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Abstract

Biomedical image segmentation based on Deep neural

network (DNN) is a promising approach that assists clin-

ical diagnosis. This approach demands enormous com-

putation power because these DNN models are compli-

cated, and the size of the training data is usually very huge.

As blockchain technology based on Proof-of-Work (PoW)

has been widely used, an immense amount of computation

power is consumed to maintain the PoW consensus. In

this paper, we propose a design to exploit the computation

power of blockchain miners for biomedical image segmen-

tation, which lets miners perform image segmentation as the

Proof-of-Useful-Work (PoUW) instead of calculating use-

less hash values. This work distinguishes itself from other

PoUW by addressing various limitations of related others.

As the overhead evaluation shown in Section 5 indicates,

for U-net and FCN, the average overhead of digital sig-

nature is 1.25 seconds and 0.98 seconds, respectively, and

the average overhead of network is 3.77 seconds and 3.01

seconds, respectively. These quantitative experiment results

prove that the overhead of the digital signature and network

is small and comparable to other existing PoUW designs.

1. Introduction

Deep learning plays a crucial role in supporting clinic

diagnosis, especially the biomedical image segmentation al-

gorithm [29][36][30][35][33][18][12] which has been suc-

cessfully applied in brain MRI segmentation [25], lung

CT scans segmentation [14] and Cardiac MRI Segmenta-

tion [1]. Instead of segmenting images manually, these deep

learning based algorithms accelerate medical diagnosis in

terms of extracting different tissues, organs, pathologies,

and biological structures. However, it is extremely chal-

lenging due to high variability in medical images, low con-

trast, and other imaging artifacts [36]. By taking advantage

of rapid increase of computing power and machine learn-

ing research interests [32][31][37][38][34][17][16], seg-
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Figure 1. A blockchain maintained with image Segmentation al-

gorithm as PoUW.

mentation based on deep learning is much less expensive

and time-consuming than manual segmentation. However,

biomedical image segmentation does require high compu-

tation power. In addition, an accurate model requires ma-

chine learning experts to tune it by training and evaluating

with different hyper-parameters multiple times. Therefore,

a good model comes at the cost of very high computation

power.

Bitcoin [22] is the most popular blockchain technology-

based application. Besides countless cryptocurrencies,

blockchain technology has been successfully applied in dif-

ferent fields. However, the traditional consensus mech-

anism demands an immense amount of energy for com-

putation to maintain the blockchain. According to Digi-

conomist [10], the estimated power consumption of Bitcoin

“mining” reaches around 70 TWh per year during the sec-

ond half of the year 2018. As a result, there are the con-

cerns and warnings about energy wasting of cryptocurren-

cies [9], for instance, Camilo Mora published a paper in

Nature Climate Change with the title of “Bitcoin emissions

alone could push global warming above 2 centigrade” [21].

To maintain the consistency of transactions, the tradi-

tional proof of work (PoW) consensus mechanism utilizes

the brute-force algorithm to host a competition of hardware

and energy source, and this is the major component that
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Figure 2. 3D U-Net [11]: a widely used framework in fully convo-

lutional networks for medical image segmentation.

leads to the energy wasting issue. A series of solutions

have been proposed to address this issue, such as ASIC ma-

chine [23], proof of capacity (PoC) [4] and proof of use-

ful work (PoUW) [23]. ASIC machines compute hash effi-

ciently, but this type of machine is only able to calculate on

a certain type of brute-force algorithms and it is relatively

inflexible. PoC significantly wastes disk space instead of

electricity. On contrary, PoUW exploits computation power

of “miners” for useful tasks, therefore the energy consumed

by the miners is not wasted.

Primecoin [15], PoX [28] and PoDL [7] are PoUW

mechanisms that ask miners to perform useful work. This

paper proposes a practical PoUW mechanism to exploit the

computation power of “miners” for biomedical image seg-

mentation tasks while addressing the limitation of exist-

ing PoUW mechanisms. Our major contributions are: (1)

the useful work in our mechanism has a clear useful ap-

plication; (2) our mechanism can accept and handle multi-

ple tasks; (3) our mechanism can handle larger models and

training dataset.

