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Abstract

There has been a considerable amount of interest in ex-

ploring blockchain technologies for enabling marketplaces

of different kinds. In this work, we provide a blockchain

implementation that enables an “AI marketplace”: a plat-

form where consumers and data providers can transact data

and/or models and derive value. Preserving privacy and

trust during these transactions is a paramount concern. As

an enabling use case, we consider a transfer learning set-

ting. In this setting, a consumer entity wants to acquire a

large training set from different private data providers that

matches a small validation dataset provided by the con-

sumer. Data providers expect a fair value for their contri-

bution and the consumer also wants to maximize its benefit.

We implement a distributed protocol on a blockchain that

provides guarantees on privacy and consumer’s benefit. We

also demonstrate that our blockchain implementation plays

a crucial role in addressing the issue of fair value attribu-

tion and privacy in a trustable way.

We consider three different designs for a blockchain im-

plementation that trades off trust requirements on different

entities and the overhead in terms of time taken for comple-

tion of the task. The first design provides no trust guaran-

tees. The second one guarantees trust with respect to other

participants if the platform is trustworthy. The third one

guarantees complete trust with no requirements. Our exper-

iments show that the performance in the second and third

cases, with partial/complete trust guarantees, degrade by

roughly 2× and 5× respectively, compared to the baseline

with no trust guarantees.

1. Introduction

In recent times, the fields of Artificial Intelligence and

Machine Learning have revolutionized several industrial

domains, particularly those related to computer vision ap-

plications. This has become possible partly due to the

breakthroughs in modern hardware technologies such as

GPUs and partly due to the massive amounts of image data

that are collected by the media giants such as Google or

Facebook.

In cross-enterprise domains, such as health care, bank-

ing, insurance or travel, data is typically spread across mul-

tiple players who own and protect it. For instance, differ-

ent hospitals record data belonging to patients from differ-

ent demographic distributions, or customer insurance data

is spread across multiple insurance companies. In such sce-

narios, collaboration between various organizations in AI

or ML tasks leads to significant performance gains. How-

ever, due to the confidential nature of enterprise data, one

must protect its privacy and ownership. In particular, direct

sharing of data is not acceptable in such scenarios. These

strict privacy requirements lead to other challenging issues

such as, trust - ensure that no collaborating entity can cheat

in the model building process, fairness - entities should be

fairly rewarded based on their contributions, auditability -

various aspects of the overall AI process, including any po-

tential breaches in trust and fairness, should be verifiable by

an independent third party agent. Note that this kind of ver-

ifiability may be useful even in a non-collaborative setting

with privacy constraints. In this work, we demonstrate that

blockchain [30, 24, 4, 8, 19, 9, 6, 28] technology, which is

poised to revolutionize the financial sector [26], is not only

well suited but in fact indispensable in addressing the above

issues in an AI/ML model generation task.

Blockchain is a distributed ledger that allows multiple

entities to transact in a secure and immutable fashion. This

immutable ledger enables tamper-free provenance tracking

of a process such as the AI model training. One key con-

cern in using blockchain arises from issues surrounding la-

tency and throughput. Our main contribution is evaluation

of three different implementations that provide a trade-off

between the level of trust and system performance in the
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context of a machine learning task.

To demonstrate the design principles involved, our use

case is a protocol designed to enable an AI Marketplace.

