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Abstract

We propose a novel face recognition method using a Hi-

erarchical Feature Relational Network (HFRN) which ex-

tracts facial part representations around facial landmark

points, and predicts hierarchical latent relations between

facial part representations. These hierarchical latent rela-

tions should be unique relations within the same identity

and discriminative relations among different identities for

face recognition task. To do this, the HFRN extracts appear-

ance features as facial parts representations around facial

landmark points on the feature maps, globally pool these ex-

tracted appearance features onto single feature vectors, and

captures the relations for the pairs of appearance features.

The HFRN captures the locally detailed relations in the low-

level layers and the locally abstracted global relations in

the high-level layers for the pairs of appearance features

extracted around facial landmark points projected on each

layer, respectively. These relations from low-level layers to

high-level layers are concatenated into a single hierarchi-

cal relation feature. To further improve the accuracy of face

recognition, we combine the global appearance feature with

the hierarchical relation feature. In experiments, the pro-

posed method achieves the comparable performance in the

1:1 face verification and 1:N face identification tasks com-

pared to existing state-of-the-art methods on the challeng-

ing IARPA Janus Benchmark A (IJB-A) and IARPA Janus

Benchmark B (IJB-B) datasets.

1. Introduction

Face recognition in unconstrained environments is a

challenging problem in computer vision society. Faces of

the same identity can look very different when presented

in different illuminations, facial poses, facial expressions,

and occlusions. Such variations within the same identity

could overwhelm the variations due to identity differences

and make face recognition challenging. To overcome these

problems, many deep learning-based approaches have been

proposed as the feature learning and achieved high accu-
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Figure 1. Overview of the proposed Hierarchical Feature Rela-

tional Network.

racies of face recognition such as DeepFace [26], DeepID

series [24, 23, 35], FaceNet [22], PIMNet [10], SphereFace

[17], ArcFace [4], and PRN [11].

The deep learned features need to be not only separa-

ble but also discriminative to classify face images among

different identities. This means that the representation of a

certain person A for face recognition stays unchanged re-

gardless of who it is compared with, and this representa-

tion has to be discriminative enough to distinguish A from

all other persons. However, these features are learned im-

plicitly for separable and distinct representations to classify

among different identities without what part of the feature

is meaningful, and what part of the features is separable

and discriminative. To do this, some research efforts have

been made regarding facial part-based representations for

face recognition. In DeepID [24] and DeepID2 [23], a face

region is divided into several of sub-regions based on the

detected facial landmark points at different scales and color

channels, then these regions are used for training differ-

ent networks. The comparator network [32] used attention

mechanism based on multiple discriminative local regions

(landmark points based), and comparing local descriptors

between pairs of faces. In [5], they proposed contrastive

convolution which specifically focuses on the distinct char-

acteristics between the two faces to compare, i.e., those con-

trastive characteristics. By contrast, when humans compare

two faces, we are trying to find the differences and putting

more attention of them for better distinguishing of the two

faces.
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In this paper, we propose the hierarchical feature rela-

tional network (HFRN) to represent unique and discrimi-

native representations from locally detailed information to

high-level abstracted global information for face recogni-

tion. To do this, the HFRN predicts latent relations for the

pairs of appearance features on each feature map, and is

trained to capture unique relations within the same iden-

tity and discriminative relations among different identities.

These relations are captured from the low-level appearance

features on the low-level feature map to the high-level ap-

pearance features on the high-level feature map. In low-

level layers, the feature maps represent locally detailed in-

formation. The HFRN captures the locally detailed rela-

tions for pairs of appearance features extracted around facial

landmark points on the low-level feature maps. In contrast,

the feature maps in high-level layers represent abstract and

global information. Therefore, the HFRN captures the more

abstracted and global relations for pairs of appearance fea-

tures extracted around facial landmark points on the high-

level feature maps. These relations from low-level layers to

high-level layers are concatenated into a single hierarchical

relation feature. To further improve accuracy of face recog-

nition, we combine the global appearance feature with the

hierarchical relation feature (Figure 1).