2. Background and related work

Biomedical image segmentation: Fully convolutional net-

works (FCN) is a special category of DNN, which is widely

used for medical image segmentation. Compared with gen-

eral DNNs, FCNs only have convolutional layers, up convo-

lutional layer, and pooling layers as shown in Fig. 2. With

this characteristics, FCNs can efficiently output images with

the same size as the input images as shown in Fig. 2. Al-

most all the DNN-based methods for 3D image segmen-

tation adopt FCN as the backbone network structure, and

add some special structures and improved training strate-

gies [6] [8] [20] [5] [11]. For example, 3D U-Net [8] adds

more connections between the first several layers and the

last several layers as shown in Fig. 2 to better extract fea-

tures.

Consensus mechanisms for blockchain: Proof of Stake

(PoS) is a consensus mechanism in cryptocurrencies to de-

cide the creator of the next block based on the amount of

cryptocurrencies the creator own or other weights that can

prove the authority of the creator. Determination of the

block creators involves efficient computation only, and it

does not consume much energy. However, it is unknown

whether PoS mechanism is a robust distributed consensus

mechanism owing to various limitations [26] [24] [27]. Ex-

isting cryptocurrencies adopting PoS all have extra rules to

make the consensus mechanism more robust, however, the

necessity of extra rules implies the PoS is inherently unsta-

ble, and the benefit of energy efficiency is diluted.

Proof of Work (PoW) does not suffer from the instability

of PoS. Its stability is supported by the enormous compu-

tation resources contributed to hard computation problems,

and its criticism has been on its large amount of wasted en-

ergy. The idea of PoW was proposed to prevent from the

denial-of-service attacking [2]. In PoW consensus, all par-

ticipants are required to solve problems before they send

messages. Such problems are challenging to solve and easy

to validate. In Bitcoin, miner nodes are required to calculate

hash values as PoW.

Proof-of-Deep-Learning (PoDL) In this paper, we inherit

the block acceptance policy of PoDL to substitute the hash

calculation with segmentation model training. We briefly

explain the mechanism before introducing our novel proto-

cols that address PoDL’s limitations.

Each block interval is divided into two phases, Phase 1

and Phase 2. At the beginning of Phase 1, a task publisher

releases the training dataset (with labels) as well as the hy-

perparameters of the deep learning model to miners and full

nodes. During Phase 1, miners train their own deep learn-

ing model, and commit their model by the end of Phase

1. The commit process is completed through submitting

the hash of their trained model as well as their ID. At the

beginning of Phase 2, the task publisher releases the test

dataset to miners and full nodes, and each miner submits

(1) the block header and the block that contains information

describing the trained model on top of existing attributes,

(2) the trained model, and (3) the accuracy of the trained

model, to full nodes. Note that the hash of the block header

does not need to be smaller than the threshold because the

hard computation is replaced with the model training. Full

nodes, during Phase 2, validate the submitted models to

check whether they have the claimed accuracy, and this hap-

pens on top of existing validation in the blockchain (e.g.,

validation of the correctness of transactions, merkle tree,

hash). To avoid miners over-fitting their models on the dis-

closed test dataset or stealing others models (published dur-

ing Phase 2), full nodes discard any block whose model was

not committed during Phase 1 (i.e., hash of the model and

ID have not been received in Phase 1). Full nodes will ac-

cept the block that is submitted with the highest-accuracy

model that claimed its accuracy correctly. They choose and

validate the models in decreasing order of the claimed ac-
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curacy for that.

Such a block acceptance policy yields a robust consen-

sus and is secure against double-spending attack as long as

no more than 51% of computation power is owned by the

attackers.

However, the PoDL is limited in that they can only han-

dle one task at once, and there is insufficient details about

how to handle training model.

To address these drawbacks, we present an alternative

PoW mechanism that asks miners to perform biomedical

image segmentation tasks and present a trained segmenta-

tion model as the proof. The major contribution of this pa-

per are: (1) our blockchain allows submissions of multiple

tasks, (2) our blockchain can handle large models with large

training data. These contributions are significant since they

make the idea of Proof-of-Useful-Work behind the PoDL

more practical and applicable in the real world by support-

ing multiple tasks and larger predictive models.

Other Proof-of-Useful-Work mechanisms:

Primecoin [15] is an altcoin that asks the miners to find a

special sequence of prime numbers (Cunningham chain) in-

stead. Although the outcome of miners’ computation has

mathematical and research meaning, i.e., discovering the

Cunningham chain. The application of Cunningham chain

in the real world is unclear.

Proof of Exercise (PoX) is a design proposed in [28],

which is another PoUW mechanism that lets miners per-

form certain exercises and present the outcome as proof.

