open points:

Tapered rail regions: Equidistant points P1...PN (N =

100) along each PCHIP spline annotation are generated and

their normals are computed. Local thickness w is com-

puted for each point by assuming perspective linear scal-

ing between winit at the bottom image border (= closest-to-

camera) and zero at the semi-automatically approximated

horizon line. Along given normal vectors two sample points

are generated on both sides of the polygon at a distance of

w/2 to create tapered polygonal region representation for

each rail (left in Figure 4).

Rail pairing: The pairing of rails is crucial for the identi-

fication of drivable regions. This is safety-relevant to pre-

vent potential collisions. Each resampled rail polygon is

matched against the other rail polygons to obtain rail pairs

automatically. For each point of polygon Pa, the distance

to the nearest point of polygon Pb is computed. A pair is

kept for further comparison if no distance exceeds a spa-

tially varying distance threshold (governed by the same lin-

ear scaling as before).

The next comparison step examines the shape similarity

between two hypothetical matches. Each resampled poly-

gon is split into K (K = 2) segments and between seg-

ment pairs, a cosine-distance-based correlation measure is

computed. Only candidates with consistent shape similarity

along their length are kept. The computed shape similar-

ity measures are inserted into an affinity matrix and corre-

spondences are resolved by a greedy association scheme. A

one-to-one pairing constraint is enforced. The automated

pairing scheme yields correct associations for about 80% of

all cases. Some parallel rails with equidistant spacing create

ambiguities, thus requiring manual linking or unlinking of

erroneous associations.

Spatial extension around paired rails: Based on the es-

tablished rail pairings, the extended trackbed is generated

outwards in a manner similar to the generation of tapered

rail regions (see Figure 4). No dense labels are added for

switches as they are well solved as part of object detection

tasks. The layout and area of most parts that form a switch

are represented with rail-raised, rail-track, and trackbed la-

bels. Platforms are represented as part of the sidewalk label

and buffer stops use the construction label.

Five new rail-specific labels are introduced: a) rail-track,

rail-raised, and trackbed for rail-exclusive areas and b)

tram-track, rail-embedded for mixed areas where road and

rail vehicles can drive (see Table 2). The classes road or

sidewalk are used for outward areas next to rail-embedded

areas (analogues to trackbed). Masks are automatically

generated to differentiate between the two modes a) and b).

These masks are created using the crossing geometric anno-

tations and the meta information for each source sequence

classifying it as either a tram or a train sequence.

The above rasterizations produce a foreground which is

filled by background labels from a pre-trained model of

WideResNet38 + DeepLab3 using in-place activated batch

normalization (InPlace-ABN) [20]. A public version of the

model [19] pretrained on Mapillary Vistas [16] from the au-

thors of InPlace-ABN is used for RailSem19 background

labels. Dense labeling for RailSem19 uses 19 labels in to-

tal to provide an easy transition for users applying trans-

fer learning from existing semantic segmentation networks

trained on the 19 Cityscapes training labels (see Table 2).

The amount of retraining is thus kept to a minimum, mak-

ing the dense labels directly applicable to road scenes. All

automatically generated labels are inspected manually and

adaptations are made to correct detected faults.

Table 2 shows the resulting distribution of dense-label

classes for all 8500 RailSem19 frames. The raw geometric

data concentrates on thin objects (e.g. rails, guard rails, and

switch states) and instances while the dense data focuses

on usability for interpreting the whole scene and identify-

ing car-drivable sections for mixed rail/road scenarios. Both

versions are available for free which allows researchers to

quickly start using RailSem19 for multiple tasks out of the

box.

6. Experiments

This section presents multiple experiments run to illus-

trate the variety of tasks that can be tackled in the rail do-

main thanks to RailSem19 data. We do not claim to solve
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Figure 4. Illustration showing the steps of computing spatially tapered elongated polygon structures around rails (left) and around paired

rails (middle). The pairing and the computed spatial extension allows creating the rail track and trackbed labels.

Table 2. Mapping of Cityscapes (CS) training labels to RailSem19 dense labels including color legend. Pixel-wise statistics: Mean/Median

= percentage over all Railsem19 pixels; In Frames = percentage of frames containing pixels with the resp. label. mIoU RS19 = results

of semantic segmentation experiment from Section 6.2. *: Cityscapes class rail-track (not part of default training labels) is used for both

the rail and the space between the rails while RailSem19 uses two distinct labels; bi/motorcy.: bicycle+motorcycle.

