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Abstract

State-of-the-art deep face recognition approaches report

near perfect performance on popular benchmarks, e.g., La-

beled Faces in the Wild. However, their performance de-

teriorates significantly when they are applied on low qual-

ity images, such as those acquired by surveillance cameras.

A further challenge for low resolution face recognition for

surveillance applications is the matching of recorded low

resolution probe face images with high resolution reference

images, which could be the case in watchlist scenarios. In

this paper, we have addressed these problems and investi-

gated the factors that would contribute to the identification

performance of the state-of-the-art deep face recognition

models when they are applied to low resolution face recog-

nition under mismatched conditions. We have observed that

the following factors affect performance in a positive way:

appearance variety and resolution distribution of the train-

ing dataset, resolution matching between the gallery and

probe images, and the amount of information included in

the probe images. By leveraging this information, we have

utilized deep face models trained on MS-Celeb-1M and fine-

tuned on VGGFace2 dataset and achieved state-of-the-art

accuracies on the SCFace and ICB-RW benchmarks, even

without using any training data from the datasets of these

benchmarks.

1. Introduction

Face recognition systems are now very common, from

applications in our smartphones to security gates in the air-

ports. These systems work flawlessly, when the training and

test images are of high quality, have similar distributions,

and do not vary much. However, in the surveillance scenar-

ios, in which the training and test images do not have the

same distribution, face recognition systems’ performance

deteriorates. Figure 1 illustrates the face identification sce-

nario addressed in this paper to explore this problem. The

scenario resembles a watchlist one, in which we have high

Figure 1. Face identification scenario addressed in this paper. The

scenario resembles a watchlist one, in which we have high quality

gallery face images of the individuals recorded at indoor studio

settings and low quality probe face images recorded by indoor, as

in the SCFace benchmark [5] (left), or outdoor, as in the ICB-RW

benchmark [15] (right), surveillance cameras.

quality gallery face images of the individuals recorded at

indoor studio settings and low quality probe face images

recorded by indoor, as in the SCFace [5], or outdoor, as in

the ICB-RW [15], surveillance cameras.

The recent breakthroughs in deep learning architec-

tures [8, 7, 20, 18] and availability of large-scale training

databases, e.g. CASIA Webface [25], MS-Celeb-1M [6],

VGGFace2 [1], have aided the research in face recogni-

tion (FR). The advancements have been significant on the

benchmarks that have relatively high resolution face images

in gallery and probe sets, e.g. Labeled Faces in the Wild

(LFW) [9] and YouTube Faces (YTF) [23].

In low resolution face recognition under surveillance

scenarios on the other hand, for example in a watchlist ap-

plication, there is a single high resolution frontal face im-

age per subject in the gallery set, whereas, there are low

resolution face images captured with surveillance cameras

in the probe set, which contain appearance variations due

to changes in illumination, expression, pose, motion-blur,
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Figure 2. Sample probe images from the SCFace and the ICB-RW

datasets. The probe set of SCFace contains face images with three

different resolutions depending on the distance between the sub-

ject and the cameras (left), probe set of ICB-RW includes face im-

ages recorded outdoors and contain challenging appearance varia-

tions (right).

occlusion, focus, and varying resolutions as can be seen in

Figure 2 for the ICB-RW [15] and the SCFace [5] bench-

marks. Probe face images’ quality problems and the qual-

ity mismatch between the gallery and probe images are the

main causes of the performance drop in deep face recogni-

tion models when they are tested under such conditions.

To address the challenges posed by low resolution face

recognition, in this work, we explore the factors that would

improve Low Resolution Face Recognition (LRFR) perfor-

mance. We investigate the factors, such as, appearance vari-

ety and resolution distribution of the training database, reso-

lution matching between the gallery and probe images, and

the amount of information included in the probe images. We

observe that all of these factors improve the performance.

We test the robustness of four state-of-the-art deep convo-

lutional neural network (CNN) models, namely, ResNet-

50 [7], SENet-50 [8], LResNet50E-IR [3], LResNet100E-

IR [3] and utilize two large scale face databases, VG-

GFace2 [1] and MS-Celeb-1M [6], to train and fine-tune

them. We present that appearance variety and resolution

distribution of the training database is of paramount impor-

tance. We also analyze the impact of the resolution match-

ing between the gallery and probe images. In contrast to a

previous work [22], instead of super-resolving low resolu-

tion face images to match the resolution of the gallery and

probe images, we down-sample the high resolution gallery

images. We observe that matching the gallery and probe

face images’ resolution increases the performance signifi-

cantly in the cases where the probe face images’ quality is

very low. Finally, we experiment different face crop sizes

in order to assess the impact of information included in the

face images. Experimental results indicate that cropping a

larger region of the face images improves the performance.