In PoX, employers publish their tasks onto a board and the

miners will randomly fetch tasks from it. The limitation

of PoX is that they rely on this centralized board that is

maintained by a third party, which significantly dilutes the

decentralization property of the blockchain.

3. Definitions and assumptions

In this section, we define the entities involved in our

blockchain which will be used to support biomedical image

segmentation.

Miners are the machines of individual or small organi-

zations who wish to contribute their computation power

for maintaining a blockchain and may receive rewards as

the exchange. In our case, we only consider a standard

computer (not ASIC machine) with one or more dedicated

graphic cards as a miner, for instance, the gaming machines

and deep learning machines. Miners train the DL models as

PoW with GPUs, maintain a max heap of submitted tasks

based on task rewards and validate the result of potential

block owner.

Full nodes record all blocks and transactions, maintain a

min heap of submitted tasks based on task reward, validate

the submitted task and check the checkpoint of miners and

validate the result of potential block owner.

Task publishers release biomedical image segmentation

training tasks and training data. After a training task is

selected and performed by the miners, the corresponding

publisher will pay certain amount of reward to the miner

presenting the best image segmentation model in the form

of the cryptocurrency that is maintained by the blockchain.

There are three assumptions that our design relies on.

Some of them hold naturally in existing blockchains while

others do not.

Assumption 1: We assume task publishers’ best interest

is to achieve the image segmentation model with the best

performance. Therefore, we assume no collusion happens

between miners and task publishers, because colluding with

miners (e.g., disclosing test datasets to specific miners) will

degrade the accuracy of the model only. However, it is true

that miners are well motivated to collude with task publish-

ers (even though task publishers are not motivated to do so)

since winning miners gain block rewards. It is our future

work to achieve a robust consensus mechanism that does

not rely on this assumption.

Besides, we also assume task publishers will pay the task

reward honestly once their tasks are performed by the min-

ers. However we introduce how to relax this assumption via

smart contract by the end of this paper.

Assumption 2: We assume the training tasks can be in-

terrupted and stopped at any time by the miners. We make

this assumption because training tasks may be complex and

time consuming, but we need to guarantee certain block

generation rate. The gap between the length of training time

and the short block interval will be handled by allowing the

miners to stop the training tasks at any time and submit the

saved checkpoint as their proof of work during the block

interval. Note that this assumption holds for optimization

algorithms that are based on gradient descendent.

Assumption 3: The full nodes’ network condition is sta-

ble and reliable enough such that all full nodes have the

same view on their memory pool and that miners and task

publishers can access such view without significant network

delay. In addition, we assume the full nodes’ clocks are syn-

chronized up to the difference of 5 seconds. These assump-

tions are necessary for achieving security properties in our

blockchain.

4. Design

We propose to exploit the computation power of

blockchain for biomedical image segmentation tasks. Most

of the computation power of miners will be spent on train-

ing segmentation models instead of calculating useless hash

values as in existing PoW mechanisms. Each new block is

generated by the miner who submits the best segmentation

model, which will be validated by the full nodes. Once the

model is confirmed to be the best, the miner will generate

the block and receive both of the task reward and block re-
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ward. The major novelty of this paper is to overcome the

limitation of a prior work that cannot handle more than

one task and large deep learning model and large training

dataset.

In a traditional blockchain, the attributes of the block

header, as shown in Fig 3, include the block number, the

hash value of the previous block header, the hash of the

block data, a timestamp, the size of the block and the nonce

value; the block data contains a ledger that records transac-

tions [39]. We introduce three new attributes to the block

header in our blockchain: (1) digital signature of segmen-

tation model, training data, and segmentation task informa-

tion, (2) the task that is selected and performed by all min-

ers, (3) the list of all unfinished tasks that need to be per-

formed in the future. Each attribute will be explained in the

subsequent sections.

4.1. Handling multiple tasks

Unlike in [7] where at most one task can be handled

by the blockchain, our novel blockchain is capable of han-

dling multiple tasks. We achieve this by augmenting the full

Memory Pool (Mempool)

Unconfirmed 

transactions

Unselected tasks

Type: unselected

Index Publisher ID  Task reward  Link

0        ID #               $         Link  

1        ID #               $         Link  

...       ...                   ...         ...        

Figure 4. Our augmented memory pool.

nodes’ mempool to keep all the unselected tasks (Fig 4).