The main contributions of this paper can be summarized

as follows:

• We propose a novel face recognition method using the

hierarchical feature relational network (HFRN) which

captures the unique and discriminative pairwise rela-

tions from low-level appearance features to high-level

appearance feature to classify face images among dif-

ferent identities. These relational features represent lo-

cally detailed relations in low-level layers and locally

high-level abstracted relational features in high-level

layers.

• To further increase accuracy, we combine hierarchical

relational features with the global appearance features

which are extracted from the last convolutional layer

and contain global information of a given face.

• We show that the proposed HFRN is very useful to in-

crease the accuracy of both face verification and face

identification.

• To investigate the effectiveness of the HFRN, we

present extensive experiments on the public available

datasets such as Labeled Faces in the Wild (LFW) [8],

YouTube Faces (YTF) [31], IARPA Janus Benchmark-

A (IJB-A) [12], and IARPA Janus Benchmark-B (IJB-

B) [30].

2. Related Work

Part-based face recognition. Several previous re-

searches proposed to use part-based representation for a

face image. In [15], the face image is densely divided

into overlapping patch regions at multiple scales, and each

region of patches is represented by local features such

as Local Binary Pattern (LBP) or SIFT, then represented

as a bag of spatial appearance features by clustering. In

DeepId [24], ten different regions in a given face image

are defined by five large regions at fixed positions and

five small regions around each facial landmark point, and

these regions are then cropped, respectively. For each

region, RGB and gray-scale patch regions of five different

scales were generated and each trained with a single

convolutional neural network to output a feature vector of

160 dimensions. The features are then concatenated and

the dimensionality was reduced with additional training

on a validation set. In DeepID2 [23], 400 patch regions

were cropped at different positions, scales, color channels

and horizontal flipping, and used for training 200 different

convolutional networks. After feature selection, 25 patches

were selected to extract a 4,000-dimensional feature vector,

which was finally reduced to 180-dimensional vector by

PCA. The authors showed that combining these features

from different regions substantially improved the accuracy

of face recognition. In this paper, unlike the DeepID

methods, we crop facial part regions and extract appearance

features on the feature maps from low-level layers to

high-level layers within the projected ROIs around facial

landmark points, and capture hierarchical feature relations

between facial parts.

Relation learning. Google’s DeepMind proposed the re-

lational network to perform spatial relational reasoning by

modeling the relations between features at every spatial lo-

cation and the features at every other location [21]. To

model the co-occurrence statistics of features, a bilinear

CNN [16] was proposed for fine-grained classification prob-

lems. The bilinear CNN makes the descriptor of an image

by the outer product of the feature maps. As for few-shot

learning, [28] was proposed to learn a local similarity met-

ric with a deep neural network. As its extension, [25] was

proposed, and experiments with models with more capacity,

where the feature maps of images (from a support set and

test set) are concatenated and fed into a relational network

module for similarity learning. In this paper, we modify the

relation network with appearance features from low-level

layers to high-level layers and the global appearance fea-

ture to represent hierarchical feature relations. It shows that

the relation learning helps to improve the accuracy of the

face verification and identification tasks.



Figure 2. Details of the Feature Relational Network in the proposed hierarchical feature relational network.

3. Hierarchical Feature Relational Network

The Hierarchical Feature-pair Relation Network

(HFRN) captures the latent feature-pair relations for pairs

of appearance features on each feature maps and consists

of the facial part representations for feature extraction,

the feature-pair relation network for capturing feature-pair

relations, and the hierarchical feature-pair relation network

for obtaining the hierarchical feature-pair relation.

