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Abstract

Filamentous structures play an important role in biolog-

ical systems. Extracting individual filaments is fundamental

for analyzing and quantifying related biological processes.

However, segmenting filamentous structures at an instance

level is hampered by their complex architecture, uniform

appearance, and image quality. In this paper, we introduce

an orientation-aware neural network, which contains six

orientation-associated branches. Each branch detects fil-

aments with specific range of orientations, thus separating

them at junctions, and turning intersections to overpasses.

A terminus pairing algorithm is also proposed to regroup

filaments from different branches, and achieve individual

filaments extraction. We create a synthetic dataset to train

our network, and annotate real full resolution microscopy

images of microtubules to test our approach. Our experi-

ments have shown that our proposed method outperforms

most existing approaches for filaments extraction. We also

show that our approach works on other similar structures

with a road network dataset.

1. Introduction And Related Works

Filamentous structures are ubiquitous among biological

systems, such as vesicular networks of fungal hyphae, blood

vessels, microtubules, and actin filaments. In order to un-

derstand the mechanism of these structures, it is important

to quantify their individual characteristics such as the num-

ber of filaments, their length, their curvature, and motion.

Therefore, it is necessary to segment each individual fila-

ment at the instance level from the interconnected network.

Instance segmentation is a fundamental computer vision

task, which aims to automatically delineate different ob-

jects in an image. While semantic segmentation requires

only to predict a category label of each pixel, segmenting at

the instance level needs to distinguish individual objects in-

stances, which is considered to be a more challenging task.

In recent years, many works have aimed to improve the in-

stance segmentation task. Most approaches [4, 5, 6, 10, 11]

for instance segmentation rely on region proposal or object

detection using Convolutional Neural Networks (CNNs).

These approaches have shown impressive performance on

objects with a well-defined boundary and center such as

humans, cars, tables, and so on. However, these methods

have severe limitations for segmenting filamentous struc-

tures for the following reasons: (1). Individual filaments

can span the entire length or width of the image; (2). These

thin elongated objects are usually close to objects with the

same features; (3). Some filamentous network structures

are dense and complex, with different filaments overlapping

or intersecting each other. These properties of filamentous

structures make it hard for proposing a region of interest for

individual filaments or detecting them separately. Another

problem for machine learning methods is the shortage of la-

beled datasets for biological filaments. There are datasets

available for instance segmentation on more common ob-

jects, such as the COCO dataset [7], but as far as we are

aware, there is a lack of datasets for segmenting biological

filamentous structures at an instance level.

There have been several attempts for segmenting fil-

amentous structure at instance level based on conven-

tional (i.e. non CNN-based) image processing techniques.

Xu et al. [14] introduced Stretching Open Active Con-

tours(SOAC) with adaptive stretching forces to trace fila-

ments, and used regulated sequential evolution scheme to

avoid overlap among SOACs. To deal with the intersection

areas, Xu et al. dissected converged SOACs into fragments

at junctions, then formed new SOACs by reconfiguration

and linking of fragments with the same direction. In [18],

Zhang et al. extracted global filament networks by using a

line filter transform and an orientation filter transform to en-

hance filamentous features in single-molecule localization

microscopy data. They then disconnected all filaments at



Figure 1. An example of area with complicated intersections. (a)

Original image; (b) Semantic segmentation; (c) Skeletonization.

junction points and regrouped these fragments by the prop-

agation vectors and distance vectors at each terminus of fil-

ament fragments. In [16], Zeder et al. proposed a new con-

cept called fixel, which is a rectangle that covers a small

part of a filament with similar orientation and is used to de-

scribe the smallest element of a filament. The image is first

processed by a kernel to detect fixels, namely filamentous

structures, and then filaments will be assembled by allocat-

ing fixels based on their orientation and location. All of

these methods chose to dissect the filaments into fragments,

and then regroup them according to their geometric proper-

ties. A common drawback of these methods is that it is hard

for them to handle areas with complicated intersections, as

shown in figure 1. These complicated junction areas usu-

ally cause false labeling of fragments. When the receptive

field is small, it is hard to tell which fragments belongs to

which filaments, since the propagation direction of pixels

that close to the intersection can be very similar even if they

belongs to different filaments. When the receptive field is

too large, more filaments and more intersections can be in-

volved and complicate the situation.

