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Abstract

We propose incentive-based protocols that use competi-

tions and public ledgers to solve optimization problems. We

introduce Proof-of-Accumulated-Work (PoAW): miners com-

pete in costumer-submitted jobs and accumulate recorded

work on which they are later remunerated. These new compe-

titions replace the standard hash puzzle-based competitions.

A competition is managed by a dynamically-created small

masternode network (dTMN) of invested miners, which im-

proves scalability as we do not need the entire network to

manage the competition. Using a careful design of incentives,

our system preserves security, avoids attacks, and offers new

markets to the miners. Finally, we illustrate how the new pro-

tocols can be used for implementing machine learning com-

petitions.

1. Introduction

A persistent decentralized ledger is based on an underly-

ing data structure that keeps the transactions in an ordered

collection of data blocks. The data structure is immutable in

that past transactions cannot be modified, which can be used

to record digital truth [1]. Specifically, in a blockchain data

are kept in a linked list of blocks that can be extended only by

adding a new single block as the head of the chain [2]. Decen-

tralization in this context means that there is no single entity

that keeps the information and to which all trust is given. Al-

ternatively, there is a network of peers, also called miners,

such that each one holds a copy of the data. This is accom-

panied with a protocol that lists rules on how a new block is

added.

Data are accessible to all miners and other users of the net-

work. They can get multiple copies of the ledger and use the

protocol to decide which one is correct. The accepted major-

ity version is called the consensus. Blocks are added in a con-

trolled rate to guarantee that there is enough time for the net-

work to reach a consensus when the data structure changes.

Miners both keep a copy of the blockchain and can compete

for the right to add new blocks. For the network to consider

a new block, miners must prove their credibility. For exam-

ple, in public blockchains that are used to implement curren-

cies, miners have to prove that a certain resource was spent

in the process [2, 3]. The proof system makes it expensive to

achieve exclusive ownership on block addition.

Proof-of-Work (PoW) are proofs that guarantee that a cer-

tain amount of computing work was performed [4]. This can

be implemented using hash-based computational puzzles, see

the Appendix and [5] for details. PoW protocols are designed

such that the expected number of blocks that miners sign is

proportional to their relative weight compared to the total

computing power of the network. As a result, only a miner

whose total computing power is larger than 50% of the com-

bined power of the network can obtain (partial) control over it.

An alternative to PoW is called virtual mining [6, 7, 8, 9]. It

is based on the idea that money itself can be treated as a form

of PoW. In other words, the act of acquiring coins proves that

peers had invested from their own resources to become a part

of the system. Therefore, we can use money, either owned or

deposited, as the underlying proof system of the blockchain.

Such systems are often called Proof-of-Stake (PoS) or Proof-

of-Deposit (PoD).

In this work we propose methods that utilize the resources

of ledgers for solving optimization problems. By formulat-

ing such user-submitted tasks as competitions we both utilize

the miners’ resources and achieve a community-based solu-

tion. On the other hand, we show that in the case that the

blockchain mints coins, miners benefit both from what the

users offer and from the blockchain itself, all by preserving

security using an incentive-based mechanism. Specifically,

our system is designed to address the following attacks:

Definition 1.1 An O(1) attack of a protocol P is enabled if

P either allows or enables a state with a positive incentive for

an adversary to: (1) post problems for the optimal answer is

known, and (2) immediately propose solutions to these prob-

lems.

Definition 1.2 A suboptimal solution adversary (SSA) is a

miner that knowingly posts suboptimal or intermediary solu-

tions for an optimization task M . The protocol P is SSA-

enabling if there is no negative result for posting such solu-

tions.
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2. Related work

Hash puzzles require vast computation resources. Previous

works have proposed ways to either replace or reduce the de-

pendence on hash functions. For example, Oliver et al., 2017

[10] proposed solving NP complete problems (NPC) as an ad-

ditional proof system. Note, however, that these problems do

not fully replicate the properties of hash puzzles (e.g., they

are only hard in a worst-case analysis) and while NPC solu-

tions can be validated to be true one cannot guarantee that

a negative proposition (e.g., there are no cliques of size k in

the graph G) unless NP=coNP. In addition the O(1) and SSA

issues described above are not fully addressed and the sys-

tem remains sensitive in that an adversary can take over many

blocks without performing computations. Another challenge

of the approach above is that difficulty of instances of NPC

problems is hard to determine in advance and dynamically

while solving a problem (even though rough bounds can be

computed). Several previous papers have presented ways to

preserve hash properties by substantially limiting the set of

practical problems that can be solved. Ball and colleagues

[11] presented a proof system based on solving the orthog-

onal vectors problem, whereas [12] proposed primecoin: a

system based on looking for Cunningham numbers.