3.1. Facial Part Representations

To capture the feature-pair relations between facial parts,

we first extract the appearance features as the facial part

representation around each i-th landmark point. Each m ×
m region of interest (RoI) corresponding to each i-th facial

landmark point in the input image is projected onto m
′

×
m

′

region on the feature map of l-th layer. Within m
′

×
m

′

RoIs, we extract appearance features, and each of them

is then pooled into a single appearance feature by global

average pooling (GAP) (Figure 3):

f l
i = GAP (Al

i), (1)

where Al
i is i-th ml × ml × cl appearance feature corre-

sponding to i-th facial landmark point on the feature map in

l-th layer. cl denotes the dimension of channels for feature

map in l-th layer. Because Al
i is extracted by the RoI pro-

jection, the location of the projected RoI are continuous co-

ordinates which mean that coordinates of RoI are floating-

numbers. To extract the exact value of each sampling point

in the m
′

× m
′

region, we compute directly through bilin-

ear interpolation from the nearby grid points on the feature

map likely RoI-Align [6]. After appearance feature extrac-

tion, we apply the GAP to each Al
i, and then we obtain the

1×1×cl dimensional feature f l
i. We totally extract N f l

is

(F l = {f l
1, · · · ,f

l
i, · · · ,f

l
N}) in each l-th layer. Figure 3

illustrates the process of the appearance feature extraction.

With this appearance feature set F l, we make all possible

pairs P l = {pl1,2, · · · ,p
l
i,j , · · · ,p

l
N−1,N} in the l-th layer.

Each pli,j is a pair of two appearance feature f l
i and f l

j
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Figure 3. Example of appearance feature extraction in conv5 3

residual bottleneck block. 16×16 RoI around i-th facial landmark

point is projected into 1 × 1 RoI on the feature map in conv5 3.

In this RoI, we extract appearance feature followed by global av-

eraging pooling, we obtain 1×1×2, 048 dimensional appearance

feature. We extract 68 appearance features on each feature map in

each l-th layer.

which are i-th and j-th appearance features corresponding

to each facial landmark point in l-th layer, respectively. Us-

ing these pairs of appearance features P l, we capture the

feature-pair relations for face recognition.

3.2. Feature Relation Network

The feature relation network (FRN) captures the unique

and discriminative relations of pairs of appearance features

extracted from projected RoI on the feature map to classify

identities. The relation feature rli,j in l-th layer represents

a latent relation of a pair of two appearance features f l
i and

f l
j , and can be written as follows:

rli,j = Gl
θl(p

l
i,j), (2)

where Gl
θl is a multi-layer perceptron (MLP) and its param-

eters θl are learnable weights for relations of l-th layer. Gl
θl

takes pli,j as input and outputs a relation rli,j between f l
i

and f l
j . The same MLP operates on all possible parings P l

of appearance features F l.

In pairing of appearance features, the permutation order

of appearance features is a critical to capture unique and

discriminative relations. Without this permutation order in-

variance, we would have to learn to operate on all possi-

ble permuted pairs of appearance features in F l. To incor-



porate this permutation order invariance, we constrain the

FRN with an aggregation function:

rlagg = A(Rl) =
∑

rl
i,j

∈Rl

rli,j , (3)

where A is a summation as the aggregation function

which summates all possible relations Rl, where Rl is

{rl1,2, · · · , r
l
i,j , · · · , r

l
N−1,N}, among all possible pairs P l

of appearance features F l in the l-th layer. After aggrega-

tion, we can obtain an aggregated relational feature rlagg in

l-th layer. Finally, a prediction r̃l of relational feature of the

FRN in l-th layer can be performed with:

r̃l = F l
φl(r

l
agg), (4)

where F l
φl is a function with its learnable parameters φl,

and is implemented by the MLP. Therefore, the final form

of the FRN in each l-th layer is a composite function as

follows:

FRNl(P
l) = r̃l = F l

φl(A(Gl
θl(p

l
i,j))). (5)

Figure 2 shows the details of the feature relational network

in the proposed HFRN.

3.3. Hierarchical Feature Relations

All of operations above mentioned are applied to the fea-

ture maps in each l-th layer. Therefore, we can obtain L

predictions of relational features from all L feature maps.

After the last convolution layer, we concatenate all predic-

tions of relational features into a single relational feature

rc:

rc =‖Ll=l0
r̃l, (6)

where ‖ denotes the concatenation of vectors from r̃l0 in

l0-th low-level layer to r̃L in L-th high-level layer. To ob-

tain the hierarchical relational feature rh, this concatenated

relational feature is fed into the fully connected layer with

1, 024 units followed by cross-entropy loss with softmax.