Recently, many approaches have applied deep learning

methods to segment filamentous structures and have shown

better semantic segmentation results than traditional meth-

ods. Saponaro et al. [13] used a modified U-net architec-

ture [12] to segment vesicular networks of fungal hyphae

in microscopy images and Liu et al. [8] used a stacked U-

net architecture to segment microtubules in microscopy im-

ages. Fu et al. [2] combined a fully convolutional neural

network with a fully-connected Conditional Random Field

and achieved a better retinal vessel segmentation in fundus

images. There are also some applications on non-biological

thin, elongated structures. Zhang et al. [17] applied a mod-

ified U-Net architecture to segment road networks from

aerial images. Fan et al. [1] proposed a convolutional neu-

ral network for segmenting pavement cracks. However, few

methods can extract individual filaments from these seg-

mentation results, and it is not sufficient for domain experts

to perform quantitative analysis on the biological samples.

Thus, many popular filamentous structures analysis tools

are mainly based on traditional methods [15, 18] which re-

quire manual tuning of parameters. This places a burden on

the practitioner when processing huge volumes of images.

Many deep learning methods have been applied to in-

stance segmentation, most of these methods can be consid-

ered as a conjunction between semantic segmentation and

object detection. For example, in [5], He et al. proposed

Mask R-CNN which extends Faster R-CNN by adding a

branch to obtain the object mask which allowed for simulta-

neously detecting objects in an image and segmenting each

each instance. In [4], Hariharan et al. used multiscale com-

binatorial grouping to generate region proposals and obtain

candidates, then applied R-CNN [3] to extract features of

each region and performed non-maximum suppression on

the candidates to remove duplicates. In the end, they use

features from the CNN to produce coarse mask to refine

the candidates, and combine the mask with original candi-

dates to provide a more robust results. In [10, 11], their

approaches integrated CNN with recurrent neural network,

and by applying soft attention mechanisms, their models

can sequentially find objects and segment them one at a

time. Essentially, these instance segmentation models all

require proposed candidate regions for individual objects.

As mentioned in above, filaments are usually close in prox-

imity, look similar, and have many overlapping and inter-

section areas between different objects, which makes it very

difficult to extract region proposals for individual filaments.

The segmentation results in [13, 2, 17, 8] inspire us to

find a way to utilize semantic segmentation results to obtain

information about individual filaments. It is natural to adopt

the strategies used in [14, 18], which is to extract the skele-

tons of semantic segmentation results, break them into frag-

ments at intersection points, and then regroup the fragments

into separate filaments. The most challenging part of this

process is making sure that the fragments are correctly iden-

tified and regrouped at the intersections. We believe that the

issue lies in trying to create fragments based on intersection

points. To avoid fragmenting at the intersection points, we

propose a deep neural network with multiple orientation-

associated outputs for separating filaments based on their

orientations. Each output is associated with fragments of

filaments within a certain range of orientation angles, and

thus separating them at intersections without disconnecting

them. In other words, this network aims to turn an inter-

section into an overpass. However, since many filaments

change directions as they propagate, filaments could be bro-

ken into fragments. The final step of our proposed approach

is to connect these fragments according to their locations

and propagation vector at their terminus, which is much less

complex than handling connections at intersections.



Figure 2. Pipeline of our proposed approach. Step 1: The network takes a segmentation as input and six orientation-associated outputs will

be generated. Step 2: The proposed algorithm is applied on these six outputs and regroups fragments into full individual filaments.

In summary, the main contributions of this work are:

(1) A Convolutional Neural Network that reformulates the

problem of filament instance segmentation by outputting

orientation-associated filament segments; (2) A terminus

pairing algorithm for regrouping these fragments in differ-

ent output layers, which achieves a remarkable performance

on different datasets; (3) A dataset including 10 microscopy

images of microtubule filament networks with each filament

instance labeled.

2. Method

In this section, we describe our approach for segment-

ing individual filaments. Our approach includes two parts.

First, we introduce the architecture of our network which

decomposes the segmentation into six component layers.

Each layer contains fragments with similar orientations.