Namely, multiple tasks submitted by the publisher will re-

side in the mempool until they are selected and performed

by the miners.

We firstly define phase. As shown in Fig 5, a block in-

terval is split into two parts which are named as Phase 1 and

Phase 2, respectively. For block i, Phase 1 starts at time tia

and ends at time tib; Phase 2 starts at time tib and ends at

time t(i+1)a (i.e., the time when Phase 1 for the next block

starts). The period of Phase 1 and Phase 2 are fixed where

the length of time for Phase 1 is much longer than that of

Phase 2.

We allow the task publishers to submit their tasks to full

nodes only during Phase 1. To submit a task, the publisher

will need to broadcast the followings to full nodes: pub-

lisher ID, task reward value, a link for downloading train-

ing dataset as well as the model (i.e., its hyperparameter).

At the same time, the publisher will write and launch the

smart contract that will send the task reward to the winning

miner later when the task is performed and corresponding

model is announced in the blockchain. Once the publisher

submits a task, it will go to the full nodes’ mempool and

become an unfinished task. The unfinished tasks will stay

in the mempool until the miners select and perform them.

With multiple tasks, it becomes important to let miners

agree on the same task to be performed. Otherwise, it is

hard to choose the winner by choosing the highest-accuracy

model, since comparison of accuracy among different tasks

is meaningless. Furthermore, as we will describe in Sec-

tion 4.4, attackers may attempt to double spend by creating

forks, and it is necessary to provide a task selection for the

miners to agree on one task for each block.

Our blockchain defines that all miners must choose the

task with the highest reward from the unfinished tasks in

full nodes’ mempool (ties are broken in a pre-defined man-

ner). Due to the assumption that full nodes’ views on the

mempool are consistent, all full nodes have the same set of

tasks in their mempool, and it is the blockchain policy to

choose the task with the highest reward, therefore all the

miners must select and perform the same task for a specific
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block.

4.2. Handling large models and training data

In order to reduce the network traffic, a task publisher

will only need to submit the model link and dataset link

instead of submitting model and dataset directly during the

task submission process. Also, to save the block storage,

the link will be stored in blocks instead of actual models or

dataset.

Miners still need to retrieve training data from the pub-

lisher, which may lead to network delay of tens of seconds

or even more. To reduce this time loss, we let task publish-

ers release the training dataset earlier in Phase 2 of the pre-

vious block’s mining. After Phase 1 for block i, the task to

be performed for block i+1 has determined already, there-

fore the miners can start the download. Note that miners

are not able to continue training in Phase 2. Otherwise, the

model will be different from the one committed in Phase

1. One issue of such training data release is that the min-

ers with high network bandwidth are advantaged because

they can start mining earlier than others. To avoid this and

make mining fair, we let task publishers encrypt the train-

ing data with any efficient symmetric-key encryption (e.g.,

AES [19]) and release the encrypted training data instead.

Then, the publisher releases the key at the end of Phase 2.

By doing so, the network delay caused by a key is negligi-

ble (e.g., ≤ 256 bits for AES), and the miners who have fin-

ished downloading the encrypted training data can decrypt

it and perform the training task immediately. The decryp-

tion causes extra delay as well, but the decryption itself can

be considered as the work that miners need to prove. Note

that, with the Assumption 1 in Section 3, the task publisher

will not release the key to any specific miners in advance.

Symmetric-key encryption such as AES does not expand

data, but it is possible that encrypted training data cannot be

fully downloaded within Phase 2 because of the large vol-

ume. Motivated miners will monitor the tasks being sub-

mitted to full nodes and start fetching the training data even

before Phase 2, but our mechanism may have to limit the

training data to an acceptable size.

4.3. Our block mining with multiple tasks and large
models/data

In this section, the procedure, as shown in Fig. 5, will

be introduced in details. In general, the length of Phase 1 is

much longer than the length of Phase 2, because the training

time will be significantly longer than the testing time. The

Phase 1 of block i starts at time tia. Task publishers can

submit image segmentation tasks during this phase. The

publisher will need to submit its own ID, reward, and links

(model address and data address). In real world scenario

that mempool may not hold the same view of task ranking

list due to network delay, thus it may need an additional

Task submission

Miner GPU

Full nodes

P2P network

Encryption key

Task publisher

tia tib
t(i+1)a

Block i 

Phase 1 Phase 2

Miner nodesMiner 

nodes

Full nodes

Miner 

nodes

Figure 5. Description of the block mining in detail (block i).