HFRN = rh = Hψ(rc), (7)

where Hψ is the two-layered MLP with its learnable pa-

rametersψ. All of operation above mentioned including the

concatenation operation in the HFRN can be summarized as

Algorithm 1.

3.4. Loss function

To learn the each FRNl, we use jointly the triplet ratio

loss Lt, pairwise loss Lp, and identity preserving (softmax)

loss Lid [10] to minimize distances between faces that have

the same identity and to maximize distances between faces

that are of different identity.

L = λ1Lt + λ2Lp + λ3Lid. (8)

Algorithm 1: Procedure of the proposed HFRN

Result: hierarchial relational feature rh

Input: N facial landmark points s

Input: l0: start layer (or layer block) index for HFRN

Input: L: the number of layers

Input: N : the number of facial landmark points

for l← l0, L do

for i← 1, N do

Extract Al
i corresponding to i-th facial landmark

point;

Obtain f l
i for Al

i using GAP (Eq. (1));

end

Make all possible pairs P l between f l
i and f l

j in F l;

foreach pl
i,j ∈ P l do

Compute the relation rl
i,j of pl

i,j using Eq. (2);

end

Aggregate all relations Rl into rl
agg using Eq. (3);

Predict relational fature r̃l using Eq. (4);

end

Concatenate all r̃l into rc using Eq. (6);

Obtain the hierarchical relational feature rh using Eq. (7);

Triplet ratio loss Lt is defined to maximize the ratio of dis-

tances between positive and negative pairs in the triplets of

faces. To maximize Lt, the Euclidean distances of posi-

tive pairs should be minimized and those of negative pairs

should be maximized. Let F (I) ∈ R
d, where I is an in-

put image, denote the output of a network (in the FRN, the

output of Fφ), the Lt is defined as follows:

Lt =
∑

∀T

max

(

0, 1−
‖F (Ia)− F (In)‖2

‖F (Ia)− F (Ip)‖2 +m

)

, (9)

where F (Ia) is the network output of an anchor face Ia,

F (Ip) is the network output of a positive face image Ip,

and F (In) is the network output of a negative face In in

the triplets of faces T , respectively. m is a minimum ra-

tio margin in Euclidean space. From recent work [10] by

Kang et al., they reported that an unbalanced range of dis-

tances measured between the pairs of data using only Lt;

this result means that although the ratio of the distances is

bounded in a certain range of values, the range of the ab-

solute distances is not. To solve this problem, the pairwise

loss function Lp is added to constrain Lt. Pairwise loss Lp

is defined to minimize the sum of the squared Euclidean dis-

tances between F (Ia) and F (Ip). These pairs of Ia and Ip
are in the triplets of faces T .

Lp =
∑

(Ia,Ip)∈T

‖F (Ia)− F (Ip)‖
2
2. (10)

The joint training with Lt and Lp minimizes the absolute

Euclidean distance between face images of a given pair in



Table 1. The architecture of the backbone network in the proposed

HFRN.
Layer name Output size Filter (kernel, #, stride)

conv1 140× 140 5× 5, 64, 1

pool 70× 70 3× 3 max pool, -, 2

conv2 x 70× 70 [(1× 1, 64), (3× 3, 64), (1× 1, 256)]× 3
conv3 x 35× 35 [(1× 1, 128), (3× 3, 128), (1× 1, 512)]× 4
conv4 x 18× 18 [(1× 1, 256), (3× 3, 256), (1× 1, 1024)]× 23
conv5 x 9× 9 [(1× 1, 512), (3× 3, 512), (1× 1, 2048)]× 3

1× 1 global average pool, 8630-d fc, softmax

the triplets of faces T . We also use these loss functions with

the identity preserving loss (softmax loss) Lid jointly.

4. Experiments

4.1. Training Dataset

We use the VGGFace2 [2] dataset which has 3.2M face

images for training set from 8,631 unique persons. We de-

tect face regions and their facial landmark points by using

the multi-view face detector [36] and cascade facial land-

mark point detector [13]. When detection of face regions or

facial landmark detector is failed, we discard that images.