First we define the basic setting of an AI Marketplace : a

consumer arrives with a small dataset, referred to as a “val-

idation” dataset, and wants to build a prediction model that

performs well on this dataset. However, the model train-

ing process requires huge amount of data, that it must ac-

quire from multiple private sources. Fundamentally, the

AI Marketplace must address a transfer learning problem,

where the distribution of data at different sources is con-

siderably different from each other and even from the vali-

dation dataset. The Marketplace must facilitate transactions

of data points from multiple sources towards the consumer’s

task by forming a training dataset that is close in some dis-

tance measure to the validation dataset. In the process, it

must enable monetization of the data in a trusted, fair man-

ner while preserving data ownership and privacy as much as

possible. Consider the following scenario in the health care

domain, as an example. Suppose the consumer is a newly

established cancer hospital and the data sources are cancer

institutions from different geographical locations across the

globe. The goal of the new hospital is to construct ML

models that, say, can predict early onset of some form of

cancer. The quality of the model depends on the demog-

raphy of its patients and therefore it is crucial to collect

data that matches a small validation set that is representa-

tive of the demography. The individual sources clearly have

widely different demographic data. The goal of an AI Mar-

ketplace is to enable private collection of a dataset sampled

from these sources that matches the demography of the new

institute and in the process attribute fair value to different

data sources.

In a companion work1, we proposed a distributed data

exchange protocol, mediated by an aggregator entity, that

enables the above AI Marketplace scenario. The protocol

has the following properties:

• With respect to communication to a specific data

owner, all other individual data sources and the con-

sumer have privacy protection in the form of differen-

tial privacy guarantees. This is accomplished by ensur-

ing that all communications (between the aggregator

and various data owners) take place using some ran-

dom hashes of data points.

• Facilitate transfer learning in the sense that the aggre-

gator entity acquires a summary training dataset that

is closely matched to the consumer validation dataset

in some statistical distance (our choice is Maximum

1The companion work is under submission and tackles only the pri-

vacy aspects providing formal differential privacy guarantees. However,

our current submission discusses the blockchain implementation including

many other aspects apart from privacy.

Mean Discrepancy). This is done by an iterative algo-

rithm that incrementally acquires data points (in some

hashed form).

• The aggregator, at the worst, can only learn the pair-

wise Euclidean distances between the points in the

training set collected.

In this paper, we demonstrate how implementing the

above protocol on a blockchain can enable us to address the

issues of trust, fairness, auditability and value attribution in

the above transfer learning setting. We first outline the pri-

vate protocol that involves exchanges of random hashes of

data points between the aggregator and data owners. We

just quote the results from the companion work that pro-

vides formal guarantees on privacy of the protocol. Then,

we discuss how to address the question of value attribution,

fairness and trust and how a blockchain implementation can

address these issues in the context of the above protocol

turning it into a marketplace effectively. We also provide

results from a real blockchain implementation and discuss

tradeoffs.

2. The Problem

Given K data owners with private datasets denoted by

D1, D2, . . . DK . Here, Di ∈ R
mi×n where mi denotes the

number of points and n denotes the dimension of each of

the data points. We also consider a validation set Dv ∈
R

m×n which is private to another entity called ‘consumer’.

The consumer entity wants to form a summary data set

Ds ⊆
⋃

i Di and |Ds| = p such that Ds is close to Dv

in the MMD (Maximum Mean Discrepancy) statistical dis-

tance defined below. The goal is to train a machine learning

model (complex enough) on the summary dataset that could

perform well on the test distribution that is identical to the

consumer’s validation set. In this work, we focus on the

collection of the summary dataset.

Definition: The sample MMD distance for finite

datasets D ∈ R
m1×n and D′ ∈ R

m2×n as follows:

MMD2(D,D′) =
1

m2
1

∑

x,x′∈D

k(x, x′)−
∑

x∈D,y∈D′

2k(x, y)

m1m2

+
1

m2
2

∑

y,y′∈D′

k(y, y′) (1)

where k(·, ·) is a kernel function underlying an RKHS (Re-

producing Kernel Hilbert Space) function space such that

k(x, y) = k(y, x) and k(·, ·) is positive definite. For

this work, we will use a Gaussian RBF kernel k(x,y) =
exp(−γ‖x− y‖22) with some constant γ > 0.