ledger to confirm all submitted tasks and a target task will

be selected from confirmed list. However, as it is claimed

in the Assumption 3, full nodes will hold the same view on

memory pool, thus we won’t consider this case and will ad-

dress this issue in the future. In the current work, all submit-

ted tasks will be recorded in the unselected list, as described

in Section 4.1. At the same time, the miners are training the

segmentation task which was ranked at the first place by the

end of the last block. After a task appeared in the unse-

lected tasks list, it will join the ranking which is based on

the task reward. Only the task with the highest task will win

the chance to be trained.

Once the target training task is confirmed, miner nodes

start fetching data and model, and the publisher of the se-

lected task will release the key to the encrypted model. Af-

ter the model and data are ready, each miner will evaluate

the complexity of the task by training the model for one

epoch. Then miners will start training with GPUs for a cer-

tain number of epochs. The number of epochs was evalu-

ated by each individual miner and it can be different among

miners. This number is measured to ensure that the miner

can stop training before Phase 2, yet finish the last entire

epoch. The behavior of other participators is described in

Section 4.1 4.2.

As shown in Fig 5, the primary job of Phase 2 is to

test and validate the biomedical image segmentation model

which was trained during Phase 1 of the current block.

When the time tib (shown in Fig. 5) arrives, the publisher

will provide API for miner nodes to test their own model

and for full nodes to validate the winner model. Miner

nodes generate a digital signature which is shown as Fig 3

digital signature frame. At the same time, miners will check

the accuracy of their own models. All miners will sub-

mit their accuracy values and model links. In addition, the

model link is required to include all checkpoint models for

verification purpose. This policy is to make sure that the
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final model is truly a trained model. The full nodes will sort

all submitted accuracy values and verify the model with the

highest accuracy. The miner, who submitted the best model,

will generate the block. Meanwhile, as described in Sec-

tion 4.1, the task ledger will be confirmed which also means

all unconfirmed tasks are moved into unselected tasks list.

The target task for the next block is selected from the up-

dated unselected tasks list, and traditional transaction con-

firmation is finished.

The essential property of blockchain is that any full node

should be able to verify the history data. In this case, it

is necessary to check that the accepted biomedical image

segmentation models are trained from training dataset only.

In addition, the testing results must be the same as it was

claimed. As described above, full nodes will be able to

fetch all the checkpoint models as the reference to verify

the training through the model link in task ledger in block

data.

4.4. Handling forks

Instead of considering the longest chain as the correct

one, we let full nodes in our blockchain consider the chain

who has the most highest-accuracy models as the correct

one. The intuition behind this form of fork resolution is

similar to that in existing cryptocurrency based on PoW

mechanisms. Namely, generating a correct block with a

small-enough hash value is challenging in PoW-based cryp-

tocurrency, and a chain will be considered correct if it has

the most correct blocks with small-enough hash values (i.e.,

being the longest chain). In our blockchain, generating a

valid block with the highest-accuracy model is challenging,

therefore we treat the chain with the most highest-accuracy

models as the correct one.

4.5. Validating past blocks

Newly-joined full nodes need to verify the entire

blockchain. When checking block i, full nodes will need

to check the unselected tasks record from block i − 1 and

the selected task for block i to see whether the task selected

in block i has the highest reward. Then, the full nodes will

have to verify whether the model accuracy is the same as

the one claimed by the winner miner. Then, the full node

will verify the digital signature we introduced in the block

header to verify the integrity of data. Finally, existing vali-

dation (e.g., correctness of hash calculation, transaction va-

lidity) will be performed.

4.6. Properties of our blockchain

Synchronized tasks: The augmented mempool stores all

unselected tasks, and these mempools will be stored in ev-

ery block. Miners will have to select the task with the high-

est reward from this list (that is available in the previous

block), therefore all miners are able to agree on the task to

perform. Therefore, full nodes are guaranteed to deal with

the same task during the block validation. We highlight that

this synchronization is achieved without relying on third-

party entities, therefore it does not harm the decentralization

of blockchain.