Thus, we remove 24,160 face images from 6,561 subjects.

After removing them, we have roughly 3.1M face images

of 8,630 unique persons. We divide this refined dataset into

two splits: one for training set having roughly 2.8M face

images, and one for validation set with 311,773 face images

which are selected randomly about 10% from each subject

in refined dataset. We use 68 facial landmark points for the

face alignment and extraction of appearance features. All

of faces in both the training and validation sets are aligned

to canonical faces by using the face alignment method [11].

The faces with 140×140 resolutions are used and each pixel

is normalized by dividing 255 to be in a range of [0, 1].

4.2. Implementation details

Backbone network. We use the modified ResNet-101 [7]

as a backbone network. Our backbone network takes the

RGB values of the aligned face image with 140× 140 reso-

lution as its input, and has 64 5× 5 convolution filters with

a stride of 1 in the first layer. After 3 × 3 max pooling

with a stride of 2, it has several 3-layer residual bottleneck

blocks. In the last layer, we use the global average pooling

with 9× 9 filter in each channel and use the fully connected

layer. The output of the fully connected layer are fed into

softmax loss layer (Table 1).

Detailed settings in HFRN. We first extract a set of ap-

pearance features Al = {Al
1, · · · ,A

l
i, · · · ,A

l
68} within

each projected local region around 68 facial landmark

points by RoI projection on each feature map in l-th resid-

ual bottleneck block. We set RoI to 16 × 16 resolution

around each landmark point in input facial image space,

and project each RoI onto the 70 × 70 × 256 (conv2 3),

35× 35× 512 (conv3 4), 18× 18× 1, 024 (conv4 23), and

9 × 9 × 2, 048 (conv5 3) feature maps, respectively (Ta-

ble 1). Projected RoIs on each residual bottleneck block

have 8× 8, 4× 4, 2× 2, and 1× 1 resolutions, respectively.

Therefore, we obtain A2
i ∈ R

8×8×256, A3
i ∈ R

4×4×512,

A4
i ∈ R

2×2×1,024, and A5
i ∈ R

1×1×2,048 from each l-

th residual bottleneck block. These appearance features

Al are then pooled into 1 × 1 × cl dimensional features

F l = {f l
1, · · · ,f

l
i, · · · ,f

l
68} per each Al by GAP. We

make 2, 278 (= 68C2) possible pairs of appearance features

per each F l. Then we use three-layered MLP consisting

of 1, 000 units per layer with batch normalization (BN) [9]

and rectified linear unit (ReLU) [19] non-linear activation

functions for each Gl
θl , and three-layered MLP consisting

of 1, 000 units per layer with BN and ReLU non-linear acti-

vation functions for each F l
φl . To aggregate all of relations

from Gl
θl , we use summation as an aggregation function.

Each FRNl for l-th residual bottleneck block in HFRN

is optimized by triplet ratio Lt, pairwise Lp, and identity

preserving Lid loss functions [11] over the ground-truth

identity labels using stochastic gradient descent (SGD) op-

timization method with learning rate 0.1. For weights of

loss functions, we set λ1 = 1, λ2 = 0.5, and λ3 = 1 by a

grid search, and achieve the best results.

To obtain the hierarchical relational feature rh, we con-

catenate all predictions of relational features r̃l into a sin-

gle feature rc ∈ R
4,000, then rc is fed into two-layered

MLP with 1,204 units per layer followed by cross-entropy

loss with softmax. We used mini-batch size of 128 on four

NVIDIA Titan X GPUs. During training, we froze the back-

bone CNN model to only update weights of the HFRN.

4.3. Ablation Study

We conduct a number of ablation experiments to analyze

the proposed HFRN on the LFW [8] and YTF [31]. Fol-

lowing the test protocol of unrestricted with labeled outside

data [14], we test on the LFW and YTF by using a squared

L2 distance threshold to determine classification of same

and different, and report the results (Table 2), and discussed

in detail next.

