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Abstract

During organ development, morphological and topolog-

ical changes jointly occur at the cellular and tissue levels.

Hence, the systematic and integrative quantification of cel-

lular parameters during growth is essential to better un-

derstand organogenesis. We developed an atlasing strat-

egy to quantitatively map cellular parameters during organ

growth. Our approach is based on the computation of pro-

totypical shapes, which are average shapes of individual or-

gans at successive developmental stages, whereupon statis-

tical descriptors of cellular parameters measured from indi-

vidual organs are projected. We describe here the algorith-

mic pipeline we developed for 3D organ shape registration,

based on the establishment of an organ-centered coordinate

system and on the automatic parameterization of organ sur-

face. Using our framework, dynamic developmental tra-

jectories can be readily reconstructed using point-to-point

interpolation between parameterized organ surfaces at dif-

ferent time points. We illustrate and validate our pipeline

using 3D confocal images of developing plant leaves.

1. Introduction

In living organisms, organ morphogenesis results from

the spatio-temporal integration of processes at various

scales (genetic, cellular, tissular). During growth, these

mechanisms induce cell morphological and topological

changes that contribute to the evolution of the organ shape.

In turn, shape transformations can impact at the cellular

level. Hence, quantifying the joint dynamics at the cellu-

lar and organ levels is essential to better understand organo-

genesis [1] [12] [7]. One challenge is in particular to detect

the emergence of cell populations with distinct characteris-

tics that accompany the transformation of organ shape. A

framework was recently proposed to systematically quan-

tify cells over the organ surface by generating individual

maps of 3D cell morphological and topological parameters

using fixed samples at different developmental stages [10].

The use of fixed specimens provides the high cell resolu-

tion requested for quantitative analysis at the organ scale.

However, inter-individual variability [11] can hide mean-

ingful patterns in these individual maps. Furthermore, the

use of fixed samples is a bottleneck to visualize and identify

the dynamics of the cellular growth [1]. To address these is-

sues, we propose to integrate individual maps into statistical

atlases showing the spatial distribution of cellular parame-

ters over average organ shapes. Our strategy is based on

surface registration and averaging to compute prototypical

shapes. Here, we describe the automated surface parame-

terization method that makes the core of this approach. We

chose the developing leaf of the model plant Arabidopsis

thaliana, which follows stereotyped growth trajectories at

the organ scale, as a challenging system for studying organ

morphogenesis. Indeed, leaves develop in three dimensions

and undergo complex shape changes during their growth

[4](Fig. 1A).

2. Material and Methods

2.1. Experimental data

Developing leaves were dissected, fixed, stained and im-

aged using a confocal microscope, thus providing images

of cellular walls at the whole organ scale (Fig. 1). Images

were segmented using a 3D watershed algorithm (Fig. 2B,

Left). Non-epidermal cells were merged into a unique “sub-

epidermal” label. In this work, we focus our analysis on

epidermal cells only since the epidermis plays a key role in

leaf morphogenesis [6].

2.2. Overview of the method

Because individual leaves can be twisted (Fig. 1A),

defining an organ centered coordinate frame cannot rely on

straight axes and canonical planes [2]. We propose instead
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an approach that closely follows the actual organ shape in

the determination of organ axes. Leaves are characterized

by two distinct upper (adaxial) and lower (abaxial) sides

and exhibit bilateral symmetry [4]. We thus define a leaf

centered coordinate system based on two axes: the first one

is the boundary between the two sides, the second one corre-

sponds to the left/right limit. In transversal views, develop-

ing leaves can be roughly assimilated to triangular shapes,

with the adaxial side representing the base of the triangle

and the two halves of the abaxial side corresponding to the

two other sides of the triangle (Fig. 1B). Our surface param-

eterization method thus proceeds in three steps: (1) parti-

tioning of the leaf surface into three domains corresponding

to the adaxial side and the two halves of the abaxial side;

(2) generation of a leaf centered coordinate system, provid-

ing four quarters; (3) parameterization of each quarter. Us-

ing this parameterization, average shapes with average cell

measurements can be computed and interpolated between

successive stages. The algorithms presented in this paper

were implemented in C++ and were integrated into our in-

house libraries.

A

B

Figure 1. 3D confocal images of fixed leaves at three different

developmental stages. (A) 2D average intensity projections. (B)

Transverse sections.

2.3. Partitioning of the leaf surface

A preliminary approach to split the cell population into

two groups corresponding to the adaxial and abaxial sides

was described in [10]. In that method, for each epidermal

cell i, a normal vector
−→
N i pointing along the cell thickness

(orthogonal to the interface with sub-epidermal cells) was

computed (Fig. 2B, Middle). A partitioning of the leaf sur-

face was obtained through a clustering of the set {
−→
N i} of

direction vectors. The standard K-means clustering algo-

rithm was used to split the cell population into two adax-

ial and abaxial groups. However, the non-deterministic na-

ture of the K-means algorithm affects the reproducibility of

the clustering [9] (Fig. 2A), because of the random selec-

tion of data points as initial cluster centroids. Besides, our

classification must be carried out in an unambiguous way,

since as described in Sec. 2.2 we need to identify and distin-

guish between the class representing the adaxial cells (base

of the triangle) and the other two classes representing the

two halves of the abaxial cells (the two other sides of the

triangle).