Our objective is to form a summary Ds of size p by col-

lecting points from all data owners. We maximize the fol-

lowing normalized MMD objective [15] as described be-

low. For fixed validation set Dv such that |Dv| = m and



the summary set Ds, the objective we seek to optimize is

J(Ds) given by:

J(Ds) =
∑

i,j∈Dv

k(yi, yj)

m2
−MMD2(Dv, Ds)

We have shown that the function is submodular under some

weak assumptions on the kernel function. Submodularity

[18, 10, 16, 11] permits a greedy algorithm where the points

with the best marginal gain can be added iteratively that

maximize the submodular objective. The general idea is for

an entity called aggregator to maintain the summary Ds.

Ideally, every data source k can look at J(Ds) and add the

best point xk such that xk = argmaxx∈Dk
J(Ds + x) −

J(Ds). The key issue is that if Ds is exposed at every iter-

ation, a given data source would be able to find out the data

points contributed by others violating privacy. We summa-

rize challenges when using any traditional greedy approach

and we list some of them here.

1. Data privacy: The raw data summary Ds cannot be

shared directly with data sources as this will result in

ownership loss.

2. Fair value attribution: We should ensure that the

platform is completely transparent in assigning value

based on the quality of data provided towards to the

target goal.

3. Trusted data sharing: Data providers should not be

allowed to cheat by providing wrong inputs in the

model building process.

4. Auditable and tamper-free tracking: The entire pro-

cess must be transparent and immutable in order to en-

sure trust and fairness.

3. Addressing the Privacy Issues: Our Protocol

In a companion paper, we have designed a distributed

protocol that addresses the concern of privacy with negli-

gible impact on the solution of the greedy algorithm. We

describe our protocol and explain how it is designed to ad-

dress privacy.

We adopt the following definition of differential privacy

in our work. On a high level, it means that two datasets that

differ in at most one point should not cause a differentially

private algorithm to produce output whose distribution that

is very different. We state the formal definition below:

Definition 1 The output of a randomized algorithm A(D)
is (ǫ, δ) differentially private with respect to the input

dataset D if for any two neighboring datasets D,D′ that

differs in one data point,

P (A(D) ∈ E) ≤ eǫP (A(D′) ∈ E) + δ. (2)

for all events E that can be defined on the output space.

Each data source must be able to compute the marginal

gain without the aggregator having to share the data points

directly. At the very least, the aggregator must expose some

random function of the current summary Ds that is dif-

ferentially private with respect to Ds such that each data

source can still compute the best marginal gain approxi-

mately. Now we describe the key idea behind our protocol

that addresses the privacy problem.

Key idea: Our protocol is essentially “a tale of two

hashes” where data sources use a hash function h1 to release

data points while the aggregator uses another hash function

h2 to suitably expose the current summary (of h1 hashes ac-

quired). h1 is not known to the aggregator (the random seed

is known only to the data sources) while h2 is known only to

the aggregator. However, the computations make progress

approximately as in the standard greedy algorithm.

Detailed description of the hashes2: Observe that the

kernel function is non-linear with two data point arguments.

It is difficult to evaluate a new point without sharing the ex-

isting summary datapoint due to the non-linearity. To solve

this problem, every data source has access to a random hash

function h1 and only hashes of these data points is shared

with the aggregator. Inspired by random Fourier features

method of Rahimi and Recht [21], we design h1 such that

h1(x)
Th1(y) ≈ k(x, y).

The above hash function reduces a non linear kernel

computation to a dot product computation resulting in sepa-

rability. The aggregator always obtains h1(x) from the data

sources. It only exposes an aggregate of the hashes corre-

sponding to points in the current summary Ds. This would

let any data source compute the marginal gain. This still

does not solve the issue of privacy. The aggregator cannot

expose a linear combination of h1 hashes as is. The reason

is that since the random hash function is known among all

data sources, observing subsequent releases any data source

could potentially compute data points contributed by others.

To ensure the privacy of aggregator’s release during any

communication with data owners, we use another random

hash function h2 such that for g = h2(h1(D)), gTh1(x) ≈∑
1

|D|
∑

y∈D k(x, y). Further h2 is chosen such that the

release g is differentially private with respect to D.