3. The proposed protocol

3.1. Outline

We start by introducing the ideas of Proof-of-

Accumulated-Work (PoAW): a system that accumulates

past useful work in a way that is secured thanks to protocol-

enforced constraints and rewards. Second, we introduce

dynamic Task Masternode Networks (dTMNs): dynami-

cally created subnetworks of invested miners that manage

user-submitted tasks.

To achieve our goals we also utilize: (1) virtual mining,

(2) replacing competitions for solving hashes with competi-

tions over computational tasks, and (3) storage blockchains.

Virtual mining acts as the glue between the different concepts.

Public competitions are the places in which users submit tasks

and miners can propose solutions. The storage chain keeps

the information about the computational tasks. Miners of the

distributed storage can constitute the dTMN, which also vali-

dates suggested solutions.

We also avoid the need to precisely evaluate the difficulty

of the users’ computational tasks. Alternatively, we let users

offer the tasks to the system and their payment. Thus, we

let the market regulate the value of each optimization prob-

lem that is submitted. The resulting protocol achieves three

important goals. First, the network keeps the cryptographic

power of the blockchain components intact. Second, most

of the computational power of the system can be utilized to

solve optimization problems. Finally, miners earn from both

serving the system and solving computational tasks. More-

over, we prove that joining our network as a computational

node is more profitable than either renting out hardware in a

contract-based system or standard PoW mining.

3.2. The virtual mining system

3.2.1 Virtual stakes

We use virtual mining to obtain two goals: approve new

blocks, and as a device for implementing PoAW. Miners that

solve computational tasks get virtual stakes (vstakes) after

a competition is sealed. Thus, there is a special transaction

that creates a certain amount of locked virtual money that the

miner can use as stakes only. These are not coins that the

user can send or spend: these are rather specialized tokens

that the miner accumulates from the system in return for solv-

ing tasks. Vstakes provide a way to later remunerate miners

for their work, which already earned from solving fees. We

propose using the PoS system of Decred [8], but other PoS

solutions can be used.

3.2.2 Decred augmentation

Decred [8], which shares conceptual similarities to both

DASH [7] and Peercoin [6], is based on a lottery system in

which tickets are purchased and then deposited for a wait pe-

riod before they can be spent. Selection of tickets from a pool

is done using a pseudorandom algorithm that is based on in-

formation in the head of the new block. This allows (pseudo)

random selection of tickets from the ticket pool. Each ticket

gives the PoS miner a single vote, but ticket prices are deter-

mined by the protocol automatically such that the total num-

ber of tickets is maintained at a desired limit. This process

is the Decred PoS equivalent of a standard hash difficulty de-

termination algorithm. For a new block to be accepted into

the blockchain five votes must approve it. The PoS miners

receive both their tickets worth and additional payment. Note

that there is an approximately 5% chance that a ticket will end

up deleted without producing additional reward.

A tickets lifetime goes through the following stages. It is

created when a miner pays the ticket price + ticket fee. A

block can create up to 20 new tickets. Tickets are mined into

a block such that those with higher fees get preference. Once

accepted into the blockchain, a ticket must wait 256 blocks

before it enters into the ticket pool. The ticket pool size is

kept at 40960. If a ticket is not selected after 142 days it

expires and the miner is paid back the ticket price. After a

ticket is consumed, it enters into another 256 blocks period of

wait after which its associated funds are released.

Voting is done by transforming tickets into vote transac-

tions. A vote represents the ticket validation of the last seen

block. The new block must contain a majority of the votes

to be added into the blockchain (which implies that votes can

be missed). Only when the previous block is validated by the

votes in the new block the blocks funds in the UTXO set (set

of remnants funds and rewards to the miner) are allowed. The

process presents the validation result of the last block in a sin-

gle bit that summarizes the result. PoS miners must remain

constantly active as they may otherwise miss their voting turn.