Then, we describe how to regroup fragments of the same

filament from different layers. A pipeline of our proposed

method is shown in Figure 2

2.1. Step One: Turning an Intersection into an
Overpass

2.1.1 Network Architecture

The U-net architecture [12] has achieved great success in

segmenting vessel-like objects. We propose a new CNN

architecture for extracting individual filaments at intersec-

tions, which is adapted from the U-net architecture (see

Figure 3). To address the problem of splitting filaments

at intersections, we make two important modifications in

our network. (a) We make six duplicate hourglass mod-

ules running in parallel, and each module is connected to

orientation-associated ground truth maps. Each module fo-

cuses on an orientation range from [0 ◦, 30 ◦), [30 ◦, 60
◦), [60 ◦, 90 ◦), [90 ◦, 120 ◦), [120 ◦, 150 ◦), [150 ◦, 180
◦) respectively. We found empirically that six orientations

are a good number to give enough angle resolution without

over fragmenting. At intersections, fragments with differ-

ent propagation directions will be sorted into different lay-

ers, which is like turning an intersection into an overpass.

(b) The orientation-associated outputs of each module are

concatenated together and fed into two paths. In the first

path, the six output layers are merged together to form a

prediction which is the skeletonized reconstruction of the

input. This enables the six output layers to take information

from the predictions of other modules into consideration,

and enforce that the six output layers merged together re-

sult in the original filament network. In the second path,

each output layer will be compared with predictions from

the other modules with the constraint that the overlapping

area between each be minimal. In summary, our network

has 6 hourglass modules, each module works on splitting

filaments within a specific range of orientations, the outputs

of six modules together should reconstruct the original fila-

mentous structure, and each output should be different from

the outputs of other modules.



Figure 3. An illustration of our proposed network.

Each of the hourglass module mentioned above, contains

a contracting path to capture features and an expansion path

to retrieve localization information. There are five stages in

total. Each stage contains two 3x3 convolutional layers fol-

lowed by a rectified linear unit and one drop out layer with a

rate of 0.2 inserted between the two convolutional layers. In

the contracting paths, a 2x2 max pooling operation will be

applied after each stage, and the number of feature channels

will be doubled in the next stage. In expansion paths, each

stage will be followed by a 2x2 up-sampling operation, and

halve the number of feature channels. Also, feature-map

with the same size from contracting and expanding paths

will be concatenated. At the end of each module, a 1x1 con-

volutional layer is applied to obtain orientation-associated

outputs. We use the dice coefficient loss for all orientation-

associated outputs and the merged reconstruction output.

Along with this, after the six outputs are concatenated to-

gether, a revised dice coefficient loss is used (overlap-loss).

For each module we calculate the dice coefficient loss of the

output with respect to the outputs of the remaining modules

and take the average. Then sum up these six values and take

the additive inverse of it, as we want the overlap between

modules to be as small as possible. From our experiments,

setting the weight of overlap-loss to 0.01 gave decent re-

sults. If the loss weight of overlap-loss is set too high, the

network will not be able to separate filaments, but without

this overlap-loss, unnecessary overlapping area can be cre-

ated thus increasing the running time in Section 2.2.

2.1.2 Synthetic Dataset

As there is no sufficient dataset for our task, we create a

synthetic dataset for training the network. First, we create

180000 straight lines with a range of random lengths. These

lines are then deformed piece-wise by a random number of

control points and random deformation scales. They are

then offset by random translations. Each such generated

strand is written as an image of size of 64 × 64 . Then

we evenly distribute these 180000 images into 6 buckets,

30000 in each bucket. For each bucket, we rotate the lines

with a specific range of angles. From bucket 1 to bucket

6, the rotation angles are in range [0 ◦, 30 ◦), [30 ◦, 60 ◦),

[60 ◦, 90 ◦), [90 ◦, 120 ◦), [120 ◦, 150 ◦), [150 ◦, 180 ◦)

respectively. To create a training sample, we randomly se-

lect an image from each bucket. The selected images form

the ground truth for each orientation-associated module in

the network. We also have a randomized flag to decide

whether or not to include a selected image. Ground truth

for the orientation-associated module corresponding to the

excluded image is set as a ”blank” image. The selected and

included images are then merged to form the ground truth

for the combined reconstruction output of the network. To

create the associated input, we dilate the merged layer with

kernel size of 3, 5 and use it as input to the network. In

total we create 120000 synthetic ground truth images with

size of 64 × 64 × 7 (See Figure 4). Also, the ground truth

images are not dilated because we also want our network to

extract the skeleton of fragments.

