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Abstract

This paper addresses the effect of gender as a covariate

in face verification systems. Even though pre-trained mod-

els based on Deep Convolutional Neural Networks (DC-

NNs), such as VGG-Face or ResNet-50, achieve very high

performance, they are trained on very large datasets com-

prising millions of images, which have biases regarding de-

mographic aspects like the gender and the ethnicity among

others. In this work, we first analyse the separate perfor-

mance of these state-of-the-art models for males and fe-

males. We observe a gap between face verification perfor-

mances obtained by both gender classes. These results sug-

gest that features obtained by biased models are affected

by the gender covariate. We propose a gender-dependent

training approach to improve the feature representation for

both genders, and develop both: i) gender specific DCNNs

models, and ii) a gender balanced DCNNs model. Our re-

sults show significant and consistent improvements in face

verification performance for both genders, individually and

in general with our proposed approach. Finally, we an-

nounce the availability (at GitHub1) of the FaceGenderID

DCNNs models proposed in this work, which can support

further experiments on this topic.

1. Introduction

Over the last years, face recognition is by far the bio-

metric technology that has attracted the most attention from

research and industry. Face recognition technology is nowa-

days used in many applications, from smart phone access to

covert analysis of crowds using CCTV cameras [1]. Since

1https://github.com/BiDAlab/FaceGenderID

2014, breakthroughs in face recognition technology have

been improving the recognition performance, now (at least)

in line with humans thanks to the usage of deep convolu-

tional neural networks (DCNNs) [2, 3, 4]. Also, the public

availability of competitive DCNNs models, such as, VGG-

Face [5] or ResNet-50 [6, 7], trained on databases compris-

ing millions of face images [5, 7, 8, 9, 10] has boosted the

research in this area.

Even though these DCNNs models already achieve re-

ally impressive high face recognition performance, some

weaknesses remain. This is the case of the bias of face

recognition performance, regarding covariates such as the

gender, the ethnicity, or the age [11, 12]. As an example, a

recent study [13] showed how commercial face recognition

systems achieve better performance for lighter individuals

and males and worse for darker females. Authors argue

that the reason for these bias in face recognition technol-

ogy origins from the datasets used for their training, which

even if they are very large in number of images, they have

a higher number of face images from Caucasian ethnicity

and males. This is for example the case of VGGFace2

database [7], with 3.31 million images from which 74% are

from Caucasians and 60% are males. Also, several pub-

lished studies have confirmed the differences in recognition

performance for different population demographic groups

[12, 14, 15, 16].

As a response to this problem, new face datasets are

appearing in the research community. Two examples are

the DiveFace database2 [17], which is an annotated sub-

set from Megaface and contains balanced sets of face im-

ages regarding gender and three ethnic groups. Also, the

DiF database [18] contains one million faces with a large

2Available at: https://github.com/BiDAlab/DiveFace
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Figure 1. Architecture of our proposed approach for gender specific DCNNs models for face verification.

diversity and available labels for age and gender. Other

face databases, with annotations for facial attributes can be

found in [19, 20, 21].

On the other way, some works have reported that soft

biometrics (such as the gender, ethnicity or age) can im-

prove the performance of face recognition systems, such as

[15, 22, 23]; and more recently in [20], fusing at the score

level matching scores from a DCNNs face recognition sys-

tem and scores from a system based on a bag of soft biomet-

rics. Similarly, several other works explore facial soft bio-

metrics [24, 25, 26, 27, 28] and body based soft biometrics

to improve biometric systems [29, 30, 31]. In an original

way, a recent work [17] proposed a method to remove the

gender and ethnicity information from DCNN-based feature

embbeddings, without dropping the face recognition perfor-

mance. This method is claimed to avoid algorithmic dis-

crimination and to comply with data protection regulations.

In this work, we propose to perform a gender-dependent

training approach to improve the face verification perfor-

mance of two very popular DCNNs models: VGG-Face

and ResNet-50. In particular, we propose to use triplet loss

learning algorithm [3, 5] to train both: i) gender specific

DCNNs models, and ii) a gender balanced CNN model in

order to develop a global face recognition system, which

can make use of these three DCNNs models depending on

the gender estimation label from the input images. Fig. 1

shows a diagram of the system architecture.