By leveraging these factors, we achieve state-of-the-art

results on the SCFace [5] and ICB-RW [15] benchmarks,

even without using any data from these benchmarks to train

or fine-tune the employed deep CNN models. To com-

pare our results on the SCFace [5] benchmark with [12],

we conduct 10 Repeated Random Sub-Sampling Validation

(RRSSV) experiment on 80 subjects out of 130 subjects and

report the mean and standard deviation of Rank-1 Identifi-

cation Rate (IR). We achieve 78.5%±1.67, 98.38%±0.48,

and 99.75% ± 0.16 Rank-1 IR for distance 1, 2, and 3

(d1, d2, and d3) of SCFace [5], respectively. Our approach

outperforms the state-of-the-art results presented in Deep

Coupled-ResNet (DCR) [12] by the large margins of 5.2%,

4.88%, and 1.75% for d1, d2, and d3, respectively. In

contrast to DCR [12], we do not exploit target dataset for

fine-tuning. Furthermore, we evaluate the proposed factors

on ICB-RW benchmark [15] and outperform the results re-

ported in Ghaleb et al. [4], the best performing system in

the ICB-RW 2016 challenge [15], by a significant margin

of 12.52% for Rank-1 IR.

The remainder of this paper is organized as follows. In

section 2, we provide an overview of related work. In sec-

tion 3, face detection, feature extraction, and face identifica-

tion steps are explained. Experimental results are presented

and discussed in section 4. Finally, in section 5 conclusions

of this work are summarized.

2. Related Work

The related works for face recognition can be grouped

into Low Resolution Face Recognition (LRFR) and High

Resolution Face Recognition (HRFR). The reported re-

sults on the HRFR benchmarks are nearly perfect. In

FaceNet [17], a Deep Convolutional Neural Network

(DCNN) architecture with Inception [20] modules is trained

on a very large-scale database of 260 M images. After that,

the features are L2 normalized and triplet loss is proposed

to learn deep face representations. The proposed method

achieved 99.63% face IR on the LFW benchmark [9] and

95.12% face IR on the YTF benchmark [23]. Sun, et al.

[19] included Inception modules [20] into two VGG archi-

tectures [18], and concatenated extracted features from 25

different crops of each face per network. Afterwards, a

joint Bayesian model is learned for face recognition. The

proposed method achieved 99.54% verification accuracy on

the LFW [9]. In SphereFace [11] the Angular-Softmax loss

is introduced and adopted ResNet architecture [7] to learn

face embeddings in training phase. They applied nearest

neighbor classifier with cosine similarity for face identifi-

cation. The applied method achieved 99.42% verification

accuracy on the LFW [9] and 95.0% on YTF [23] datasets,

respectively. ArcFace [3] leveraged ResNet [7] architecture

and train the face identification model with additive angular

margin loss. Their reported best verification accuracy are



99.83% on the LFW [9] and 98.02% on the YTF [23].

In contrast to HRFR, the performance of deep CNN

models degrade significantly in LRFR. Lee et al. [10], ex-

tracted local color vector binary patterns and nearest neigh-

bor classifier with euclidean distance metric are carried out

for face identification. Average Rank-1 Identification Rate

(IR) of 67.68% is reported for distance 1 and 2 (4.20m,

2.60m, respectively) of SCFace [5]. De Marsico et al. [2]

applied pose and illumination normalization on faces and

localized spatial correlation index for face matching. They

reported 89% Rank-1 IR for distance 3 (1.0m) of SC-

Face [5]. A Patch Based Cascaded Local Walsh Trans-

form (PCLWT) followed by whitened principal component

analysis is employed in [21] for feature extraction. They

reported 64.76%, 80.8%, and 74.92% Rank-1 IR for d1,

d2, and d3 respectively. Yang et al. [24] proposed the

Local-Consistency-Preserved Discriminative Multidimen-

sional Scaling (LDMDS) approach to learn compact intra-

class features and maximize inter-class distance. They se-

lected 50 subjects, out of 130 subjects available in SC-

Face [5], for training and calculated Rank-1 IR for the re-

maining 80 subjects. They reported 62.7%, 70.7%, and

65.5% Rank-1 IR for distance 1, 2, and 3, respectively.