Architecture. Table 2 shows various configurations of

HFRN models. HFRNx:y denotes the configuration of con-

catenation with predictions of relational features from x-th

layer to y-th layer, HFRNx denotes the configuration with

only predictions of relational feature of x-th layer, and +

superscription denotes a combined model with global ap-

pearance feature fg (the output of GAP in conv5 3) and

predictions of relational features.

Effects of feature relations. The HFRN uses feature

maps from the low-level layer to the high-level layer to cap-



Table 2. Effects of hierarchical feature relations on the LFW and

YTF datasets.

r̃2 r̃3 r̃4 r̃5 fg LFW YTF

(1) HFRNg (baseline) X 99.60 95.1

(2) HFRN2 X 95.33 92.8

(3) HFRN3 X 96.75 93.6

(4) HFRN4 X 98.33 94.8

(5) HFRN5 X 99.61 95.3

(6) HFRN4:5 X X 99.71 96.0

(7) HFRN3:5 X X X 99.77 96.6

(8) HFRN2:5 X X X X 99.80 96.7

(9) HFRN+
5 X X 99.65 95.7

(10) HFRN+
4:5 X X X 99.75 96.4

(11) HFRN+
3:5 X X X X 99.81 96.7

(12) HFRN+
2:5 X X X X X 99.83 96.9

ture unique and discriminative relation features among dif-

ferent identities. We evaluate each prediction of relational

features on the LFW and YTF datasets in terms of accuracy

of verification. We define four different types of models

such as HFRN2, HFRN3, HFRN4, and HFRN5. HFRN2

uses only r̃2, HFRN3 uses only r̃3, HFRN4 uses only r̃4,

and HFRN5 uses only r̃5 to verify face images same and

different. HFRN2, HFRN3, HFRN4, and HFRN5 achieve

95.33%, 96.75%, 98.33%, and 99.61% accuracies on the

LFW, and achieve 92.8%, 93.6%, 94.8%, and 95.3% ac-

curacies on the YTF, respectively (Table 2 (2)-(5) and Fig-

ure 4). From the experimental results (Table 2 (1)-(5) and

Figure 4), HFRN5 achieves slightly better accuracy of ver-

ification than the baseline HFRNg (99.61% vs. 99.60% on

the LFW, and 95.3% vs. 95.1% on the YTF).

Effects of hierarchical feature relations. To investigate

the effectiveness of the proposed hierarchical feature re-

lations, we perform experiments on the LFW and YTF

datasets in terms of accuracy of verification. To do this,

we define three different types of models such as HFRN4:5,

HFRN3:5, and HFRN2:5. An evaluation of our proposed

hierarchical feature relations is shown in Table 2 (6)-

(8). HFRN4:5, HFRN3:5, and HFRN2:5 achieve 99.71%,

99.77%, and 99.80% accuracies on the LFW, and achieve

96.0%, 96.6%, and 96.7% accuracies on the YTF, respec-

tively (Table 2 and Figure 4 (6)-(8)). From the experimen-

tal results (Table 2 (6)-(8) and Figure 4), we observe that

the accuracy of verification increases steadily with the com-

bination of relational features from the higher level rela-

tional feature to the lower level relational feature. HFRN2:5

achieves better accuracy of verification than the baseline

HFRNg (99.80% vs. 99.60% on the LFW, and 96.7% vs.

95.1% on the YTF).

Fusion of HFRN and global appearance feature. To

further increase the accuracy of face recognition, we com-

bine the proposed HFRN with the global appearance fea-

Table 3. Comparison of the number of training images, the archi-

tecture, and the accuracy of the proposed method with the state-

of-the-art methods on the LFW and YTF.
Method Images Architecture Acc. on LFW(%) Acc. on YTF(%)