The remainder of the paper is organized as follows. Sec-

tion 2 describes the proposed method. Section 3 reports the

statistics of the database used in the our experiments. Sec-

tion 4 provides the experiments carried out to validate the

proposed approach. Finally, Section 5 draws the final con-

clusions and points out some lines for future work.

2. Proposed Method

The method proposed in this paper is focused on train-

ing a gender-dependent face representation to improve the

performance of face verification systems. It is based on fine-

tuning and in learning additional feature embeddings, using

triplet loss from two well known pre-trained face recogni-

tion DCNNs models: VGG-Face and ResNet-50.

Fig. 1 provides a comprehensive perspective of the ar-

chitecture of our system, to exploit gender information for

improved face verification. At first, faces are detected from

the input image, using the model provided by [32]. The face

bounding box is then enlarged by a factor of 0.3 to include

the whole head. Next, we use a gender estimator module

to automatically distinguish males from females allowing

to decide the network for analyzing the verification pair. If

both face images have the same gender label, they both enter

the gender specific DCNNs model. Otherwise, if the gen-

der label is different (one male and one female), they enter

the gender balanced DCNNs model. Finally, the Euclidean

distance between the two feature embeddings is obtained to

decide whether the pair sample regards the same person or

not.

Apart from the strategy just described, it is also impor-

tant to mention that the use of an alternative strategy has

also been considered. This alternative strategy consists in

just using the balanced DCNNs model, avoiding thus the

use of a gender estimation module whose eventual errors

compromise the further processing steps and also simplify-

ing the overall architecture.

2.1. Pre-trained Face DCNNs Models

We use two popular DCNNs pre-trained models, which

have recently achieved some of the best state-of-the-art per-

formance in face recognition tasks: VGG-Face, proposed in

[5] and ResNet-50, proposed in [6].

VGG-Face is a DCNNs with a VGG-16 architecture

trained from scratch with a dataset that contains more than

2.6 million images of 2622 celebrities. The architecture

comprises 8 blocks of convolutional layers followed by ac-

tivation layers like ReLU or maxpooling, and 3 blocks of

fully connected layers with ReLU activations. VGG-Face



has an overall of 145,002,878 parameters split in 16 train-

able layers (convolutional and fully connected layers).

ResNet-50 is another DCNNs based on a residual neu-

ronal network architecture. The key of this network is to

insert shortcut connections among blocks, which turn the

network into a residual network version. ResNet-50 has a

total of 41,192,951 parameters split in 34 residual layers

for training. ResNet-50 was adapted to face recognition in

[7], where this network was trained from scratch with VG-

GFace2 dataset. This is the model used in this study.

2.2. Gender Estimation

The gender estimator module used in this work (see Fig.

1) is built by fine-tuning the pre-trained model ResNet-50,

since it attains higher recognition rates when compared to

other similar models (e.g., VGG-Face). For this reason, the

weights from the pre-trained model are frozen except for

the last fully connected layer, which is then retrained with

gender balanced data from VGGFace2 dataset as described

in Sect. 4.1. Finally, a feed-forward layer with a softmax

activation is added as final layer, in order to provide a binary

output score (male and female).

2.3. Gender Specific Models for Face Recognition
using Triplet Loss

The gender specific models for face verification (see

CNN architecture in Fig. 1) are developed using feature

embeddings from the last fully connected layer of each DC-

NNs pre-trained models (VGG-Face and ResNet-50). Then,

a triplet loss learning algorithm [3, 5] is used to infer a

new feature representation with better person discrimina-

tion within subjects of the same gender. Triplet-loss can

be used as a domain adaptation method. Our hypothesis

is that gender-dependent domains can outperform a gender

agnostic domain. Therefore, we train a specific model for

males, another for females, and a final one using gender bal-

anced data as specified in Sect. 4.1. In general, we assume

that each image is represented by an embedding descriptor

x ∈ R
d

obtained by a pre-trained model. A triplet is com-

posed by three different images from two different classes:

Anchor (A) and Positive (P) are different face images from

the same subject, and Negative (N) is an image from a dif-

ferent subject. We form a list of triplets T that satisfies the

following condition:
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where i is the index of the triplet, ‖·‖ is the Euclidean dis-

tance and α is a threshold value. In words, we select diffi-

cult triplets where the inter-class distance is smaller than the

intra-class distance. As Fig. 2 shows, we pass the original

feature embeddings through the triplet loss model, yielding

a feature embedding for which we have set its dimension to

anchor
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Figure 2. Triplet loss architecture for the case of using ResNet-50

DCNN pre-trained model. A similar architecture is used for the

case of VGG-Face model, where the input dimension to the triplet

loss model is N = 4,096, instead.

be of M = 1,024 (smaller than the input, which is of 4,096

for the case of VGG-Face and of 2,048 for ResNet-50).