Description of the Protocol: Now, we describe the proto-

col in some detail in Algorithm 1 to make this paper self-

sufficient.

Initialization: The protocol is initiated with the con-

sumer using the hash function h1 to compute the hashed

validation dataset h1(Dv) and sending it to the aggregator.

Iteration: In each iteration, the following sequence of

steps repeats:

1. Aggregator uses the hash function h2 on two datasets:

2Although important from the protocol’s point of view, a reader may

choose to skip the detailed description and justification of using these two

hashes.



Algorithm 1 Description of the protocol.

1: Input: Datasets Di for i ∈ [K], validation dataset

Dv , Initial seed set Dinit and a budget p, Parameters:

{ǫv, {ǫℓ,T }
p
ℓ=1}.

2: Output: Summary Ds: Ds ⊆ ∪i∈[K]Di such that

|Ds| = p.

3: Aggregator is initialized with the validation dataset

Dv , and the initial seed summary set Dinit, i.e. Ds ←
Dinit.

4: for ℓ = 1 . . . p do

5: if ℓ = 0 then

6: Aggregator broadcasts g̃ = h2(h1(Dv), ǫv).
7: end if

8: Aggregator broadcasts gℓ = h2(h1(Ds), ǫℓ,T ).
9: for i = 1 . . . n do

10: Data owner i computes its “bid”: bi =
maxx∈Di

gT
ℓ h1(x)− g̃Th1(x)

ℓ
ℓ+1 . Let xi∗ be the

datapoint corresponding to the bid bi.

11: Data owner i sends bid bi to the aggregator. The

datapoint is not sent yet.

12: end for

13: Aggregator collects all the bids and chooses the best

data owner i∗ = argmaxi bi.

14: Aggregator requests the datapoint xi∗ , receives it

and verifies the bid bi. Upon verification, Ds ←
Ds ∪ xi∗ .

15: end for

16: return Summary Ds −Dinit.

1) the current summary dataset (initially empty) con-

taining h1 hashes of data points, 2) hashed validation

dataset sent by the consumer. The aggregator then

broadcasts these two hashes to all the data providers.

2. Data providers in turn use these hashes to compute

the optimal point that provides the maximum marginal

gain towards the MMD objective. Data provider i

computes its marginal improvement value as bid bi.

3. Aggregator collects only the bids from various partic-

ipants, and not the actual hashed data points. It then

chooses the “winning bid” say bw and then requests

the corresponding hashed data point h1(xw).

4. Finally, the aggregator verifies that the bid value cor-

responds to the hashed data point provided and if so,

adds it to the current summary set.

This process continues until enough points are collected

in the summary set. We have shown the following guarantee

in our companion work:

Theorem 1 (Informal) There exists randomized hash func-

tions h2(·) and h1(·) such that the protocol in Algorithm 1

has the following privacy properties:

a) For any 1
e
> δ̃ > 0, the releases of the aggregator dur-

ing Algorithm 1 to any data owner i is (ǫ, δ̃)-differentially

private over all the iterations/epochs with respect to the

datasets ∪j 6=iDi. Similarly, we have (ǫ, δ̃)-differentially

privacy over all the iterations with respect to validation set

Dv .

b) J(Ds) ≥ (1 − e−1)J(OPT ) −∆, where OPT is opti-

mal summary and ∆ = O( log p
√
ln d√

d
) + 1

ǫ log p
< 1.

c) The aggregator can at the worst learn only pairwise Eu-

clidean distances between points in Ds.

Remark: The aggregator can only learn pairwise dis-

tances between points in Ds ∪ Dv because h1 is random

with some privacy properties and its seed is not known to

the aggregator. However, this is not a formal differential

privacy guarantee. It appears that providing formal differen-

tial privacy guarantees with respect to the knowledge of the

aggregator is extremely difficult or even infeasible as points

are being collected for further training in some hashed form.