Color RS19

Label RS19 road sidewalk con-

struction

tram-

track

fence pole traffic-

light

traffic-

sign

vegetation terrain

Label CS road sidewalk building

+ wall

- fence pole traffic-

light

traffic-

sign

vegetation terrain

Mean 5.2 % 3.1 % 12.2 % 3.1 % 2.5 % 2.8 % 0.3 % 0.2 % 23.3 % 6.6 %

Median 2.3 % 1.0 % 5.8 % 2.3 % 0.8 % 1.8 % 0.1 % 0.1 % 19.8 % 3.6 %

In Frames 48.1 % 57.2 % 72.1 % 51.7 % 48.9 % 60.0 % 37.1 % 32.3 % 83.3 % 61.2 %

mIoU RS19 50.5% 54.0% 72.4% 40.1% 49.8% 60.2% 36.8% 32.5% 84.1% 59.5%

Color RS19

Label RS19 sky human rail-

track

car truck trackbed on-rails rail-

raised

rail-

embedded

void

Label CS sky person

+ rider

* car truck

+ bus

- on-rails * - bi/motorcy.

+ void

Mean 22.3 % 0.5 % 5.9 % 0.8 % 0.7 % 10.3 % 3.3 % 3.4 % 1.5 % 5.4 %

Median 22.9 % 0.1 % 5.4 % 0.1 % 0.1 % 9.0 % 0.2 % 2.7 % 1.1 % 1.3 %

In Frames 94.5 % 6.0 % 86.2 % 13.8 % 4.6 % 87.6 % 15.4 % 87.2 % 14.6 % 57.2 %

mIoU RS19 94.7% 46.7% 81.9% 50.6% 20.7% 67.8% 62.8% 71.5% 45.0% —

the problems fully and robustly. These experiments de-

liver first impressions for the respective tasks showcasing

the value and utility of our new dataset.

6.1. Image Classification

The first range of experiments focuses on image classi-

fication tasks: classify images into rail-relevant classes. In-

teresting classes are based on the available annotations of

the new dataset: all bounding box annotations, as well as

polygon annotations which are not occluders, are used to

create class-wise crops from all RailSem19 images. Neg-

ative crops are generated by randomly picking areas that

do not contain any class label from all RailSem19 frames.

For each label, a single-class classifier is trained. The

positive class consists of the label’s samples whereas re-

maining samples are used as the negative class. The fas-

tai framework [9] is used to train a densenet161 [10]

(pretrained on ImageNet) for this classification task on

both RailSem19 and all identified rail-relevant classes from

Open Images dataset (see Section 2.1). In general, the net-

works converge successfully, achieving accuracies of over

90%. Classifiers trained on RailSem19 perform well on

both test datasets while classifiers trained on the Open Im-

ages dataset see a significant reduction in accuracy when

tested on RailSem19. The differences between viewpoints

in RailSem19 vs. Open Images (ego-vehicle view vs.

platform view) have significant impact on network perfor-

mance in real-world rail scenarios. After the single-class

classifiers, a multi-class classifier is trained on RailSem19

to cover all classes from RailSem19. Again, the same

densenet161 architecture is used until training and valida-

tion losses flatten (five epochs). The last two rows in Table

6.1 show relevant results. Figure 5 plots the confusion ma-

trices from both the validation and test datasets. In general,

the multi-class classifier approaches the performance of

the single-class classifier for most classes. The exceptions

are buffer-stop and the switch-left/switch-right labels. For

buffer-stop, the number of examples in the dataset is quite

small (218 instances in total). The classes of switch-left vs.

switch-right are hard to distinguish. Only the changes of the

switch blades determine the difference, otherwise they look

the same when compared to the other classes. Another clas-
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Table 3. Results of classification experiments. Accuracy for each dataset and class; RS19 = RailSem19; Open Images = OImg; d1 / d2

means training was done on d1 and evaluation on d2’s separate test dataset; The first four rows are results for the single-class experiments.

The last two rows show the results from the multi-class experiment. Here evaluation on both validation (RS19 - val) and test (RS19 - test)

dataset are shown.