Redefining confirmation: Because of the way full nodes

choose the next block in our blockchain, whether blocks

can be reversed does not depend too much on the number

of confirmations (i.e., the number of blocks after them on

the blockchain). Rather, the accuracy of the models on the

blockchain determines it. Namely, if the block contains

a model with a high accuracy, it is challenging to gener-

ate another block with another model with a higher accu-

racy. Then, reversing the previous blocks ahead of the block

with a high-accuracy model requires the amount of work

needed for training a higher-accuracy model. Therefore,

the blocks become hardly reversible after there are multi-

ple high-accuracy models along the chain. Then, we may

define the confirmations of a block as the number of high-

accuracy models appearing after it rather than the number

of blocks after it.

Hardness of double spending: Full nodes will accept the

blocks in Phase 2 if and only if their headers are received in

Phase 1. Therefore, as long as full nodes are honest, even if

adversaries delay the submission of their blocks in order to

afford more time in training, they are not allowed to submit

blocks with the better models (who were trained with more

time) because the block headers did not appear in Phase 1.

Even if the majority of the full nodes collude with min-

ers, double spending without 51% computing resources is

still a low-probability event. During training process, the

optimization algorithms seek local optima with certain ran-

domness because no known algorithms can strategically

find the global optimum. Therefore, if only the highest-

accuracy models are accepted, it is challenging to further

improve the accuracy beyond it, as shown in Fig. 7 9. If

adversaries wish to double spend in our blockchain by con-

trolling majority of the full nodes, they must present an-

other chain with more highest-accuracy models. Because

the accuracy of the model depends on the hyperparameters

and initial weights, choice of which is random, we conjec-

ture that it is extremely difficult to generate another chain

with more highest-accuracy models unless the adversary

possesses more than 51% of the computing resources for

the image segmentation training.

Dataset and model provision: Training dataset may have

large volumes, however it is necessary for performing the

published tasks. Therefore, we assume the task publishers

will host training dataset for the miners’ access.

Besides, full nodes who need to verify the whole chain

(e.g., newly-joined full nodes) need to access the historical

models provided by the winning miners. We also let task

publishers store the image segmentation models they col-
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lected from the miners, and provide the models to full nodes

for their verification. There may be model privacy concerns,

however addressing privacy concerns is an orthogonal prob-

lem, and we do not address that in this paper.

In case the storage of models (100KB-10GB per model)

becomes a burden to the task publisher, we can save the

storage by freeing up some earlier models with lower accu-

racy because the tamper-proofness is guaranteed by high-

accuracy models only. Accordingly, we can also let full

nodes verify the high-accuracy models only. By doing so,

the blocks with high-accuracy models will still prevent the

double spending, and the publishers need to store one model

(the ultimate one that has the highest accuracy) per task

only.

Network delay: Unlike the existing work [7], blocks sub-

mitted to full nodes do not include the trained models any

more. Instead, the block contains the links providing ac-

cess to the models, therefore blocks do not need to be very

large. Our blockchain does require some extra attributes in

the block header as well as various information of tasks in

the block. However, the storage burden of those extra data

in the block is negligible.

However, miners’ access to training data does involve

non-negligible network delay which owing to the character-

istics of the tasks performed by the miners. If tasks do not

need to take large data as input, miners will experience less

extra network delay.

5. Experiment

5.1. Experiment setup

The experiments were conducted in small scale local net-

work on the machines with Intel(R) Core(TM) i7-6850K

CPU @ 3.60GHz, 32Gb RAM, GTX 1080 Ti.

To exploit computation power of blookchain for the im-

age segmentation tasks, we adopt two widely used net-

works: fully conventional networks (FCN) and U-net for for

2D and 3D biomedical image segmentation respectively.

For FCN, we adopt the same network as that in the

work [40], a 34-layer FCN, which applied bottleneck de-

sign and modified the decoding part to improve the accu-

racy. We use the MICCAI 2015 Gland Challenge dataset

which has 85 training 2D images and 80 test 2D images.

The loss function, learning rate, regulation parameters, and

training epoch are also the same as that in the work [40].

Table 1. Overhead benchmark based on 1000 times testing

Model
Digital signature (s) Network (s)

AVG. STD. AVG. STD.

U-net (270MB) 1.25 0.05 3.77 0.32

FCN (212MB) 0.98 0.04 3.01 0.29

For U-net, we adopt a general configurations: (a) four res-

olution steps, and each resolution step contains two layers

of 3 x 3 x 3 convolutions, rectified linear unit (ReLu), and 2

x 2 x 2 max pooling/up-sampling; (b) the number of filters

in higher resolution step doubles that in its lower resolution

step, and the initial (lowest) resolution step. We use the

CT images in MMWHS 2017 heart segmentation challenge

which has 20 training 3D images and 40 test 3D images.