Following [24], in Deep Coupled-ResNet (DCR) [12] a

two-step multi-scale training strategy is performed to train

a trunk and two branches (HR and LR branches). They

trained the trunk network with three different image reso-

lutions (112 × 96, 40 × 40, and 6 × 6) pre-processed from

CASIA Webface database [25]. In the second step, they

fixed the weights of the trunk network and trained the HR

and LR branches. For that, they trained HR branch with

112 × 96 pixel resolution and LR branch with 112 × 96,

30 × 30, and 20 × 20 pixel resolutions based on the image

resolutions of the distances 1, 2, and 3 respectively. After

that, they fine-tuned the HR and LR branches with 50 ran-

domly selected subjects of the SCFace dataset [5]. Deep

face embedding of the gallery and probe faces of SCFace

dataset [5] are extracted with HR branch and LR branches,

respectively. They evaluated the proposed method on 80 re-

maining subjects of SCFace dataset [5] and achieved 73.3%,

93.5%, and 98.00% Rank-1 IR for distance 1 (4.20m), dis-

tance 2 (2.60m), and distance 3 (1.0m), respectively. As it

can be noticed from these results, performance of the pro-

posed methods deteriorate significantly when the resolution

of the probe faces decreases. In GenLR-Net [14] authors

employed VGGFace [16] pre-trained model to construct

two branches network to overcome performance degrada-

tion in LR face recognition. Their proposed method sig-

nificantly improved the results of HR-LR verification task

on modified fold 1 of LFW benchmark [9] from 69.16%

using original VGGFace [16] model to 90.00%. There are

also deep learning based super-resolution methods to deal

with low resolution faces, however, these methods are not

optimized for LRFR [26] and yield modest performance im-

provement [22].

3. Methodology

In the following sections, we present the building blocks

of the system, which are employed face detector [27], uti-

lized training databases [6, 1] and the deep CNN mod-

els [1, 3], proposed strategy to match the resolution of

the gallery and probe images, the crop ratios to adjust the

amount of information included in the face images, and fi-

nally the similarity measurement and the evaluation metric.

3.1. Face Detection

The bounding boxes of the faces in the gallery and probe

sets are detected using the Multi-Task Cascaded Convolu-

tional Neural Networks (MTCNN) [27] model. The faces

are cropped and resized to 224 × 224 or 112 × 112 pixel

resolutions depending on the input size of the deep learning

models.

3.2. Feature Extraction

We employ four state-of-the-art deep CNNs, namely

ResNet-50 [7], SENet-50 [8], LResNet50E-IR [3], and

LResNet100E-IR [3]. The deep models are trained or fine-

tuned on VGGFace2 [1] and MS-Celeb-1M databases [6]

to learn the face embedding of the gallery and probe face

images in the SCFace [5] and ICB-RW [15] benchmarks.

Please note that we do not take advantage of these bench-

marks for fine-tuning.

3.2.1 Deep face models

The deep face models that are utilized in this study are listed

in Table 1 and named as model a, b, c, ..., h. Off-the-

shelf models described in VGGFace2 [1] and ArcFace [3]

are used for models a, b, c, d and e, g, respectively. Fur-

thermore, models e and g are fine-tuned on the VGGFace2

database [1] to learn models f and h, respectively.

3.2.2 Fine-tuning

The detected face images of the VGGFace2 database [1]

are aligned with respect to the positions of the center of the

eyes, tip of the nose, and the corners of the mouth. The

aligned faces are then resized to 112× 112 pixel resolution

and finally pixel intensity values are normalized by subtract-

ing 127.5 and dividing by 128. These pre-processed face

images are then provided for fine-tuning.