The network architecture is fully convolutional, enabling



Figure 4. Examples of the synthetic dataset. From left to right:

input image, orientation layer with range [0◦, 30◦), [30◦, 60◦),

[60◦, 90 ◦), [90◦, 120◦), [120◦, 150◦), [150◦, 180◦), and the final

merged layer

us to train with small image patches, and thus we can use

these synthetic images for training. There are several rea-

sons for making synthetic images with small size: (a) It is

hard to create synthetic images with a large image size be-

cause there will be too many filaments and the network of

filaments can be very complicated. With small images, less

filaments are involved, usually less than 6, and it is easier to

create more realistic synthetic data. (b) With a larger image,

the filaments tend to be longer and have more variation in

orientation and curvature, which makes it harder to sort the

filaments into bins of specific orientation ranges. Since our

goal is to separate filaments at junctions, a smaller image

size allows us to focus on the local area of an intersection

to learn features useful for separating intersections. There

is one downside of this approach: when the propagation di-

rection of one filament changes significantly, this filament

will be dissected into fragments and sorted to different lay-

ers (See Figure 5). In Section 2.2, we will discuss how to

assemble these fragments back to individual filaments.

2.1.3 Training and Testing

We train our model for 5 epochs with a batch size of 64. The

size of input patches is 64× 64, and the number of training

patches is 120000. For each module, the numbers of fea-

ture channels are 16, 32, 64 for corresponding stages. All

networks are trained using Adam optimizer with a learning

rate of 0.0001. Dropout rates of all dropout layers are set

to 0.2. For our proposed network, we compile the model

and assign a weight of 1 for all dice coefficient loss, and

0.01 for overlap-loss. The model achieved a validation IoU

of 0.793 averaged across the 6 outputs and a validation IoU

of 0.97 on the combined reconstruction. All experiments

were conducted on two NVIDIA GeForce Titan X (Pascal)

GPUs.

2.2. Step Two: Regrouping Fragments

As shown in Figure 5, some filaments could be dissected

into several fragments and distributed into different output

Figure 5. Output examples of our proposed network. Input images

are synthetic test images. (a): Two filaments perfectly separated.

(b),(c),(d),(e): Some large filaments are dissected into different

layers and some fragments appear in more than one layer, e.g the

horizontal filaments in (d).

layers. In this step, filaments are reconstructed by connect-

ing fragments according to the orientation and spatial loca-

tion of their termini. First, a local search in six layers is car-

ried at the termini of each filament, and all fragments within

the search area will be listed as candidates. The next step is

to find out the best matching candidate and group it to the

selected fragment and update the selected fragment. This

process will be done recursively until there is no match-

ing candidate, as shown in Figure 6. To find out the best

matching candidate, there are two major criteria: overlap-

ping case and non-overlapping case. Overlapping cases (see

Figure 7) will be considered first and the matching rules of

overlapping cases are as follows: (1) If a candidate that is

fully covered by the selected fragment or the selected frag-

ment is fully covered by the candidate, the candidate will

be grouped to selected filament. (2) If the candidate is par-

tially overlapping with the selected fragment, the eligibility

of the fragment candidates is determined by the spatial lo-

cation of termini and the end points of the overlapping area.

As shown in Figure 7, if one terminus of one fragment lies

on the other fragment, and vice versa, and these two termini

are also the end points of overlapping area, then these two

fragments should be grouped together. If there are no el-

igible overlapping cases, the following criteria (see Figure

8) will be considered: (1) Similarity between propagation

direction of termini of selected filament and candidates. (2)

Distance between termini of selected filament and candi-

dates. (3) Similarity between propagation direction of ter-

mini and the vector from the termini of selected filament to

the termini of candidate. Thresholds will be set for each cri-

teria, and we only consider candidates that satisfy all three

thresholds. The most eligible matching pair will be the pair

of fragments with the most similar propagation vectors, then

the most similar distance vectors and then the shortest dis-

tance.



Figure 6. An example of recursively grouping the most eligible

candidate. The blue box is the searching area; solid circles are ter-

mini of fragments; red represents the selected fragment; blue rep-

resents the best eligible candidate; yellow represents candidates or

fragments detected in the search box, which does not indicate they

are eligible fragments; green represents irrelevant fragments. (a)

group overlapping fragments, overlapping fragments with highest

priority; (b), (c) group the most eligible fragment; (d) no more

eligible fragments.

