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Abstract

It is well known that deep learning approaches to face

recognition suffer from various biases in the available train-

ing data. In this work, we demonstrate the large potential

of synthetic data for analyzing and reducing the negative

effects of dataset bias on deep face recognition systems. In

particular we explore two complementary application areas

for synthetic face images: 1) Using fully annotated synthetic

face images we can study the face recognition rate as a

function of interpretable parameters such as face pose. This

enables us to systematically analyze the effect of different

types of dataset biases on the generalization ability of neu-

ral network architectures. Our analysis reveals that deeper

neural network architectures can generalize better to un-

seen face poses. Furthermore, our study shows that current

neural network architectures cannot disentangle face pose

and facial identity, which limits their generalization ability.

2) We pre-train neural networks with large-scale synthetic

data that is highly variable in face pose and the number of

facial identities. After a subsequent fine-tuning with real-

world data, we observe that the damage of dataset bias in

the real-world data is largely reduced. Furthermore, we

demonstrate that the size of real-world datasets can be re-

duced by 75% while maintaining competitive face recogni-

tion performance. The data and software used in this work

are publicly available 1.

1. Introduction

Deep face recognition systems [22, 21, 19] have

achieved remarkable performances on challenging datasets,

due to advances in deep learning [18] and the availability

of large-scale training data [10, 13, 25]. However, training

datasets for face recognition are biased regarding nuisance

variables, such as the face pose or the illumination condi-

tions, because they were mostly collected from the web. It

1https://github.com/unibas-gravis/parametric-face-image-generator

is well known that such biases have severe negative effects

on the generalization performance of machine learning sys-

tems [24, 14, 23, 17]. Therefore, the face recognition com-

munity faces two fundamental problems: 1) It is difficult to

systematically analyze the effects of dataset bias on the gen-

eralization performance, since a fine-grained annotation of

nuisance variables is practically unfeasible on large-scale

datasets. 2) Deep face recognition systems do not gener-

alize well across benchmarks, due to the severe sampling

biases in public datasets (as illustrated in Section 4). This

causes well-known problems such as a lack of diversity and

fairness in face recognition [15]. It is unclear how such

damages from dataset bias can be undone.

We propose to overcome both problems by leveraging

synthetic face images which are generated with a paramet-

ric 3D Morphable Face Model [3, 7]. In particular, we in-

troduce a data generator which creates synthetic face im-

ages with precise annotation of parameters that define the

facial identity, such as shape and texture, but also of nui-

sance parameters, such as light, camera and head pose. In

our experiments, we explore two application areas for syn-

thetic images in the context of face recognition:

• Systematic analysis of the damage from dataset

bias. We use fully annotated synthetic face images to

study the face recognition rate as a function of nui-

sance variables such as face pose. This enables us

to systematically study the effect of different types of

dataset biases on the generalization ability of neural

network architectures.

• Pre-training with synthetic data. We generate large-

scale synthetic data for pre-training DCNNs and sub-

sequently fine-tune them with real-world data. The

parametric nature of the generator enables us to design

the distribution of nuisances in the synthetic data such

that is it highly variable in nuisance parameters that are

well known to be biased in real-world datasets (such as

pose and facial identity).
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Based on our extensive experimental evaluation we gain

several novel insights about the effects of dataset bias on the

generalization ability of DCNNs at the task of face recog-

nition: i) It is well known that DCNNs with the VGG-16

architecture can generalize better than with the AlexNet ar-

chitecture at face recognition tasks. Using the presented

methodology we reveal that VGG-16 outperforms AlexNet,

because it can much better generalize to unseen face poses,

although it has significantly more parameters (Section 3.2).

ii) In a real world scenario, not all identities in the training

data share the same distribution of face poses. We simulate

this setting and observe that DCNNs cannot disentangle the

facial identity from the face pose, which limits their abil-

ity to generalize from biased data (Section 3.3). iii) Using

synthetic face images for pre-training, we can enhance the

generalization performance of deep neural networks consis-

tently across several benchmark datasets (Section 4.3). iv)

The amount of real-world data needed to achieve competi-

tive performance is reduced considerably (Section 4.3) after

pre-training with synthetic data. Thus, offering a means to

concentrate data collection efforts to less but higher quality

data in terms variability.

Curiously, despite the success of 3D Morphable Face

Models at facial image generation, we are not aware of any

previous work that uses this effective and easily accessible

approach to analyze and enhance face recognition systems.

2. Face Image Generator

We use a fully parametric generator for the synthesis of

face images with detailed annotation of the most relevant

nuisance transformations. Our generator is based on a 3D

Morphable Model [3] of face shape, color and expression.