Model f : model e is fine-tuned on the VGGFace2

database [1] using additive angular margin loss [3] with

m = 0.5 and s = 64.0. Stochastic gradient descent with

momentum 0.9 and learning rate of 0.01 are used to fine-

tune the network with the batch size of 64. The learning



Models CNNs Trained on Fine-tuned on Input size Embedding size

a ResNet-50 [7] VGGFace2 [1] n/a 224× 224 2048

b ResNet-50 [7] MS-Celeb-1M [6] VGGFace2 [1] 224× 224 2048

c SENet-50 [8] VGGFace2 [1] n/a 224× 224 2048

d SENet-50 [8] MS-Celeb-1M [6] VGGFace2 [1] 224× 224 2048

e LResNet50E-IR [3] MS-Celeb-1M [6] n/a 112× 112 512

f LResNet50E-IR [3] MS-Celeb-1M [6] VGGFace2 [1] 112× 112 512

g LResNet100E-IR [3] MS-Celeb-1M [6] n/a 112× 112 512

h LResNet100E-IR [3] MS-Celeb-1M [6] VGGFace2 [1] 112× 112 512

Table 1. The eight combinations resulting from the different deep CNN architectures and training databases that are used for feature

extraction in this study.

rate is divided by 10 at 20K, 28K iterations and the training

process is stopped at 32K iterations as in ArcFace [3]. The

obtained verification accuracy of the validation set, LFW

dataset [9], is 99.6%.

Model h: model g is fine-tuned on the VGGFace2

database [1] with the same setting as in the model f, how-

ever, the learning rate is set to 0.001. The achieved verifica-

tion accuracy on the LFW dataset [9] is 99.7%.

3.3. Amount of information

To adjust the amount of information to be included in

the face images, we extend the face bonding boxes. In a

previous work [13], it has been shown that this has a sig-

nificant effect on the performance. In our study, we also

expect this adjustment to contribute positively to the perfor-

mance of LRFR due to two main reasons. The first reason is

that due to low resolution, the face images contain limited

information, extending face bounding boxes would allow to

include more information, for example about the shape of

the face, etc. The second one is related to the upsampling

factor. Since input size of the face images to the deep learn-

ing models are relatively high, in our case 224 × 224 or

112× 112 pixels, this requires upsampling of the low reso-

lution face images with a large scaling factor. A larger crop

of the face region would decrease the scaling factor, thus,

less degradation would occur due to upsampling. In this

work, we control the amount of information to be included

in the face images with six different crop ratios (1.0, 1.1,

1.2, 1.3, 1.35, 1.40) as shown in Figure 3.

3.4. Matching the resolution

An important challenge in LRFR is that features ex-

tracted from very low resolution faces in the probe set and

high resolution images in the gallery set can potentially

have higher intra-class distance than inter-class distance.

We hypothesize that if we could make the appearance of the

gallery face images similar to the probe face images, intu-

itively, we would minimize the intra-class distance. There-

fore, to imitate low resolution we downsampled the gallery

images. That is the gallery face images are downsampled

Figure 3. Gallery and probe faces of a subject from SCFace and

ICB-RW benchmarks cropped with six different crop ratios.

Figure 4. Gallery faces of a subject from SCFace benchmark

cropped with 1.3 extension factor and matched resolution of them

with five different pixel resolutions (24 × 24, 32 × 32, 40 × 40,

48× 48, 64× 64) are shown here.

and this way their resolution is matched with the resolution

of probe face images. For this purpose we picked five dif-

ferent resolutions (24 × 24, 32 × 32, 40 × 40, 48 × 48,

64×64) and select 32×32, 48×48, and 64×64, which are

closest to the resolution of d1, d2, and d3 probe face images

in SCFace [5], respectively. We take the original resolution

of gallery face images in ICB-RW [15] experiments, which

matches the resolution of the probe face images. In Figure

4, the first column shows the gallery face of a subject from

SCFace [5] cropped with 1.3 extension ratio, whereas, the

other columns show downsampled gallery face images at

five different resolutions to make their image quality simi-

lar to the probe face images in the SCFace [5] benchmark.



3.5. Face Identification

The face embedding of the gallery and probe sets are

extracted using eight deep face models described in Table 1.

The identification task for probe faces are carried out by

nearest neighbor classification method with the correlation

distance metric (eq. 1) as similarity measurement:

Corr.distance(u, v) = 1−
(u− ū).(v − v̄)

‖(u− ū)‖2‖(v − v̄)‖2
(1)

where u, v are the face feature vectors and ū, v̄ are mean

of the face feature vectors. Rank-1 IR is reported as the

evaluation metric.