Figure 7. Examples of handling overlapping cases. (a), (b)

Matched. One terminus of A is the end point of an overlapping

area and lies on B and vice versa; (c) Matched. A fully covers

B; (d) Unmatched. B’s two termini lie on A, but B is not fully

covered by A; (e) Unmatched A’s termini does not lie on B. (f)

Unmatched termini of A B are not endpoints of overlapping (e.g

the green point).

Figure 8. (a) The most eligible candidate will be grouped. In this

example, C will be grouped with A. (b) A matching criteria. After

applying thresholds, invalid candidates will be filtered out.

3. Experimental results

In this section, we will discuss about the experiments

we have run, and compare the performance of our proposed

methods with other approaches.

3.1. Evaluation protocol

To evaluate the performance of individual filaments ex-

traction, we first adopt the metric of Skeletonized Intersec-

tion over Union (SKIoU) introduced in [8], which is defined

as:

SKIoU =
2 ∗ Skel (Intersection)

Skel (Prediction) + Skel (Ground Truth)

where skel is Skeletonization operation

(1)

Similar to IoU metric, the numerator is the number of

pixels of the skeletonization of the overlapping area times

two. The number of pixels of the skeletonized prediction

plus the number of pixels of the skeletonized ground truth

will be denominator. SKIoU metric is very suitable for fila-

mentous structures as it is less sensitive than IoU and it fo-

cuses on the length and spatial location of the objects. Every

filament in the ground truth image will be compared with

each filament in the output image. The filaments with max-

imum SKIoU scores will be considered as matching pairs

and each filament of both predicted filaments and ground

truth filaments can only belong to at most one pair. After

we obtain the SKIoU score for each filaments, we evalu-

ates the average precision, recall and F-measure (Equation

2) score using SKIoU thresholds ranging from 0.5 to 0.95

with 0.05 increments.

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(2)

3.2. Microtubule dataset

Microtubules are very important filamentous structures

in a number of cellular processes. To quantify our result we

collect a dataset of 10 microscopy images of microtubules

with image size 122.03 × 132.84 (1400 × 1524 pixels). The

number of microtubules in each image is more than 300, so

it is extremely hard to label individual filaments. To reduce

the workload of manual labeling, we asked domain experts

to manually correct the output of our approach. Each image

takes around 2 hours to correct. More images will be man-

ually labeled in the future, and we will share our dataset

online.

Since our network takes segmentation result as input, we

adopt the Stacked U-net architecture in [8] and obtain the

segmentation. These segmentation results are used as input

for our approach.

We also have evaluated methods in [15, 18] on our

dataset for comparison. Since the method in [18] is de-

signed for a different type of image, it is not fair to directly

apply their methods on the images we collected. So we

only apply their regrouping methodology on our segmen-

tation output to extract individual filaments. Parameters of

these methods [15, 18] are adjusted as recommended. It

should be mentioned that SOAX is designed for actin fila-

ments, so it is reasonable that SOAX doesn’t work well on

microtubules. Since SOAX creates many small fragments



Figure 9. Comparison of different methods on extracting individ-

ual filaments. (a) Original image (b) Segmentation (c) Manually

corrected labels (d) Result of our proposed method (e) SFINE (f)

SOAX without filtering out small fragments. Different colors in-

dicate different labels.

Method F1 P R Ave SKIoU

SOAX[15] 0.2691 0.2087 0.4196 0.447

SIFNE[18] 0.2875 0.2458 0.3623 0.5604

Ours 0.7161 0.6456 0.8189 0.8166

Table 1. Comparison between different methods for Microtubule

extraction on our microtubule dataset. F1 is F-measure; P is pre-

cision; R is recall, and they are evaluated using SKIoU thresholds

ranging from 0.5 to 0.95 with 0.05 increments. Ave SKIoU is the

average skIoU over all detected filaments.

(see Figure 9), we filtered out those fragments shorter than

25 pixels, and then conducted the quantification analysis.

Quantitative comparison are shown in table 1, and Fig-

ure 9 shows a qualitative comparison between different ap-

proaches. Our approach has shown better performance over

all metrics. Since our dataset is manually corrected from

our outputs, the results in table 1 can be biased to our

method. But as shown in Figure 9, our method has success-

fully extracted many long filaments, and there are less false

regrouping cases. SOAX [15], and SIFNE[18] both fail to

reconnect many fragments at intersections, especially when

several filaments intersect with each other within a small

region. Because SOAX and SIFINE dissect filaments into

more fragments and fail to reconnect them, the SKIoU and

F-measure scores of these methods tend to be much lower.