Dataset train traffic-

light

traffic-

sign

switch-

static

buffer-

stop

switch-

ind.

switch-

left

switch-

right

platform crossings

RS19 / RS19 93.6% 94.0% 92.8% 91.8% 86.9% 84.3% 90.3% 89.6% 96.7% 92.4%

RS19 / OImg 83.8% 86.5% 74.5% — — — — — — —

OImg / RS19 76.9% 67.1% 57.8% — — — — — — —

OImg / OImg 98.4% 98.5% 98.6% — — — — — — —

RS19 - val 90.5% 90.8% 93.0% 86.0% 41.9% 63.3% 44.3% 61.3% 91.5% 89.6%

RS19 - test 89.0% 91.9% 90.8% 88.6% 54.5% 66.1% 53.7% 62.9% 91.1% 90.2%

sification experiment is run, differentiating only switch-left

vs. switch-right instances. Again a densenet161 pretrained

on ImageNet is fine-tuned to distinguish between the two

classes. After initial strong confusion of both classes in

the multi-classification experiment, the image crops have

been expanded by 30% on the x and 125% on the y-axis

to capture more context. Labels which do not fully overlap

with the image or with dimensions < 28 pixels are ignored

leading to a reduced dataset size with 1460/1539 images for

switch-left/switch-right. Multiple data augmentation trans-

forms are used to create a larger training set (warping and

small rotations). Accuracy after 20 epochs of training is

still only 67%, proving this to be a challenging classifica-

tion task.

6.2. Semantic Segmentation

A semantic segmentation network is now trained and

evaluated using the dense approximations which are sup-

plied as an extension to the geometric labels of the

RailSem19 dataset (see Section 5).

Cityscapes is used as a basis for this experiment to pre-

vent any bias introduced by using weak supervision for the

dense labels pretrained on Mapillary Vistas dataset [16].

The baseline for this experiment is an FRRNB model [18]

pretrained on Cityscapes which is fine-tuned on RailSem19.

The model is part of the pytorch-semseg framework [22] al-

lowing training and retraining of various semantic segmen-

tation networks. A set of 4000 images is randomly selected

from RailSem19 for this experiment. The 4000 images are

split into subsets of 3000, 500, and 500 images for training,

validation, and testing. This replicates the size and split of

the Cityscapes dataset. The FRRNB model is parameter-

ized for an input size of 512x512 pixel and a batch size of

two (allows training on a single RTX2080Ti GPU). The FR-

RNB model is first trained on the Cityscapes dataset from

scratch for 60 epochs (approx. 24h) until the validation loss

flattens. The evaluation on the separate default test set re-

sult in a mean IoU of 62.7% for the 19 Cityscapes training

classes.

In the second phase, the RailSeg19 training and vali-

dation set is used for another 60 epochs. As discussed in

Section 5, many of the default 19 Cityscapes labels have

been reused for RailSem19, some are unions of existing

Cityscapes labels. This allowed for an easy transfer learning

approach: switching datasets and fine-tuning the whole net-

work on the new data (no layers were frozen). The resulting

network has a mean IoU of 57.6% when evaluated on the

separate test set. Table 2 lists the individual results per cat-

egory. Figures 6 and 7 illustrate example output predictions

taken from the test and validation subset. In general, these

early results show that a network is able to learn the new rail

labels. Although not perfect, clear differentiation between

rail-track and tram-track areas are visible.

7. Conclusion

We present a new dataset for semantic scene understand-

ing for autonomous trains and trams: RailSem19. It con-

sists of a diverse set of 8500 rail scenes from 38 countries in

varying weather, lighting, and seasons. A semi-automated

workflow is presented which creates dense semantic labels

from geometric annotations. In multiple experiments, typi-

cal computer vision scene understanding tasks are tackled:

classification and dense image segmentation. The early re-

sults from these experiments show a clear benefit of using

the new dataset for rail-relevant topics. Raw annotation data

and the generated dense maps of RailSem19 are available

for free at www.wilddash.cc.
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Figure 5. Confusion matrices for the all-classes classifier experiment on RailSem19 data; left: validation dataset, right: test dataset.

Figure 6. Example results from FRRNB experiment 6.2 for frames taken from RailSem19’s validation subset (input images, dense ground

truth, and prediction from FRRNB model). For the color legend, see Table 2.

Figure 7. Further example results from FRRNB experiment 6.2 for frames taken from RailSem19’s test subset.
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