In particular, we use the Basel Face Model 2017 (BFM-

2017) [7] which is learned from 200 neutral face scans and

160 expression deformations. Natural looking, three dimen-

sional faces with expressions can be generated by sampling

from the statistical distribution of the model. In order to

achieve a natural illumination in the synthetic face images,

we sample the spherical harmonics illumination parameters

from the Basel Illumination Prior (BIP) [5]. Using com-

puter graphics we generate a 2D image from a 3D face, sam-

pled from the model. We use a non-parametric background

model that chooses random background textures from the

data provided in the describable texture database [4]. The

face image generator is built on the scalismo-faces software

framework [20]. The advantage of using 3DMMs for data

synthesis over related generative face models such as e.g.

GANs [2, 8] is that the 3DMM provides full control over

disentangled parameters that change the facial identity in

the terms of shape and albedo texture as well as pose, il-

lumination and facial expression. The proposed generator

enables us to generate infinite amount of face images with

detailed labeling of the most relevant sources of image vari-

Figure 1: Synthetic face images sampled from our data gen-

erator. The facial identity in each row is the same. The top

row illustrates the precise control over image parameters,

where only the yaw pose is changed while all other nuisance

parameters are fixed (as used in Section 3). The bottom row

illustrates synthetic faces generated by randomly sampling

all nuisance variables (as used in Section 4).

ation. Example images synthesized from the generator are

illustrated in Figure 1. Using the fine-grained annotation of

the synthetic data enables us to systematically analyze dif-

ferent DCNN architectures on a common ground at the task

of face recognition in the next section. Subsequently, we

study how the generalization performance is affected when

large-scale synthetic data is used for pre-training in Section

4.

3. Analyzing the Damage of Dataset Bias

The fine-grained control over the image variation in the

training and test data enables us to decompose the total

recognition rate (TRR) as a function along the axis of nui-

sance transformations. With this tool at hand, we study how

biases in the training data, in particular missing viewpoints

of a face, affect the generalization of DCNNs to unseen data

at test time.

3.1. Experimental Setup

Figure 2 schematically illustrates our experimental

setup. We generate synthetic images of different facial iden-

tities and transform them along the axes of the nuisance

transformations that we want to study (Figure 2 (I)). In

this work we focus on studying the effects of biases in the

face pose only. We simulate strong background variations,

which are common in real world data, by sampling random

textures from our empirical background model. All other

nuisance parameters are fixed. We illustrate samples of the
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Figure 2: Experimental setup for our empirical analysis of the effect of biased training data on the generalization ability of

different DCNN architectures. (I) We generate synthetic identities with a 3D Morphable Face Model and render them in

different face poses. We simulate background variation by overlaying the faces on different textures. (II) We bias the training

data by removing certain viewpoints from the training set. (III) We train common DCNN architectures on the biased training

data. (IV) The annotation of the test data makes possible to analyze the recognition rate as a function of the face pose. It

provides fine-grained information about the generalization ability of the different DCNN architectures.

face image generator with the nuisance transformations that

we consider in our experiments in Figure 2. After splitting

the synthetic data into a training and test set we bias the

training data e.g. by removing certain face poses (Figure 2

(II)). Subsequently, we train different DCNN architectures

on the biased training data (Figure 2 (III)) and evaluate

how well the DCNNs generalize to the unbiased test data.

The fully parametric nature of the synthetic data, allows us

to evaluate the recognition rate as a function of the biased

nuisance transformation (Figure 2 (IV )).

In our experiments, we focus on comparing DCNNs with

a significantly diverging performance at face recognition

(AlexNet and VGG-16), as our methodology makes pos-

sible to study why exactly one model performs better than

the other. We test these networks at the task of face classifi-

cation. Thus, the task is to recognize a face from an image,

for which the identity is known at training time. Another

common way of performing face recognition is to use the

neural representation of the penultimate layer and to per-

form recognition via nearest neighbor in this feature space

[19]. However, we focus on diagnosing the performance of

DCNNs on the task that they were explicitly optimized on.

Parameter Settings. The size of the images is set to

227× 227 pixels. We train the DCNNs with stochastic gra-

dient descent (SGD) and backpropagation with the Caffe

deep learning framework [12] via the Nvidia DIGITS train-

ing system. Every DCNN is trained from scratch for 30
epochs with a base learning rate of l = 0.001 which is mul-

tiplied every 10 epochs by γ = 0.1. We use L2 regulariza-

tion with a weight regularization parameter of λ = l
100

. If

not stated otherwise, the data is uniformly sampled across

the pose and illumination axes in the specified ranges. The

training data consists of 30 different identities, which we

obtain by randomly sampling the shape and appearance pa-

rameter of the 3DMM. The images in the test set always

reflect an unbiased sampling of the nuisance transformation

that we want to study. For the yaw pose, we sample the pa-

rameter space at intervals of π
32

radian and for the direction

of light at π
16

radian. Each face image is overlayed on 50
different background textures in the training as well as in

the test set.