Figure 10 has shown an example of the complexity of

Figure 10. (a): An intermediate step of SFINE, which is after ex-

tracting out all junction areas and before regrouping. (b): Merged

output from our proposed network. (c)-(h): orientation-associated

outputs. Our pairing algorithm deals with simpler situations.

regrouping fragments at intersections and the difference be-

tween SFINE and our method. Regards running times,

SOAX takes around six hours to run on a whole image ob-

taining segmentation and individual filaments; SFINE takes

around 4 minutes to extract individual filaments from seg-

mentation results, while ours takes approximately 30 min-

utes for each image. Our methods can handle complicated

intersections better, which leads to a higher accuracy of ex-

tracting individual filaments.

3.3. Microtubule dataset provided by Zeder et al.

We have tested our method on the microtubule dataset

provided in [16], which includes 7 images with size of 5000

× 5000 pixels. The dataset includes around 192 filaments,

and we applied the same metric used in [16]. Table 2 shows

the quantitative results and Figure 11 shows the qualitative

results. Our method successfully extracts filaments in most

cases (Figure 11), and Zeder’s approach has also achieved

high accuracy on the dataset. As shown in table 2, our result

is slightly better than Zeder’s method regard to number of

filaments, but it doesn’t mean that our method outperforms



Image Manual Zeder’s Ours

Count[16] Method[16]

1 25.8± 1.5 27 25

2 18.5± 0.5 23 22

3 27.5± 1.5 27 26

4 44.0± 0 44 44

5 36.8± 0.4 40 37

6 21.8± 0.4 21 24

7 17.5± 1.1 18 18

Total 191.8± 3.6 200 196

Table 2. Quantified results on the dataset in work [16]. Manual

and automated counts given in [16] and our results.

Figure 11. Qualitative results on the dataset in work [16]. From left

to right: The original image, our method, and Zeder’s approach.

(a) Touching case. (b) Parallel case. (c) Intersection and overlap-

ping case (d) Failure case of our approach

Zeder’s method. As shown in Figure 11 (d), our approach

fails to reconnect the yellow, pink and blue fragment while

Zeder’s approach grouped 3 filaments successfully in the

image. Two reasons can cause this failure: 1. Segmentation

result is not correct. 2. The parameters like searching range

are not appropriately set in the regroup step. In Figure 11

(c), our approach successfully segment out three filaments

that intersect with each other, but Zeder’s methods fails to

group them correctly at the intersections.

3.4. Road Network Dataset

Because our approach takes semantic segmentation as

input, it can be applied to other similar structures, like road

networks and fibers. As long as there are decent semantic

segmentation. In this section, we applied our network on

Road Detection Datasets [9]. Though roads are very dif-

ferent from microtubules, they are both elongated thin ob-

jects, and in most cases, roads doesn’t branch. We adopt

Figure 12. Examples of extracting individual roads on Road De-

tection Datasets. Red boxes highlight failed extractions.

the stacked U-net architecture in [8] to obtain segmentation

first, which has achieved an average IoU of 0.64 and skIoU

0.87 on this dataset. Since this dataset does not provide indi-

vidual road labeling, we are only going to show qualitative

results of our experiment.

3.5. Limitations

There are several limitations of our approach. 1. Un-

der some cases, the six side outputs merge together may

not fully recover the original input, which causes large gaps

between fragments and leads to failure in regroup step ( Ex-

ample: Figure 11 (d) ). 2. The proposed terminus pairing

algorithm may fail to find the right pairs. This is because

the best match based on the criteria might not be the right

one (Example: Red box in Figure 12 (b)). 3. Since our

work processes on segmentation results, our approach will

not work if segmentation is not accurate.

4. Conclusion

We proposed a fully convolutional neural network with

multiple orientation-associated side outputs to address the

problem of extracting individual filaments. Each branch is

able to detect fragments with a specified range of propa-

gation directions, and thus extracting different filaments at

the intersection region. Additionally, we propose an algo-

rithm to regroup these fragments and reconstruct individ-

ual filaments. Our proposed network enable us to avoid re-

grouping fragments at intersections, and thus improves the

performance. We have tested our method on a microtubule

dataset we created, a public microtubule dataset, and a road

dataset. Proposed approach outperforms other approaches

on our dataset, and it has shown outstanding results on other

datsets.
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