4. Addressing Trust, Fairness and Auditability

Issues: Role of Blockchain

Before describing the role of blockchain in addressing

the remaining issues, we first note that Hyperledger Fab-

ric [24, 4], provides access control that can be used to re-

strict the access of hashed data assets to various partici-

pants. For example, the data points hashed with h1 must

be accessible to only to the aggregator and the owner of that

data point. This will ensure that there is no privacy loss

since the hash function h1 is unknown to the aggregator but

known to other participants. Further, aggregator’s releases

are auditable and it can be ensured that the releases happen

through the h2 function only thereby ensuring privacy of

the aggregator releases.

Fair Value Attribution: One natural way of value attri-

bution is to assign value to a data owner that is proportional

to the sum of its winning bids. The crucial point to note

is that, in order to provide auditable/trusted value attribu-

tion, we must have the ordered winning bids and their cor-

responding hashed datapoints. The reason is that the MMD

objective is submodular and hence marginal gains (bids) is a

function of what has been acquired before. For example, the

same data point has a greater value if chosen earlier. There-

fore, validating the winning bid and their order is crucial. In

fact, we provide for a set of very general value attribution

schemes. For example, due to fairness considerations, ev-

ery participant may agree to choose a re-ordering in which

every participant is equally well represented in the first say

30% percent of the points chosen. The final chosen set of

points will not change but the value attribution can be made

more fair. Such post-process value attribution schemes are

possible due to tracking of the protocol’s ordering of bids.



In this, we leverage immutable tracking, a key blockchain

attribute.

The outstanding concern is ensuring that no data owner

cheats. We ensure this through our design which we discuss

in the subsequent sections.

5. Architecture Design

The transactional logic of a blockchain application is

contained in scripts called smart contracts or chaincode.

Computations performed on blockchain, through these

smart contracts, are typically slower, since they must be

performed by multiple endorsing peers, each potentially

querying multiple assets from the ledger and then, finally,

reaching a consensus on the computation. This motivates

us to design our platform such that most of the computa-

tional heavy-lifting is done off the blockchain and keep the

blockchain component light-weight. In the next section,

we will describe different experiments that have increas-

ing complexity of the blockchain network starting from “no

trust” to “completely trusted” designs. By trust, we mean

that an independent auditor can detect any discrepancies in

participant actions after the protocol is complete.

We consider three different designs for implementation:

1. No-trust: This is the most basic case where the

blockchain component is not present. This case, where

there is no trust guaranteed, can be treated as the base-

line for performance.

2. Semi-trust: This is a minimal design the comes with

some trust guarantees. In this case, it is assumed that

the aggregator is trusted and then, it can be ensured

that no other participant can cheat.

3. Complete-trust: In this setting, we make no assump-

tions on the trust-worthiness of any of the participants

including the aggregator. This scenario guarantees

complete trust, fairness and tamper-free tracking but is

the most expensive design from the performance per-

spective.

Our design involves two main components: an off-chain

component and an on-chain component. The off-chain

component is responsible for the bulk of the computation

that needs to be performed by different participants. The

on-chain component is used to record communications be-

tween different participants. We will expand on these com-

ponents below. Refer to the Figure 1.

Off-chain Component: The off-chain component com-

prises of entities corresponding to a consumer, an aggre-

gator, data providers and optionally, an auditor. These en-

tities are implemented as REST servers. Consumer REST

server is owned by the consumer and supports services to

compute hashed validation set using the hash function h1

and then record it on the blockchain ledger. Aggregator

REST server, owned by the aggregator, supports functions

to compute the hash function h2 on data sets (such as the

summary set or the hashed validation dataset), conduct an

“auction” operation over the marginal gain bids from differ-

ent data providers to choose the winner bid, receive & ver-

ify the winning hashed datapoint and update the summary

to include the new hashed datapoint.

Each data provider owns an instance of the data provider

REST server. These instances support APIs for computing

the marginal gain bids during each iteration using hashed

aggregates from the aggregator and their private training

data set. It also supports services to submit hashed point

corresponding to the winning bid to the aggregator. All the

services offered by above participants record the computed

outcomes on the blockchain so that the entire process is im-

mutably tracked and hence is auditable.