Decred is similar in spirit to DASH in that they both estab-

lish a masternode network that takes over a desired task. In

both, becoming a member of this network costs (either in tick-
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ets in Decred, or by depositing 1000 coins in DASH). Note

that DASH is not a PoS system in that there is a single de-

posit and amounts are not staked. Nevertheless, the idea of

substantial initial deposit can be easily extended into the De-

cred protocol. Also, note that the main goal of Decred is to

strengthen decentralization and open governance while pro-

moting community input. These needs stem from past weak-

nesses observed in Botcoin and past criticism of the PoS idea.

In our augmentation of Decred vstakes are given to the

winners of a computational competition at the last transaction,

called SealCT . Let feesolve be the amount that the client

wishes to pay for a task CT (a formal definition of a task

and its associated transactions is given below). We define a

protocol parameter called Pvstake. The SealCT transaction

contains a special minting command that gives the following

amount of vstakes to each winner:

(Pvstake ∗ feesolve)

NW

where NW is the number of miners that won the competition.

3.2.3 The PoS higher profit invariant

We define an additionl constraint that is essential for prevent-

ing O(1) attacks. Let x be the amount of virtual stakes that are

required to purchase a ticket. Our PoS higher profit invariant

(simply called PoS invariant) determines that x cannot yield

extra profit from the system.

Formally, let y > x be the price of a ticket and let r > 1 is

the expected profit factor of the PoS mining. For example, in

a system that is designed to produce an expected 10% profit

on PoS spent money r = 1.1. In our system only y − x is

entitled to receive r where x is entitled to exactly 1. That

is, the PoS miner will receive from the system an expected

reward of x+r(y−x). Another way to interpret this constraint

is that PoW miners are not asked by the protocol to share their

profits with the PoS rights that result from virtual stakes.

In our protocol each new block also mints new coins. Note

that these new coins are not entitled to virtual stakes. Thus,

PoW miners are paid once for their work. However, they do

not get all minted coins as in Decred, some of these sums go

to the PoS miners as a reward.

3.3. Computational competitions

3.3.1 Preliminaries and notations

Tasks. A computational task CT =< Type, FD, D,C, S >,

is a five-tuple where Type is a bit specifying if this is a

maximization or a minimization problem, FD is the scor-

ing function we wish to optimize that depends on a dataset

D, which can be null if FD is self-contained. C is a set

of constraints, and S is a set of additional search space pa-

rameters on top of the ones implied by the definition of FD.

For each computational task CT we define its slim version

CT s =< Type, FD, H(D), C, S > which is exactly as CT

except for the data element: we keep the hash result of the

data instead of D itself. Thus, CT s requires much less space

as compared to CT .

Transactions. We define a set of competition-related trans-

actions. PublishCT is a bid offer by the client to the stor-

age. StoredCT is a transaction that marks the acceptance of

CT and its associated dataset into the storage. It also marks

the acceptance of CT into the system as a new competition.

SolveCT is a transaction that contains an offered solution.

V alidateCT is a transaction in which the dynamic Task Mas-

ternode Network (dTMN), which is a group of storage peers

that govern data storage and validation, is asked to validate

and choose the winner, which is finally marked using a trans-

action called SealCT .

As common in blockchains, the transactions above may

offer some fees to promote their execution or addition to the

ledger. Generally, our transactions have two mechanisms by

which service fees are paid. First, we have regular fees that

are sums that party A sends directly to party B. These are

generally denoted as Feetr. Second, we have promised fees

(PFs), which are sums paid later than the block if a certain

criteria was met.

Formally, a promised fee PF =< o, p, b > is a contract

stating that if a payment o is carried then a certain fraction

p ∈ [0, 1] is sent after at least b blocks. Formally, all competi-

tion related transactions are tuples and each transaction has a

unique identifier which can be denoted as ID(Tr) of a trans-

action Tr (of any type). We define several transactions below.

For ease of notation we omit the transaction ID and its Feetr.

• The first transaction is called PublishCT and it gives all

the needed information from the client. PublishCT =<

CT s, F eesub, F eesolve, PFsolve, PubIDc >, where

CT s is the slim version of CT , Feesub > 0 is a storage

submission fee. Feesolve is the total offered solving fee,

PFsolve is a a data structure that details the promised

fees taken from Feesolve as reward to the infrastruc-

ture maintaining miners. Note that PFsolve specifies

amounts that are paid only if the competition success-

fully outputs a result.This issue is further discussed in

Section 3.