With this process, we would have trained the three DC-

NNs models of the proposed system, as shown in Fig. 1.

One DCNNs model would be used to compare male images

(CNN Male), another one to compare female images (CNN

Female), and the last model that would be trained using all

triplets generated for the previous two models, and there-

fore having gender balanced data (CNN Balanced). This

last model would be used to compare images with differ-

ent gender label (male/female, and therefore would be very

likely to observe only impostor comparisons, with excep-

tion of failures in the gender estimation module). The sys-

tem proposed could be tuned to find a specific threshold to

minimize the verification error for each of the three possible

cases (male, female and mixed gender comparisons). Oth-

erwise, the matching scores from the three systems could

be used from the training data to find a global threshold.

Another option we consider is that all face image compar-

isons would go through the gender balanced DCNNs model,

avoiding the need for a gender estimation module. All these

possibilities are discussed in the experimental work (Sect.

4).

3. Database

The database used in the experimental work of this paper

is VGGFace2 [7]. This is a large-scale face dataset, which

contains 3.31 million images of 9,131 subjects, with an av-

erage of 362.6 images per subject (varying between 80 and

843 images for each identity). There is a specific set of data

from 500 subjects to be used for evaluation purposes. Im-

ages were downloaded from Google Image Search and have

large variations in pose, age, illumination and ethnicity. The

dataset is not balanced regarding the gender, having 59.3%

of male subjects and 40.3% of female subjects. Regarding

the ethnicity the differences are much greater, having the



great majority of 72.2% of Caucasian subjects, 15.8% of

African, 6.0% of Asian and 4.0% of Indian.

4. Experiments

4.1. Experimental Protocol

The experimental protocol used in this paper was de-

signed to: i) train an automatic face gender estimator us-

ing a gender balanced dataset (Experiment 1); ii) analyse

the effect of using pre-trained DCNNs models originally

trained with gender unbalanced datasets, over gender spe-

cific datasets (Experiment 2); and iii) train gender specific

systems and a gender balanced system for face verification

(Experiment 3), in order to try to improve the overall system

performance by minimizing the gender covariate.

The first experiment is based on training an automatic

face gender estimator. For this, the ResNet-50 pre-trained

model is retrained to give two outputs: male or female, for

an input face image. In this case VGGFace2 dataset is di-

vided into Training set with 200K images (100K images per

gender), Validation set with 30K images (15K per gender)

and Evaluation set with 132K images (62K per gender).

The second experiment analyses the face verification

performance per gender for both VGG-Face and ResNet-50

pre-trained models as baseline. As this is just an evaluation

experiment, 10K face image pairs are randomly selected per

gender (5K genuine pairs and 5K impostor pairs) from the

original evaluation set of VGGFace2 dataset experimental

protocol, comprised of images from 500 subjects.

The third Experiment is based on training: a) specific

DCNNs models per gender, and b) a DCNNs model with

a gender balanced set of images. For the first case (Exp.

3(a)), i.e., training a specific DCNNs model for each gender,

VGGFace2 set is divided into a Training set comprised 240

images for 2500 subjects of each gender (600K images per

gender) and a Validation set comprised of 60 images for the

same 2500 subjects of each gender (150K images per gen-

der). For training the triplet loss learning algorithm, triplets

of images (anchor, positive and negative) are formed from

the data of the Training set. As the amount of data for train-

ing was really large, we limited each subject not to be in-

cluded in more than 30 triplets. The triplets generated were

ranked regarding the α threshold in Equation (1). The 1000

triplets with highest α value were discarded as there were

cases of mistakes in the labels or were really hard cases.