4. Experimental Results

We conduct our experiments in three steps on the SC-

Face and ICB-RW benchmarks. Firstly, we crop faces with

bounding boxes detected by MTCNN [27] before feature

extraction. Secondly, larger crops are used for feature ex-

traction, and finally, the gallery faces’ pixel resolution are

matched with the resolution of probe face images before

extracting the face embedding. In this section, we provide

the experimental results for these steps.

4.1. Datasets

We evaluate the proposed methods on the SCFace [5]

and ICB-RW [15] benchmarks.

There are 130 subjects in SCFace dataset [5], one frontal

image (gallery set) and 15 LR images per subject (probe

set). The gallery faces are captured in controlled condi-

tions, whereas, the probe faces are captured with five indoor

surveillance cameras located at three different distances, d1,

d2, and d3 (4.20, 2.60, and 1.00 meters, respectively) result-

ing in the probe images with varying image quality. Please

note that in this study we do not fine-tuned our models with

target dataset and we report the Rank-1 IR for 130 subjects

of SCFace [5]. However, in order to be able to compare our

results with previous works, we report the mean and stan-

dard deviation of Rank-1 IR of 10 RRSSV experiments for

80 subjects out of 130 in model h* (Table 4).

ICB-RW benchmark [15] contains 90 subjects, each hav-

ing one high quality gallery image and 5 probe images,

recorded outdoors, containing variations in illumination,

expression, pose, motion-blur, occlusion, and focus. Fig-

ure 2 illustrates the aforementioned probe image quality

problems in SCFace [5] and ICB-RW [15] benchmarks.

4.2. Baseline experiments

The faces are detected using the MTCNN [27] and

cropped according to the face detection output. The face

embeddings are extracted with eight deep CNN models, as

presented in Table 1. Thereupon, face embeddings are fed

into the nearest neighbor classifier with correlation distance

metric as the similarity measurement. The Rank-1 IR re-

sults on the SCFace [5] and ICB-RW [15] benchmarks are

reported in Table 2. It can be seen from the results that

the performance of the state-of-the-art deep CNN models

plummet at d1, which contains very low resolution probe

face images. We fine-tune models e and g using VGGFace2

database [1] to learn models f and h, respectively. After

that, a significant improvement in performance of models

f and h for d1 of SCFace [5] (see Table 2) are observed.

The improvement can be described to the fact that the VG-

GFace2 database [1] contains approximately 20% of the

face images with pixel resolution lower than 50 pixel, which

allow the model to learn better feature representation for

low resolution face images.

SCFace ICB-IRW

Model d1 d2 d3 probe

a 40.15 91.38 98.15 79.11

b 41.85 89.54 97.69 77.56

c 33.08 86.92 96.62 81.33

d 35.69 86.00 97.23 79.56

e 13.85 59.54 86.31 40.44

f 20.46 71.54 85.38 48.00

g 25.38 84.00 98.15 68.22

h 37.54 87.69 96.00 69.33

Table 2. The Rank-1 IR results (%) of eight deep models are re-

ported for d1 (4.2 m), d2 (2.6 m), and d3 (1.0 m) probe faces of SC-

Face and ICB-RW in which we detected the faces with MTCNN

model and cropped them with 1.0 ratio.

SCFace ICB-IRW

Model d1 d2 d3 probe

a 53.54 94.92 99.38 80.67

b 52.15 93.85 98.00 81.56

c 49.08 93.54 98.92 82.00

d 50.77 94.00 99.08 82.67

e 23.23 77.54 93.23 58.22

f 47.69 87.23 93.38 60.00

g 50.46 96.31 99.69 82.00

h 60.62 96.15 99.38 78.67

Table 3. The Rank-1 IR (%) of deep CNN models using 1.30 crop

ratio are reported for d1, d2, and d3 in SCFace and probe faces of

ICB-RW.

4.3. Effect of increasing the amount of information

As we discussed in section 3.3, we control the amount

of information to be included in the gallery and probe face

images by using six different crop ratios. Empirical re-

sults show a compelling improvement on the performance

of eight deep CNN models. We plot the Rank-1 IR of deep



Figure 5. The Rank-1 IR (%) of deep CNN models on probe faces of SCFace benchmark for six different crop ratios.

Figure 6. The Rank-1 IR (%) of deep CNN models on probe faces

of ICB-RW benchmark for six different crop ratios.