• StoredCT =< CT s, IDpublish, PubIDc,

PubIDmasternode >, where CT s is the slim version of

CT , IDpublish is the ID of the PublishCT transaction

previously submitted by the client. PubIDmasternode

is a set of storage miners (i.e., their public keys) that

are committed to store the data of CT , such that

|PubIDmasternode| > rs, where rs is a protocol pa-

rameter added to ensure that there are enough copies of

CT in storage.

• SolveCT =< PubIDminer, Sig(Sol), Score,
PubIDCT , IDstorage >, where PubIDminer is the

public key of the submitting miner, Sig(Sol) is a digital

signature of the submitted solution that acts as a com-

mitment of the miner that his real solution will have the

score Score. PubIDCT is the identifier of the associ-

ated PublishCT transaction. IDstorage is the public id

of the storage miner from which data were retrieved.
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• V alidateCT =< EdTMN > is a transaction in which

each member of the dTMN of CT adds an encrypted

list of past SolveCT transactions that were successfully

validated.

• SealCT =< DdTMN > contains the decryption speci-

fication for interpreting the V alidateCT transaction. By

knowing this information the winner of the competition

is declared.

Competition parameters. Let BC = B1, B2, be the or-

dered set of blocks in the blockchain. Denote BC(i,j) =
Bi, , Bj to be a subset of BC starting at block i and ending

in block j. A computational competition CCCT is associated

with a single computational task CT and has five phases: (0)

store, (1) freeze, (2) compete, (3) validate, and (4) seal. Each

phase has a defined number of blocks that mark its duration.

We denote this number as NBx, where x is one of the com-

petition phases. Let I(Tr) be the block index of a transaction

Tr in the blockchain BC.

3.3.2 Competition flow

A computational competition acts as a microenvironment in

the system and is illustrated in Figure 1. A competition over

a task CT starts when StoredCT is added to the blockchain.

This is defined as a part of the protocol and every user or a

miner that observes the addition of StoredCT to the block

Bj = I(StoredCT ) can now compute the duration of each

phase of the competition.

Addition of StoredCT to the blockchain requires a pre-

competition process that establishes replicates of data in stor-

age, see the Appendix. Briefly, this process starts when the

client submits D and its accompanying information to the

storage chain in a transaction called PublishCT . After a cer-

tain amount of time D has a required set of copies in the stor-

age chain, one copy per miner. This set of miners becomes the

dTMN: a subnetwork of peers that are tasked with keeping D

and later validating proposed solutions. Throughout the com-

petition, the peers continuously send out ping messages no-

tifying the network that they are active. After validation has

ended, which is through a consensus reached by the dTMN,

they share a certain percentage of the fees that CT entails.

The next phase is freeze: from block I(PublishCT ) to

block I(PublishCT ) + NBfreeze no SolveCT transaction

is allowed into the blockchain. This step is one of our tools

against an O(1) attack. In this case, the attacker has no guar-

antee that her predefined solutions will be immediately prof-

itable. Moreover, other miners will now have time to solve

the published task. Next, the compete phase is the main place

in which the blockchain stores proposed solutions for CT .

For ensuring security of their solutions the solving miners do

not send out their solution. Instead they present a digitally

signed commitment. The reason for this commitment is to

avoid a case in which the block signing miners will present

the observed solutions as their own.

An important point in our protocol is that all PF fees are ac-

cumulated across sealed competitions, each in its designated

pool, and are distributed every Bdistr blocks. We maintain

three profit pools that are designed to reward the infrastruc-

ture components of the competitions: (1) the main chain (i.e.,

the public ledger), (2) the storage, and (3) the storage-main

chain interaction. Note that the last pool is a derivative of

pool (2): it is a defined percentage PSMPool of sums that the

storage pool pays the PoW miners for accepting the storage

infrastructure transactions into the ledger (e.g., bid, ask, or

deal).

For every pool, funds are distributed in a way that is pro-

portional to the amount of work that was done by the miners,

which can also be weighted by the transaction importance.