The loss function, learning rate, regulation parameters, and

training epoch are the same as that in the work [13]. For

both the two networks, we use Dice metric for evaluation.

5.2. Benchmark tests

Instead of the brute-force algorithm, the miner nodes

performed image segmentation tasks as described in Sec-

tion 5.1. Fig 6 8 shows the segmentation results with

FCN method and U-net method, respectively. The accu-

racy evaluation results of FCN and U-net are demonstrated

in Fig. 7 9. It can be seen that additional training based on a

well performed model can hardly improve the performance

of the model, thus it will prevent from double spending as

the discussion in Section 4.6.

Table 1 shows the extra overhead of digital signature

and network. The digital signature was achieved by SHA-

Figure 6. FCN image segmentation result. (The upper/lower row

demonstrates the segmentation results and original gland histology

images, respectively.)
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Figure 7. FCN Image segmentation accuracy results.
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Figure 8. U-net image segmentation result. (The upper/lower row

demonstrates the segmentation results and original cardiac CT im-

ages, respectively.)
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Figure 9. U-net Image segmentation accuracy results.

256 algorithm and the extra network overhead was evalu-

ated by transmitting the winner model through a local net-

work in accuracy validation step. Both overhead are much

smaller than image segmentation training time. Therefore,

our mechanism utilized most of power on useful tasks and it

potentially could be a contribution to both computer vision

and blockchain society. Since we assumed the dataset is

public accessible, the data loading time is not evaluated in

the experiment. Extra storage overhead incurred by aug-

mented memory pool and novel task ledger is negligible

which was discussed in Section 4.6.

6. Limitations and future work

In this paper, we presented a blockchain design that lets

miners to perform biomedical image segmentation model

training instead of hash calculation for block mining. Our

blockchain design addresses the limitations of existing

PoUW consensus mechanisms. The useful work involved

in our design is practical because various disease diagnosis

required customized models trained on specific dataset. Our

blockchain is able to handle multiple tasks submitted by dif-

ferent task publishers, and it also provide a solution to han-

dle DNN models as well as training dataset with large size.

We performed quantitative experiment with real-world data

to show that the extra overhead introduced by our design is

acceptable.

This work has some limitations at the current version.

1 pragma solidity 0.4.0;

2 contract TaskContract {

3 uint256 private reward;

4 uint256 private accuracy;

5 string apiForTesting;

6 function TaskContract() public{

7 taskReward = 1 ether;

8 requiredAccuracy = 9500; // 95%

9 apiForTesting = xx.yy.com/zz

10 }

11 function testAndPay(string linkOfModel)

public{

12 require(API_query(apiForTesting,

linkOfModel) >= accuracy);

13 msg.sender.transfer(taskReward);

14 }

15 }

Figure 10. A toy example of smart contract that guarantees task

reward payment.

We assume full nodes have consistent view as well as syn-

chronized time clock. Achieving a design with the same ro-

bustness against various attacks without relying on these as-

sumptions is our immediate future work. Besides, we store

all unconfirmed tasks in the block, however the block size is

limited to several megabytes. This limits the total number

of tasks that can be handled by our blockchain. Breaking

this limit is another future work.

Task publishers are assumed to be honest in this paper,

however this assumption can be relaxed if we adopt smart

contract capable of calling external APIs. For example, if

we have a function API query(string URL,string

link) that sends the link of a model link to a web-based

API URL and returns its accuracy against the test dataset

behind the API URL, we can let task publishers submit and

deploy a smart contract transaction that looks like Fig. 10.

It sends the task reward (1 ether) to the message sender if

s/he provides a link of well-trained model that yields a high-

enough accuracy (≥ 95%) after the API call to the pub-

lisher’s API for testing (e.g., xx.yy.com/test). Then, we can

let task publishers announce their tasks by deploying smart

contract transactions at the blockchain instead of announc-

ing them to full nodes. By doing so, task publishers are

unable to reject the task reward payment. Oraclize [3] can

be used to implement such external API call in Ethereum-

based smart contract transactions, which supports access to

any API on the Internet. However, further study needs to be

done to understand the security as well as burden to the full

nodes, the miners, and even the task publishers.
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