SCFace ICB-RW

Model d1 d2 d3 probe

a 56.72 95.23 99.23 82.22

b 59.38 96.00 98.00 82.00

c 54.15 94.77 98.92 84.22

d 60.62 94.46 99.23 84.00

e 33.38 80.62 95.23 58.67

f 55.38 89.69 93.85 60.89

g 67.08 97.23 100 81.78

h 75.08 97.69 99.69 79.78

h* 78.5 98.38 99.75 n/a

DCR [12] 73.3 93.5 98.0 n/a

LDMDS [24] 62.7 70.7 65.5 n/a

PCLWT [21] 64.76 80.8 74.92 n/a

Ghaleb et al. [4] n/a n/a n/a 71.7

Table 4. The results achieved with 1.3 crop ratio are reported for

DCNN models. * denotes that model h* results are mean of 10

RRSSV for 80 subjects out of 130 in SCFace [5]. The presented

mean face identification rates for d1, d2, and d3 have 1.67, 0.48,

and 0.16 standard deviation, respectively.

CNN models for each of six crop ratios as illustrated in Fig-

ure 5 for SCFace [5], and Figure 6 for ICB-RW [15] bench-

marks. Table 3 summarizes the Rank-1 IR results achieved

by 1.30 crop ratios for the eight deep models. These re-

sults show the impact of the increased information in the

significant improvement of the models’ performance, espe-

cially, for the probe face images that have lower resolution.

Our results also validate the results in [13], which presented

the performance improvement in face recognition using ex-

tended bounding boxes.

4.4. Effect of matching the resolution

As it is mentioned in section 3.4, we conduct experi-

ments on SCFace [5] and ICB-RW [15] benchmarks using

eight deep CNN models to test the contribution of match-

ing the resolution at performance improvement. We ob-

serve that Rank-1 IR improves significantly for the low res-

olution probe faces as in SCFace [5], however, there is not

much improvement in the higher resolutions probe images

as in ICB-RW [15] which already have a matching resolu-

tion with the gallery face images. Table 4 shows the Rank-1

IR achieved by DCNN models on SCFace [5] and ICB-RW

benchmark [15]. The models with 224 × 224 input size

(a, b, c, d) achieve higher Rank-1 IR for ICB-RW bench-

mark [15], which can be described to the fact that the probe

images of ICB-RW [15] have higher resolution. The pre-

sented Rank-1 IR on SCFace benchmark [5] are achieved

with 32 × 32, 48 × 48, and 64 × 64 downsampled gallery

face images which are close to the average resolution of d1,

d2, and d3 in SCFace benchmark [5], respectively. Please

note that in DCR [12] and LDMDS [24] randomly selected

50 subjects out of 130 subjects in SCFace [5] are used for

fine-tuning and the results are reported on 80 remaining sub-

jects. To compare our results we also report the mean and

standard deviation of 10 RRSSV experiments on 80 ran-

domly selected subjects (model h*). As can be seen from

Table 4, on d1 and d2 subsets around 5% and on d3 subset

2% absolute performance improvement has been achieved

compared to the DCR [12] leading to the state-of-the-art

results for the SCFace dataset [5]. Similarly, the proposed

approach enhances the state-of-the-art accuracy on the ICB-

RW benchmark [15] from 71.7% to 84.22%.



5. Conclusion

In this paper, we explore the factors that would con-

tribute to improve identification accuracy of low resolu-

tion face recognition under mismatched conditions. We

observe that models f and h fine-tuned on the VGGFace2

dataset significantly improve Rank-1 IR for very low reso-

lution probe face images (d1 of SCFace) compared to off-

the-shelf models (models e and g), which are trained on

MS-Celeb-1M dataset [6]. This can be explained to the

fact that VGGFace2 [1] has about 20% of the face images

with resolution lower than 50 pixels, which helps the model

to learn robust features for low resolution faces. The ex-

perimental results show that including more information

in the cropped faces and matching the resolution between

gallery and probe sets enhance the Rank-1 IR significantly.

Our model h achieves state-of-the-art Rank-1 IR results on

130 subjects of SCFace benchmark [5] which are 75.08%,

97.69%, and 99.69% Rank-1 IR for d1, d2, and d3 respec-

tively. We also significantly improve the Rank-1 IR on ICB-

RW benchmark with model c that achieves 84.22% Rank-1

IR outperforming the validation results reported in Ghaleb

et al [4] by 12.52 margin.
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