For the main chain this is kept in expected value (i.e., on

average over a stochastic process), whereas the other pools

give out rewards in a deterministic fashion that is directly pro-

portional to the amount of work done. In the Appendix, we

present the algorithm of the main chain pool, which is based

on enumerating the SolveCT transactions from the winning

miners. The algorithms of the other pools are very similar

and can be easily derived from it. Briefly, let PF be the total

sums in the main chain pool from the promised fees of the

sealed competitions during the block range Bi, , Bj such that

j − i+ 1 = Bdist. We assign a weight wk for each block Bk

such that:
∑j

k=i wk = 1. The weight wk is set to be propor-

tional to the number of SolveCT transactions in Bk that won

their competition. The weight allocation algorithm is given

below. For a block Bk with a weight wk let S1, , Su be the

set of StoreCT transactions in Bk that won their competition

and let M(Bk) be the miner that signed Bk. Given the output

of the algorithm below, wk PF is given to M(Bk).
The next step of a competition is validation. Validation en-

tirely depends on the dTMN, whose members wish to perform

work, reach consensus, and seal competitions to gain more

profits as discussed above. The storage miners here receive

means to go back and validate the solution commitments sub-

mitted during the competition. The validate transaction holds

for each dTMN member an encrypted list of SloveCT trans-

action ids that were successfully validated (for example, we

can use hash functions). Upon publication of a validation

transaction the dTMN publishes the last transaction that seals

the competition: SealCT . Here, the dTMN members present

the decryption algorithm for extracting their results in the

V alidateCT transaction. This defines a consensus solution

and the competition winner(s) as the optimal solution that ap-

peared first in the ledger wins. To emphasize the importance

of maintaining pools, consider the proposition below.

Proposition 3.1. (Nash Equilibrium feasibility) Assume

that the mean block reward per solve transactions is higher

than the mean of regular non-competition transaction fees.

The competition rules constitute an equilibrium in which

the best strategy of hash block signers is to gather as many

SolveCT transactions as possible, whereas computational

task solving miners best strategy is to send their solutions.

The optimal strategy of the storage miner is to answer re-

trieve requests of computational miners and send them the

data. The optimal strategy of the block assembly miners is to

enable SolveCT transactions to be added.
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Figure 1: Illustration of the competition. Storage dTMN publishes the task to the network. After a freeze phase solving miners

(gray) send out their solutions. In the validation phase the dTMN gets the solutions from the digital commitments given in the

competition phase. In this case, the third proposed solution is marked as irrelevant (shown in red) in the validation transaction

due to failure to fulfill the commitment. The asterisks marks that the validation phase may take a few blocks for the dTMN for

reaching a consensus. Finally, a sealing transaction is added and profits are distributed.

Proof. Block signing PoW miners know that by including

more solve transactions they increase their expected relative

weight in the pool. Thus, when they assemble blocks the best

strategy for increasing the expected profit is to include the

solutions with the best declared scores. The exact number de-

pends on three parameters: (1) how many competitions are

alive, (2) the difference between the mean reward of stan-

dard transactions and solve transactions, and (3) the probabil-

ity that the submitted commitment will fail. Storage miners

are paid proportionally to their work. They would like to have

as many computational miners as possible whose data copies

were retrieved from them. On the other hand, the computa-

tional miners, which aim to win competitions by submitting

their results, know that the submission associated fee is a PF.

Thus, they only pay it in case they are selected to be winners

and therefore they have incentive to submit solutions

3.3.3 How to keep the solution safe

An important question at this point is how can we make sure

that upon sending a solution an attacker cannot take it and

claim it as is own? We propose two solutions. The first solu-

tion is based on cryptographic commitments. Here, the miner

sends the hash of the solution and a nonce. After the competi-

tion is over the winner can prove his commitment by sending

the real solution together with the nonce in order to finalize

competition. The second solution is based on randomly par-

titioning the solution into shards. Here, the miner submits

a few shards to each member of the dTMN. Each shard has

a randomly assigned number, taken at random from a large

space that the miner does not share with anyone. Only when

all shard numbers are visible can a dTMN member order the

shards and assemble the correct solution. This solution re-

moves the need of the solving miner to stay alive after a com-

petition, but is sensitive to collusion of the dTMN members.

3.4. The storage chain

Our storage component can be easily built upon existing

storage blockchains (and even centralized storage solutions).

Roughly, these systems address the following issues: (1) clos-

ing a deal in a reliable platform, (2) payment for storing the

data, (3) how miners prove they hold a valid replica of the

data, (4) payment for retrieving the data, (5) data encryption,

and (6) system maintenance. Our requirements are only a

subset of what these systems address. It is crucial however,

that for a denentralized solution an off-chain micro-payment

will be available: when two parties transfer data we use a

protocol that ensures the transfer but keeps most of the infor-

mation off chain (proofs and certifications are kept for track-

ing). As exemplary systems that provide all functions above

we consider Filecoin [13] and Storj [14]. We briefly discuss

the storage component below, for a thorough explanation see

the Appendix.