On-chain Component: Our blockchain network has four

main logical components, that we will describe in detail

now.

Organizations: In a blockchain network, organizations

represent the various participating entities in the AI market-

place. Thus each of the aggregator, consumer, data provider

and auditor, belongs to an organization in the solution. The

role of an organization is to enable the network to identify

and authenticate respective participants. An organization

generates its own cryptographic certificates/keys and owns

a set of peers. These peers could include various anchoring

peers, endorsing peers or committing peers, and play a cen-

tral role in endorsement and consensus phases of validating

a transaction.

Assets: In a typical permissioned blockchain network

such as Hyperledger Fabric, assets refer to data structures

that are essential in tracking the underlying process. Col-

lectively, these assets are designed such that they fully cap-

ture the provenance graph as shown in Figure 2. Therefore,

creation and recording of these assets at various steps of the

protocol enables a post-process audit that can exactly recre-

ate the graph in Figure 2. This is immutable and therefore

enables verification of the entire process. Our solution in-

cludes three generic types of assets that we now describe.

1. HASHEDDATA: As mentioned before, our protocol

uses two different random hash functions, i.e., h1 and

h2. We use the generic HASHEDDATA asset to record

the output of these functions applied over different

datapoints. Accordingly, there are two concrete real-

izations of this asset namely HASHEDDATAONE and

HASHEDDATATWO to capture outputs from these two

functions.

2. BID: This asset captures the details of bids generated

by various data providers, in Step 2 of the protocol in

Section 3.



Figure 1. Architecture of Blockchain AI Marketplace

Figure 2. Provenance Graph Captured by the Assets on Blockchain Network

3. GENERICOPERATION: This asset is used to capture

the input/output structure of any action performed by

various participants, during the protocol. In the prove-

nance graph, these assets capture the links between

nodes. This asset is extended to six specific types:

HASHONEOP: Captures the inputs/outputs and other

related details of each h1 computation. This asset is

created in the initialization phase and Step 3 of the pro-

tocol. The inputs of this operation include a reference

to the input dataset, participant and iteration. The out-

put is an HASHEDDATAONE asset.

HASHTWOOP: Captures the inputs/outputs and other

related details of each h2 operation. This asset is cre-

ated in the Step 1 of the protocol in Section 3. The in-

put is an asset HASHEDDATAONE, while the output is

a reference to the corresponding HASHEDDATATWO

asset generated.

GENBID: Captures the bid generation operation by

different data providers, in Step 2 of the protocol

in Section 3. The inputs involved are HASHED-

DATATWO assets corresponding to the current sum-

mary and hashed validation dataset respectively, while

the output captured is a reference to the BID asset.

AUCTION: Captures the details of auction operation,

in Step 3 of protocol in Section 3. The inputs are the

BID assets from different data providers, while the out-

put is the BID asset corresponding to the winning bid.

SENDHASH: Created by data providers, in Step 4 of

the protocol in Section 3, to capture the operation of

sending out the hashed data point corresponding to the

winning bid of the auction operation in each iteration.

The input is the winning BID asset and the output is the

HASHDATAONE asset corresponding to the winning

data provider’s data point.

AGGREGATION: Created by the aggregator, in Step 4

of the protocol in Section 3, to capture the aggrega-

tion of the winning hashed data point with the current

summary dataset. The inputs include assets HASHED-



DATAONE of the current summary and the HASHED-

DATAONE of the winning hashed data point and the

output is the updated current summary asset HASHED-

DATAONE.

Chaincode: In a blockchain network, chaincode contains

the asset definitions and logic to operate on them. Depend-

ing on the type of operation invoked by participants, a sub-

set of endorsing peers execute the corresponding functions

in the chaincode and generate results. If they agree with

each other on the generated results in the assets are modi-

fied as per the transaction specification and committed to the

blockchain ledger. Although, in general, chaincode could

be quite complex, as a guiding principle, we limit our chain-

code to simple “update and record” type operations on the

above assets. This allows us to delegate the heavy com-

putation to off-chain components, while still ensuring trust,

fairness and tamper-free tracking of the protocol.