For these purposes, we propose here to pre-compute the

initial centroids from a first round of clustering which will

allow an identification of the classes and ensure a robust

classification. The K-means algorithm is first applied with

K = 2 to split {
−→
N i} into two sets {

−→
N 1

i } and {
−→
N 2

i } cor-

responding to the abaxial and adaxial cell populations. The

K-means algorithm is then run independently on each sub-

set with K = 2. The centroid of each of the four resulting

ensembles is computed. Let C ′

1
, C ′′

1
be the pair of centroids

corresponding to the first set {
−→
N 1

i } and C ′

2
, C ′′

2
the pair of

centroids for the second set {
−→
N 2

i }. Because of the glob-

ally triangular appearance of the leaf in transverse sections,

the pair of centroids C ′

i∗ , C ′′

i∗ with the maximum Euclidean

distance are interpreted as corresponding to the two halves

of the abaxial side. The average of the two other centroids

C ′

j∗, C ′′

j∗ (j∗ = 1+ i∗ mod 2), corresponding to the adax-

ial side, is computed. The obtained three centroids are used

as initial cluster centroids in a final run of the K-means algo-

rithm (K = 3) on the initial set of direction vectors {
−→
N i}.

Fig. 2B shows the resulting partitioning of leaf surface into

three classes. Running the whole procedure several times

on each leaf produced an invariant partitioning.

Merging the two sets of the abaxial side provides a sep-

aration of the epidermal cell population in two adaxial and

abaxial populations, the frontiers of which correspond to

the leaf margin. We quantitatively compared the perfor-

mance of the proposed approach against the one described

in [10], using manual annotations of leaf sides on six differ-

ent leaves by four biological experts. Compared with expert

annotation, the error rate was 3.85% for the approach de-

scribed in [10] while it dropped at 2.62% with the approach

proposed here. Hence, improving the robustness of the par-

titioning procedure also provided a more accurate side sep-

aration.

2.4. Computing an organ centered coordinate sys
tem

We establish a leaf-centered coordinate system by com-

puting two perpendicular axes: a lateral axis, corresponding

to the separation between the adaxial and abaxial sides, and



Figure 2. Surface partitioning based on clustering of normal vec-
tors. (A) Partitioning into two classes using the classical K-means.
Blue arrowspoint to cells that are assigned to a different side be-
tween different runs of the method described in [10]. (B) Parti-
tioning into three classes (adaxial side and left/right abaxial side).

a longitudinal axis, corresponding to the bilateral axis of
symmetry of the leaf (Fig.3A).

Computation of the lateral axis. The lateral axis is rep-
resented as a curve with ordered points that de�ne the mar-
gin between the adaxial and abaxial sides (Fig.3A). We
�rstly compute all the points that are at the margin between
the abaxial and the adaxial sides and retain only those that
are at the leaf surface. Based on mathematical morpholog-
ical operators, we automatically determine the petiole sec-
tion of the leaf (Fig.3C), which corresponds to the position
where the leaf was separated from the plant. LetP be the
barycenter of the petiole section andA the tip (apex) of the
leaf, obtained as the margin point that is the farthest fromP
(Fig. 3D). Based on its relative positioning toP andA, and
on the identi�cation of the adaxial and abaxial side, each
margin point is assigned to the left or right leaf margin.

Let I L
0 andI R

0 be the closest margin points toP on each
lateral (left or right) side, respectively (Fig.3C). The com-
puted points which de�ne the margins between the adaxial
and abaxial sides are not ordered. We designed a procedure
reminiscent of the Douglas-Peucker algorithm [5] to com-
pute two smooth margin curves with ordered points con-
nectingI L

0 andI R
0 to the apexA. The algorithm is based

on the following condition: if the farthest point from the
line segment de�ned by the current �rst and last points is
greater than� then that point must be kept. Starting fromA
andI L

0 (or I R
0 ), the procedure is applied recursively until no

additional point satisfy the condition. This allows a robust
extraction of the margin contour as a connected curve. Fi-
nally, the points of the two curves are resampled uniformly
with the same number of points on each side (see in Fig.3C
the curves de�ned by red dots).

Figure 3. Overview of the surface parameterization method. (A)
Coordinate system de�ned by two axes: a lateral axis (Red), cor-
responding to the interface between adaxial and abaxial sides; a
longitudinal axis (Green), corresponding to the bilateral symmetry
axis of the leaf.Colored segments: geodesic paths between points
at homologous curvilinear coordinates on the axis curves. (B) Pa-
rameterization of leaf surface using a quadrangular mesh. (C) Leaf
surface (Transparent grey) with petiole section in blue and com-
puted anatomical landmarks.P petiole;A tip (apex);I L

0 , I R
0 clos-

est points toP on the left and right margins, respectively. (D) Leaf
surface (Transparent grey) with computed anatomical landmarks.
I Aba

0 , the closest point toP on the boundary of the two halves
of the abaxial side.I Ada

0 the projection of the middle of segment
[I L

0 I R
0 ] onto the adaxial side. Scale bars:10�m .

Computation of the longitudinal axis. The longitudinal
axis is de�ned by two curves splitting each side in two
halves. The �rst one is obtained by applying the procedure
described above for the lateral axis to the interface points
between the two lateral halves of the abaxial side. This
curve starts atI Aba

0 , the closest point toP, and ends atA
(see in Fig.3D the curves de�ned by green dots).

The second curve is obtained by projecting the medial
axis of the two lateral curves onto the adaxial side. Indeed,
the clustering of the normals at the adaxial side does not
allow to obtain a separation in two halves due to the lower
curvature of the adaxial side compared to the abaxial one.