Payment to the storage are done only after the solution was

kept for some time factor (letting the client pull the solution).

Only storage miners that validate the answer correctly (vote

as the majority) on all the solutions will be paid. Per storage

service, the storage miners are paid from the storage infras-

tructure pool. Their fees are extracted automatically only for

services that were proved. As a result, each storage miner of

the dTMN will be payed per given service proportionally to
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the amount of his work.

4. Protocol properties

4.1. Forging via 51% attacks

Carrying a 51% attack in our system, by definition, re-

quires achieving 51% of both the PoS and the PoW compo-

nents. This is a useful property of Decred: hash solving min-

ers propose new blocks, whereas PoS miners approve past

blocks. An adversary that reaches only 51% in the hash com-

ponent still needs to get the proposed blocks approved. An

adversary that holds 51% of the stakes cannot suggest new

blocks. Thus, when there are many miners of both types, it

becomes very difficult and resource consuming to try such at-

tacks. This valuable property is not violated in our system

thanks to the accumulation of past useful work.

4.2. O(1) attacks

The competition’s freeze phase makes O(1) attacks that in-

volve low difficulty problems unlikely because the adversary

has no guarantees on winning back the submission fees. As a

result, O(1) attacks with notable outcomes require acquiring

many coins, submitting problems with a very high difficulty,

which will also results in locking them for long time periods.

This is, in essence, equivalent to performing PoS because the

adversary first needs to acquire resources in order to submit a

new task (a client that has no coins cannot offer feesolve), and

then these coins are locked until the competition rewards are

distributed after > Bdist blocks. On the other hand, our PoS

higher profit invarnace guarantees that the same O(1) adver-

sary is better off with performing PoS, which does not even

require computational resources.

Under the constraints above we are still able to set the pro-

tocol parameters such that the honest miner that won a compe-

tition gets more than feesolve (submitted by the client). Why

is this even possible? Keep in mind that we have a gap: using

vstakes to purchase tickets is not equivalent to using money to

buy tickets. The former is not entitled to the extra rewards that

the pure PoS miner expects. This gap allows earning > 100%

compared to the client-submitted fees, as we shall show next.

Theorem 4.1. For a ticket price y there exists a set of pa-

rameter assignment to r, ppools, pvstake such that the expected

profit of a pure PoS mining is higher than that of an O(1) ad-

versary.

Proof.

Assume that the adversary submitted a problem with an

offer to pay y. By definition, ppoolsy is paid to the pools

that reward the storage and main chain infrastructure. He

then gets y(1− ppools) back by solving his own problem and

pvstakey(1 − ppools) in virtual stakes. These are minted new

coins and there is no added reward. The total reward of the

adversary is:

y(1− ppool) + pvstake(1− ppools) =

(pvstake + 1)(1− ppools)y

Performing PoS in the same time by buying a ticket in

price y would have resulted in an expected reward of:

Pr(ticket is selected)ry +

yPr(ticket is not selected) =

0.95ry + 0.05y = y(0.95r + 0.05)

Setting r = 1.1 we get an expected pay back for PoS of

1.095y. We can now easily set the other parameters such that:

1 < (pvstake + 1)(1− ppools) < 1.095

For example, pvstake = 0.25, ppools = 0.15 yields 1.0625.

Alternatively, if we want to mint less coins per virtual stake

then: pvstake = 0.15, ppools = 0.1 yields 1.035.

We proved the theorem above by example. However, note

that the analysis above defines an infinite number ways to se-

lect parameters. To see this, assume we wish to keep a given

percentage ǫpos difference between the expected PoS reward

and the reward of a computational miner. Assume we wish to

maximize the computational miners profit. This amounts to

the following constrained problem:

argmaxpvstake,ppools
(pvstake + 1)(1− ppools)

s.t.

(1) (0.95r + 0.05)− ǫpos =

(pvstake + 1)(1− ppools)

(2) 0 ≤ pvstake, ppools ≤ 1

Figure 2 below illustrates how for ǫpos = 0.01 we get

an infinite set of ways to adjust the parameters for different

expected PoS rewards.