Then, the following 75K triplets in terms of α were selected

for each gender separately. Finally, the Validation data used

was comprised of 10K image pairs per gender (5K genuine

pairs and 5K impostor pairs), and the evaluation set was ex-

actly the same one used in Experiment 2, i.e., a set of 10K

image pairs per gender from the Evaluation set. For the sec-

ond case (Exp. 3(b)), i.e., training a DCNNs model with a

gender balanced set of images, again the triplet loss learn-

ing algorithm was trained in this case using 150K triplets

(formed by using both sets of 75K triplets for each gender

from the previous Exp. 3(a)). The Validation and Evalu-

ation data used for Exp. 3(b) where the same as per Exp.

3(a).

Finally, a final evaluation of the different configurations,

which are: the baseline systems, the balanced gender mod-

els, and the gender specific models both using manual and

automatic annotations of the gender were evaluated using

a total of 25K pairs of images from the Evaluation set,

comprising 10K genuine pairs (5K genuine pairs for each

gender), 10K impostor pairs (5K impostor pairs for each

gender), the same one used in Exp. 2 and 3, and an addi-

tional set of 5K mixed gender impostor pairs (that would

go through the gender balanced model). This evaluation set

is a subset extracted from the original evaluation set of VG-

GFace2 dataset experimental protocol, comprised of images

from 500 subjects.

4.2. Experimental Results

4.2.1 Face Gender Estimator

The gender estimator was trained as specified in Sect. 4.1

using 70 epochs. Gender estimation accuracy was maxi-

mized on the Validation set at epoch 27. This model was

then applied to the Evaluation data obtaining a final accu-

racy of 96.8%. These results could be further improved

using a more advanced gender estimator system, but this

was not the major purpose of this work. In the following

sections, the results of using this gender estimator are com-

pared to the case of having the gender labels through manual

annotation.

4.2.2 Baseline Face Verification Systems

This experiment shows the results for the analysis carried

out using both VGG-Face and ResNet-50 pre-trained DC-

NNs models for each gender independently. Fig. 3 shows

the Receiver Operating Characteristic (ROC) curves ob-

tained, giving the area under the curve (AUC) values for

each pre-trained model and gender. As can be seen, in

general ResNet-50 model achieves better results compared

to VGG-Face, around 4.5% of higher AUC value in aver-

age. Regarding the gender, in both DCNNs models, male

achieves higher performance compared to female, 0.6%

AUC higher for the case of ResNet-50, and 0.8% AUC

higher for the case of VGG-Face. These results confirm the

findings of previous works, being able to see the bias of the

face verification results regarding the gender. Some reasons

for this can be the larger amounts of male images compared

to female images used to train the DCNNs models, but also

the higher intra-class variability present in females due to

the higher usage of make up, different hair styles or acces-

sories among other factors.



Figure 3. ROC curves observed for the baseline systems (VGG-

Face and ResNet-50) for both male and female genders indepen-

dently.

VGG-Face TAR @ FAR AUC

0.01 0.1

Baseline 0.402 0.815 94.0

Gender Balanced 0.393 0.828 94.4

Proposed Manual 0.480 0.860 95.2

Proposed Auto 0.439 0.848 94.9
Table 1. Performance comparison between the four DCNNs sys-

tems proposed in this paper, using the VGG-Face architecture.

TAR values for FAR=0.01 and FAR=0.1, and AUC (in %).

ResNet-50 TAR @ FAR AUC

0.01 0.1

Baseline 0.518 0.946 97.4

Gender Balanced 0.566 0.942 97.5

Proposed Manual 0.600 0.950 97.8

Proposed Auto 0.589 0.948 97.7
Table 2. Performance comparison between the four DCNNs sys-

tems proposed in this paper, using the ResNet-50 architecture.

TAR values for FAR=0.01 and FAR=0.1, and AUC (in %).

4.2.3 Proposed Face Verification Systems

This section shows the results of our proposed face verifi-

cation systems, which train a gender-dependent face repre-

sentation to improve the performance for each gender sepa-

rately, and therefore the overall system performance.

Fig. 4 shows the ROC curves obtained for both baseline

systems and our proposed gender specific systems (only the

male and female specific DCNNs models, not the gender

balanced one). Fig. 4(a) shows the results for the male gen-

der, obtaining improvements of AUC for both DCNNs mod-

els used (VGG-Face and ResNet-50). For ResNet-50, our

proposed “CNN Male” system achieves an AUC of 97.7%,

0.5% AUC higher compared to the baseline system. For

VGG-Face, our proposed “CNN Male” system achieves an

AUC of 94.9%, 1.8% AUC higher compared to the base-

line system, a very significant improvement of performance.