3.2. Common bias over all facial identities

In this section, we limit the range of nuisance transfor-

mations in the training data and analyze if DCNNs can gen-

eralize to the unobserved nuisance transformations. We ap-

ply the same bias to all identities in the training set (see

example in Figure 5a).

EXP-1: Bias in the range of the yaw pose. In the fol-

lowing experiments, we limit the range of the yaw pose in

the training data. The light direction is fixed to be frontal.

Figure 3a illustrates the recognition performance as a func-

tion of the yaw pose, when faces in the training set are

restricted to a yaw pose range of [−45◦, 45◦]. Both DC-

NNs achieve high recognition rates for the observed yaw

poses. However, the recognition performance drops signif-

icantly when faces are outside of the observed pose range.

The same generalization pattern can be observed when re-

stricting the faces at training time to a yaw pose range of

[−90◦, 0◦] (Figure 3b). In both experiments, the VGG-16

network achieves higher overall recognition rates, because

it generalizes better to larger unseen yaw poses.

EXP-2: Sparse sampling of the yaw pose. In Fig-

ure 4 we illustrate the effect of sampling the training data

more sparsely along the axis of the yaw pose. We first bias

the training set to yaw poses of −45◦ and 45◦. VGG-16
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(a)

(b)

Figure 3: Effect of restricting the range of yaw poses
at training time. (a) Yaw pose restricted to the range
[� 45� ; 45� ]. AlexNet TRR:77:6%; VGG-16 TRR:85:9%.
(b) Yaw pose restricted to the range[� 90� ; 0� ]. AlexNet
TRR: 81:8%; VGG-16 TRR:86:9%. In both setups the
DCNNs cannot recognize faces well from previously un-
observed views. VGG-16 achieves a higher TRR due to the
better generalization to large unseen yaw poses.

achieves a TRR of70:5% at test time, whereas AlexNet
only achieves51:8%. Figure 4a illustrates how these TRRs
decompose as a function of the yaw pose. VGG-16 achieves
constantly higher recognition rates across all poses. Most
signi�cantly, it is more than twice as good as AlexNet at
recognizing frontal faces. If we add frontal faces at train-
ing time (Figure 4b) VGG-16 achieves a TRR of81:9%,
whereas AlexNet achieves69:3%. Remarkably, VGG-
16 is now able to recognize all faces correctly across the
full range of [� 45� ; 45� ], whereas the recognition rates
of AlexNet still drop signi�cantly for poses in between
[� 45� ; 0� ] and[0� ; 45� ]. Thus, the architecture of VGG-16
enables the DCNN to generalize well from only a few well
distributed example views to other unseen views, although
it has more parameters than AlexNet.

3.3. Disentanglement bias across facial identities

In the previous section, we have observed that DCNNs
generalize well as soon as a nuisance transformation is suf-

(a)

(b)

Figure 4: Effect of sparsely sampling the yaw pose of faces
at training time. (a)Yaw pose sampled at� 45� and 45�

(AlexNet TRR: 51:8%; VGG-16 TRR:70:5%); VGG-16
generalizes much better to frontal poses than AlexNet. (b)
Yaw pose sampled at� 45� , 0� and 45� (AlexNet TRR:
69:3%; VGG-16 TRR:81:9%); VGG-16 generalizes per-
fectly across the full range[� 45� ; 45� ], whereas AlexNet
still cannot generalize in between the sampled poses.

�ciently represented foreachidentity in the training. When
this was not the case, the generalization performance de-
creased signi�cantly. In this section, we study if DCNNs
are capable of generalizing if the nuisance transformation is
densely re�ected in the training data acrossmultipleidenti-
ties. In particular, each face identity in the training is varied
in a certain interval of the yaw pose. However, across all
identities the full yaw pose variation is re�ected. In Fig-
ure 5b we schematically illustrate how this setup compares
to the one from the previous Section 3.2 (Figure 5a). We
call this type of biasdisentanglement bias, since if DCNNs
are capable of disentangling the image variation induced by
the yaw pose from the face identity, then they would be able
to generalize well.

EXP-3: Disentanglement of pose variation.In this ex-
periment, half of the identities in the training set vary in the
yaw pose range of [� 90� ; 0� ]. We refer to those identities
as the set Left-identities. The other half of the faces varies
in the range[0� ; 90� ] (Right-identities, Figure 5b). Figure 6

4