4.3. Suboptimal solutions

An honest miner that did substantial work is likely to of-

fer a small transaction fee. If the PoW miners are bombarded

with random solutions, the honest miner looks at the ledger

and knows that his solution is better (because solution scores

are not encrypted). He is then likely to offer a transaction fee

that is similar to that of an average non-competition transac-

tion fee. In this case the SSA (suboptimal solutions adver-

sary) that tries to overwhelm the system with solutions will

have to pay substantial funds. This concept is similar to early

suggestions for fighting spam emails: the spammer needs to

pay a lot to succeed, whereas the honest users pay negligible

sum per transaction [4].

4.4. The dTMN and fault tolerance

Byzantine fault tolerance (BFT) is the dependability of

the system in failure of components (and the identification

thereof) [15]. We discussed above several mechanisms to pre-

vent colluding attempts (e.g., make storage miners be more
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Figure 2: Computational miner reward parameters under the PoS constraints. For different PoS expected reward factors and a

desired margin of ǫpos = 0.01 each line shows the set of pvstake and ppools combination that satisfies the constraint in which

PoS is more profitable than O(1) attack.

like DASH masternodes). However, for BFT, note that our

system always depends on both reaching a consensus and get-

ting it approved. For the competition validation phase we give

vote management to the block miners by letting storage min-

ers submit commitment of their votes. Thus, there is no need

for dTMN members to coordinate their response and in case

some miss their chance due to failure, there are still others

that can reach consensus. The dTMN members are expected

to send their results separately but consistently until the vali-

date and seal transactions are published. This is similar for

requesting masternode members or PoS right owners from

other protocols to be present in a given time otherwise they

lose their rights.

4.5. Block withholding attacks

Block withholding, also called selfish mining, is an attack

in which a large mining pool withholds mined blocks in hope

to mine another one and let the network pursue an orphan

block. By doing so, the attacker can present its longer chain

later and make the network accept it as the new consensus

[16]. Several analyses had deepen our understanding of such

attacks, but were mainly confined to Bitcoin itself or to other

very similar protocols [17, 18]. Nevertheless, this attack still

requires large computing power, and is currently not suitable

for hybrid PoS systems, especially ones similar to Decred in

which the PoS approves blocks. Here, withholding a block

and letting the network focus on a shorter chain is in fact

not beneficial once the PoS mechanism approved the shorter

chain. In these cases, the shorter chain is accepted as the

consensus because it is the only one whose block before the

current head was approved. Even though our system aims to

deviate PoW power to the computational tasks and thus re-

duce the hash difficulty, it does not come at the expense of

this property.

4.6. Can miners collude?

Given that the computational task miners all compete for

rewards from the client, there is a certain risk of colluding.

For example, miners may agree to send out random solu-

tions without doing any work. Note however that we only

need a single honest miner per computational task to render

the entire colluding effort barren. This property weakens the

conspiring adversaries substantially as they do not necessarily

know that all miners had agreed, which is very difficult if the

network is large. Moreover, even under such agreement the

entire system is still under the prisoner’s dilemma: even ratio-

nal colluding miners are not likely to cooperate as betraying

the partners results in a greater reward. Finally, we can con-

sider active mechanisms that can be added to prevent such at-

tacks (if required in practice). First,selecting tasks at random

and submitting the solution at a random time point dismantles

the attack and provides a reasonable solution to the costumer.

Second, having a public reputation board will be useful in

any case. However, this is a more involved solution that will

require a thorough examination of the incentives.

5. Discussion

Previous suggestions aimed for alleviating the dependence

on hash puzzles with a completely new mechanism. This cre-

ated a problem with the need to correctly estimate the dif-

ficulty of each instance from each considered problem. For

most problems, this task is currently not feasible as complex-

ity analysis usually involves obtaining bounds for the worst-

case running time. Our approach is radically different: we

let the client decide how much each task is worth. Thus, the

clients evaluate the cost by comparing to other alternatives in

the market and then suggest what they consider a fair pro-

posal. Of course, this will need to be balanced between the

goal of saving costs (compared to other alternatives) and at-

tracting miners.