6. Implementation

We now present the implementation details that would

enable our protocol to work in the semi-trust and complete-

trust scenarios.

Semi-trust: In this scenario, our off-chain components

communicate directly with each other via REST API calls,

while recording the assets created in the process on the

blockchain ledger. As an example, consider the auction op-

eration performed in each iteration to get the incrementally

“best” data point. During each such operation, the aggre-

gator broadcasts the h2 aggregate of the summary dataset

to the participants and subsequently creates an asset of type

HASHEDDATATWO containing this aggregate value. Each

data provider receives this broadcasted aggregate value and

uses it to compute its current bid. They record these bids

on the blockchain. Subsequently, the aggregator chooses

the winning bid, records it on the blockchain and finally, re-

quests the winning data provider for the hashed datapoint

corresponding to its bid. The data provider sends out the

hashed data point to the aggregator and records the corre-

sponding BID asset to record the hashed datapoint. The key

point to note is that such tracking on blockchain will let us

figure out if there is any dispute in the communicated assets.

This implies that, if the aggregator alone can be trusted, our

implementation in this scenario will ensure that no other

participant can cheat.

Complete-trust: In this scenario, while the computa-

tion is still performed off-chain, the communication hap-

pens through queries to blockchain ledger. To illustrate the

point, let us re-consider the auction operation and discuss

the implementation in this scenario.

As before, the aggregator computes h2 aggregate of

the summary set (off the chain) and records the HASHED-

DATATWO asset on the blockchain. The participants in turn

query this aggregate from the blockchain ledger and use it

to compute the bids. Note that this will allow us to trace

exactly what was shared between the data providers and the

aggregator in a completely trusted manner.

Subsequently, the computed bids are again recorded on

the blockchain, from which they are queried by the aggre-

gator, who in turn chooses the winning bid and records it on

the blockchain ledger. The winning data participant is then

notified via hyperledger’s event handler, who then updates

the winning bid with the corresponding hashed data point.

In conclusion, the crucial insight here is that, while in the

semi-trust setting the communication between participants

is not known, in the complete-trust there is an immutable

record of the exact communication between different par-

ticipants. Thus, for this scenario we completely guarantee

that the process is trusted.

Fairness: Given that our process is “trusted” in both the

scenarios, under reasonable assumptions in the semi-trust

case, we now discuss how one can fairly attribute value to

different data providers. For our protocol, we can define

“value” of a data point as the marginal improvement in the

MMD objective upon its addition. Since the (in fact it’s

negation) MMD objective is submodular, the value of a dat-

apoint crucially depends on when it was chosen. In particu-

lar, the value of the point is higher (or at least equal) if it is

chosen in the beginning iterations than the later iterations.

Thus an immutable order of chosen points is crucial in their

value attribution and hence to the notion of fairness. One

of the key features of blockchain is that chronological or-

der of transactions is preserved in a completely tamper-free

manner. Thus, we use blockchain to enable fairness in our

solution.

7. Experiments and Results

We now describe the experimental setup and perfor-

mance evaluation of the three design paradigms explained

in Section 6, namely: no-trust, semi-trust and complete-

trust. The no-trust setting has zero “performance overhead”

due to the trust constraints, as the blockchain component is

empty. On the other hand, in the complete-trust setting, par-

ticipants communicates through the blockchain and there-

fore, have to wait at multiple steps for the blockchain to

commit transactions. Since, committing of transactions in-

volves complex endorsements and consensus protocols, it

is expected to be considerably slow. On the positive side,

as explained before, this will guarantee trust in an abso-

lute sense. The semi-trust setting is a compromise between

the two worlds – performance and trust. Here, we use a

fire and forget approach where participants record their up-

dates on the blockchain and move on without waiting for

transactions to commit. The communication happens out-

side blockchain but participants records their updates on the

blockchain. As described before, if the aggregator is as-



sumed to be trusted, this process will guarantee trust with

respect to all other participants.