Fig. 4(b) shows the results for the female gender, obtain-

ing also improvements of AUC for both DCNNs models

used. For ResNet-50, our proposed “CNN Female” system

achieves an AUC of 97.0%, 0.4% AUC higher compared to

the baseline system. For VGG-Face, our proposed “CNN

Female” system achieves an AUC of 94.4%, 2.1% AUC

higher compared to the baseline system, also a very signifi-

cant improvement in performance. Even though the system

performance for each gender independently improves with

our proposed DCNNs gender specific models, a better per-

formance is still observed for males. Accordingly, further

work has to be carried out to try to reduce this bias, for

which - probably - the best solution would be to train from

scratch gender specific DCNNs models.

Our next experiment describes the performance of the

final global system, with a clearly defined task: given a

pair of input images, output a matching score and a gen-

uine/impostor decision. First, thresholds that maximize the

TAR at FAR=0.1% were analyzed for both male and female

DCNNs models, for the results shown in Fig. 4, achiev-

ing very similar threshold values for both cases. There-

fore, the system proposed is based on obtaining a match-

ing score coming from computing the Euclidean distance of

a pair of feature embbeddings from one of the three DC-

NNs options (CNN Male, CNN Female and CNN Balanced

shown in Fig. 1. Then, based on these matching scores a

global evaluation was performed as described in Sect. 4.1.

Tables 1 and 2 show the TAR results at two FAR values

(0.01 and 0.1) and also the AUC value for the system based

on VGG-Face and ResNet-50 DCNNs architectures respec-

tively. Each table shows the results for four different sys-

tems considered in order to carry out a fair comparative

analysis: i) using the baseline DCNNs pre-trained model,

ii) using the gender balanced DCNNs model for all face im-

age comparisons, and iii) using the proposed system based

on three possible DCNNs models (male, female and gen-

der balanced) depending on the gender labels of the faces

to be compared. For this last case, we provide results using

the original gender labels manually annotated and also us-

ing the output from our gender estimator, which would be

the case to be deployed in a real application.

Let us analyze first the results for the VGG-Face archi-

tecture, shown in Table 1. Based on both the TAR values

and the AUC, the best system performance is achieved by

our proposed gender specific face verification system using

manual gender labels (95.2% AUC compared to the 94.0%

AUC for the baseline system ), followed by the same sys-

tem but using automatic gender labels (94.9% AUC). For

ResNet-50 architecture results are shown in Table 2, giving

similar trends. Best performance is achieved by our pro-

posed gender specific face verification system using manual



(a) Male Gender (b) Female Gender

Figure 4. Comparison between the ROC curves of the VGG-Face and ResNet-50 (baseline) and the proposed systems for (a) male and (b)

female genders.

gender labels (97.8% AUC compared to the 97.4% AUC for

the baseline system ), followed by the same system but us-

ing automatic gender labels (97.7% AUC). Overall perfor-

mance improvement is smaller for the case of ResNet-50 ar-

chitecture, but this baseline system already achieves a very

competitive performance.

As a conclusion, our proposed FaceGenderID system

based on gender specific DCNNs models obtains improve-

ments of performance compared to the baseline DCNNs

architectures on an general evaluation. Also, this system

achieves better performance than a gender balanced DC-

NNs model. These FaceGenderID DCNNs models are

freely available for research purposes at GitHub3.

5. Conclusions

The work described in this paper is rooted in an exten-

sively reported observation: the remarkable performance of

state-of-the-art face recognition systems is still conditioned

by some data covariates, such as the subjects gender, ethnic-

ity or age. In particular, we addressed the effect of gender

in recognition accuracy, observing a consistently better per-

formance for males than for females. According to this, we

used a triplet loss learning algorithm to exploit the gender

information by inferring: i) gender specific DCNNs, and ii)

gender balanced DCNNs. This procedure was observed to

reduce the effect of the gender as a recognition covariate.

As future work, we will focus on training the whole pro-

posed DCNNs architecture from scratch, as probably just

training the last triplet loss layer is not enough to fully re-

move the gender bias of the datasets used for training the

original pre-trained DCNNs models used.

3https://github.com/BiDAlab/FaceGenderID
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