Our protocol, like any decentralized blockchain protocol,

is bound to have redundancy. First, the blockchain itself has

many copies. Second, each member of the dTMN has a copy

of the data of a task. Finally, the computational miners com-

pete for gains from the same problems. The first two re-

dundancies result from the need to reach consensus between

agents in the system, which is crucial for decentralization. We

therefore accept these two as needed constraints. The third re-

dundancy,however, is a much more delicate issue.
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To make our discussion more formal we compare our sys-

tem to an optimal centralized system with no reliability or

connection issues. Let nm be the number of miners in the

system and nt be the number of tasks. We make the follow-

ing simplifying assumptions: (1) nm and nt are the same in

both systems (2) all miners have the same computing power,

(3) all miners have the same same energy consumption per

computing unit per time, (4) in our system miners select tasks

at random, uniformly over all tasks, (5) all tasks require the

same resources exactly, they take one hour to run in a single

machine (to make time discrete and standardized), and (6) all

tasks are all worth the same value v. Let e be the ratio be-

tween the income per hour in the centralized system and the

expected income in our system.

Clearly, the worst-case scenario for our system is when

there are only a few tasks and many miners solve the same

problems using the same deterministic algorithm. In this case,

the expected number of solved tasks in our system is nt

nm
.

Assume nt < nm, then: e = vnt

vnt/nm
= nm which means that

the system is inefficient in a way that is linear in the number

of miners.

However, this analysis is irrelevant as our goal is not to re-

placing current centralized cloud systems. Alternatively, we

seek to solve computing and modeling bottlenecks that are

widely common in large optimization problems. Moreover,

the efficiency gap illustrated above quickly reduces when the

user’s perspective is taken into consideration. Most impor-

tantly, for most optimization tasks in AI one of the following

is true: (1) users need to rerun their learning tasks several

times (e.g.,when the algorithm depends on a random starting

point and hyperparameters), and (2) the problem can be dis-

tributed into many small tasks that can run in parallel.

These two points directly affect e in a way that creates a

trade-off. First, distributing a large task into many small ones

means that both the difficulty of each task can be decreased

and nt can be much larger than nm. In these cases, the over-

all income of the system depends on how many tasks can a

miner take on. In any case, distribution can bound the num-

ber of miners per competition. Second, the true cost for users

is a function of the total number of times they need to run

the algorithm in practice. Moreover, even with different at-

tempts there is no guarantee that the solution converged to

the best one (or even a useful one) and no guarantee that the

search space was thoroughly examined. In contrast, using our

competition-based paradigm there is a single run of the com-

petition and the powerful miners compete by testing different

options. Thus, the costumer can propose a much lower cost

as compared to current estimated costs.

5.1. Machine learning competitions

In this work we focused on solving optimization problems.

Clearly these are useful for many AI tasks. However, note that

for the goal of training models, we can slightly adapt the pro-

tocol to mimic how current machine learning competitions

work. This requires having the validation phase run by the

dTMN run the trained models on new data, which can be pro-

vided by the user after all solutions were submitted. Thus, our

system can be used for implementing competitions en masse.

We next briefly discuss machine learning competitions.

The lack of one master algorithm for all machine learning

or optimization problems is a known result, also known as

the no free lunch theorem [19, 20]. Empirical difficulties over

time had led the community to establish competitions and

challenges in order to achieve progress. There are many ex-

amples for successful competitions in Machine learning and

we cannot go over them all here. These competitions are es-

pecially useful for advancing applications that had proved dif-

ficult over time. We focus here on two examples that histor-

ically led to substantial progress. For example, the Netflix

challenge that led to a marked progress in Collaborative Fil-

tering as tool for creating recommendation systems [21]. As

another example, we consider Deepl Learning, the recent re-

naissance of neural networks that was accelerated due to the

high success of this methodology in the ImageNet competi-

tion [22, 23].

Based on the empirical observation that competitions are

a useful way to enhance machine learning, our system is ex-

pected to improve upon state of the art in many tasks. Specif-

ically, large Deep Learning (DL) tasks seems suitable as the

training relies both on inspection of many hyperparameters,

some of which may determine how to utilize many GPUs,

and performing (possibly asynchronous) stochastic gradient

descent in an extremely large space [24, 25, 26, 27, 28].

5.2. Network maintenance costs

As a final point for discussion, we reiterate the set of fees

that the user submits for a task: (1) feetr: same as any

other transaction, (2) feesub: a bid for paying for storage,

(3) retrieval fee: used for paying the storage for sending data,

(4) validation: used for validation payment, (5) maintaining:

used for paying the main chain for holding all other transac-

tions, and (6) feesolve: the payment to the winning solver.

Note that the promised fees above can be predefined percent-

ages of feesolve. Moreover, the protocol can define a set of

constraints, e.g., that the total sum of payments to the main

chain pool is at least 15%. Optimal assignment of these pa-

rameters is still under research.
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