The Experimental Setup: Our experimental setup involves

a consumer, an aggregator and three data providers. We

use a real world dataset from Allstate insurance company

which was published as part of a Kaggle Competition [1].

We adapt the dataset somewhat to fit our distributed setting.

In an accompanying paper, we report our findings on the

accuracy guarantees of our protocol. In this paper, we are

interested in the throughput performance of our system un-

der different trust requirements, i.e., no-trust, semi-trust and

complete-trust. We briefly describe the dataset here.

The Allstate dataset: The dataset is comprised of insur-

ance data belonging to customers from two states namely,

Florida and Connecticut. We distribute the Florida data

among all the three data providers uniformly at random.

From the Connecticut dataset, we take 70% of the data and

allocate it completely to the first data provider. This creates

a skew between the data providers. The validation dataset is

comprised exclusively of the Connecticut data to simulate

the situation that the consumer needs to build a predictive

model for customers from that state.

Results: For each of the three scenarios, namely, no-trust,

semi-trust and complete-trust, we run several experiments

with varying summary set sizes as specified by the set

[1000, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000].

Our results are shown in the Figure 3.

Figure 3. Performance comparison between different trust scenar-

ios.

The results show that if the time taken by the baseline

case of no-trust scenario is X mins, the semi-trust case

takes ≈ 2X mins and the complete-trust scenario takes

≈ 5X mins. It should be noted that our protocol is fairly

complex from a tracking perspective. Indeed, each iteration

of the protocol creates multiple assets and records them on

blockchain. In conclusion, we empirically demonstrate that

blockchain can be used, at a reasonable overhead, to guar-

antee different levels of trust, fairness and auditability even

in complex machine learning protocols.

8. Related Work

In the machine learning literature, there is a lot of exist-

ing work on privacy-preserving classifier training on a sin-

gle private dataset [13, 7, 23, 22, 14, 5, 12, 29, 2, 20, 27].

One of the most notable in this line of work is the idea of

adding noise to stochastic gradient iterations to preserve pri-

vacy when learning a model using stochastic gradient de-

scent [23, 2, 22].

When there are many data sources to learn from, an ap-

proach called Federated learning [17] was proposed where

gradients from a very large number of data sources are com-

pressed and sent to a server where they are fused into a

single model update. This focused on communication ef-

ficiency. Recent work established that this procedure could

be made even differentially private with respect to the vari-

ous data sources [3]. This line of work is primarily intended

on learning a single model from data stored on many edge

devices (like mobile phones etc.).

However, our setting differs from the above in various

ways: a) We consider a transfer learning setting where a

training set needs to be assembled that matches the valida-

tion data set. Uniformly randomly drawing data points (like

in the above approaches) is not effective b) Ours is in an

enterprise context, where the number of sources is not very

large, however each source could potentially have very dif-

ferent value attribution that must be evaluated in a trusted

manner without compromising on privacy.

Another interesting recent work that is very related on

a high level is [25]. In this work, the authors envision

blockchain based electronic marketplaces where buyers and

sellers can transact with guarantees on trust and privacy.

This is geared towards the e-commerce space. Our work

is the first step towards enabling an AI marketplace where

entities transact model/data assets in a private and trusted

manner.

9. Conclusion

In this work, we have demonstrated the use of blockchain

to address issues, such as trust, privacy, fairness in value at-

tribution and auditability, in a collaborative transfer learning

setting. This is an enabling use case for the AI Marketplace

which is a platform for entities to transact data/models. We

demonstrated various design choices for a blockchain im-

plementation of a transfer learning protocol that trades off

trustworthiness with performance in terms of completion

time. We showed that design choices that ensures complete

trust and partial trust require 5× and 2× more time respec-

tively compared to the baseline that guarantees no trust.
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