DeepFace [26] 4M AlexNet 97.25 91.4

DeepID [24] 202, 599 AlexNet 97.45 -

DeepID3 [35] 300, 000 VGGNet-10 99.52 -

FaceNet [22] 200M GoogleNet-24 99.63 95.1

CenterFace [29] 0.7M LeNet+-7 99.28 94.9

PIMNetfusion [10] 198, 018 GoogleNet-24 99.08 -

SphereFace [17] 494, 414 ResNet-64 99.42 95.0

PRN [11] 2.8M ResNet-100 99.76 96.3

ArcFace [4] 3.8M ResNet-100 99.83 98.02

model A (baseline, only fg) 2.8M ResNet-100 99.60 95.1

model B (HFRN2:5) 2.8M ResNet-100 99.80 96.7

model C (HFRN+

2:5) 2.8M ResNet-100 99.83 96.9

99.6

95.33

96.75

98.33

99.61 99.71 99.77 99.8
99.65 99.75 99.81 99.83

95.1

92.8

93.6

94.8

95.3

96

96.6 96.7

95.7

96.4
96.7

96.9

92.5

93.5

94.5

95.5

96.5

97.5

98.5

99.5

LFW YTF

HFRNg HFRN2 HFRN3 HFRN4 HFRN5 HFRN4:5 HFRN3:5 HFRN2:5 HFRN5
+ HFRN4:5

+ HFRN3:5
+ HFRN2:5

+

Figure 4. Effects of hierarchical feature relations on the LFW and

YTF datasets.

ture fg . We define three different types of models such as

HFRN+
4:5, HFRN+

3:5, and HFRN+
2:5. HFRN+

4:5, HFRN+
3:5,

and HFRN+
2:5 achieve 99.75%, 99.81%, and 99.83% accu-

racies on the LFW, and achieve 96.4%, 96.7%, and 96.9%
accuracies on the YTF, respectively (Table 2 (8)-(12) and

Figure 4). From the experimental results (Table 2 and Fig-

ure 4 (9)-(12)), we observe that the combination of HFRN

and the global appearance feature fg increases the accuracy

of verification. HFRN+
2:5 achieves the comparable results

with the existing state-of-the-art (99.83% vs. 99.83% (Ar-

cFace [4]) on the LFW; 96.9% vs. 98.02% ArcFace [4]) on

the YTF). Table 3 shows the comparison of performances

of the proposed HFRN with the state-of-the-art methods on

the LFW and YTF.

4.4. Comparison of the Stateoftheart Methods

Detailed settings in models. For fair comparison in terms

of the effects of each network module, we train three kinds

of models (model A, model B, and model C) under the su-

pervision of cross-entropy loss with softmax: model A is

the backbone network model with only the global appear-

ance feature fg (Table 1). model B is the HFRN2:5, and

uses the output of Hψ . The output is the 1 × 1 × 1, 024
dimensional feature. model C is the combined model

HFRN+
2:5 which concatenates the output fg of model A and

the concatenated relational feature rc. fg is the feature of

size 1×1×2, 048 from each face image. rc is the feature of

size 1× 1× 4, 000. This combined feature is fed into Hψ .



Table 4. Comparison of performances of the proposed HFRN method with the state-of-the-art on the IJB-A dataset. For verification, TAR

vs. FAR are reported. For identification, TPIR vs. FPIR and the Rank-N accuracies are presented.

Method
1:1 Verification TAR 1:N Identification TPIR

FAR=0.001 FAR=0.01 FAR=0.1 FPIR=0.01 FPIR=0.1 Rank-1 Rank-5 Rank-10

Pose-Aware Models [18] 0.652± 0.037 0.826± 0.018 - - - 0.840± 0.012 0.925± 0.008 0.946± 0.005
All-in-One [20] 0.823± 0.02 0.922± 0.01 0.976± 0.004 0.792± 0.02 0.887± 0.014 0.947± 0.008 0.988± 0.003 0.986± 0.003
NAN [33] 0.881± 0.011 0.941± 0.008 0.978± 0.003 0.817± 0.041 0.917± 0.009 0.958± 0.005 0.980± 0.005 0.986± 0.003
VGGFace2 [2] 0.904± 0.020 0.958± 0.004 0.985± 0.002 0.847± 0.051 0.930± 0.007 0.981± 0.003 0.994± 0.002 0.996± 0.001
VGGFace2 ft [2] 0.921± 0.014 0.968± 0.006 0.990± 0.002 0.883± 0.038 0.946± 0.004 0.982± 0.004 0.993± 0.002 0.994± 0.001
PRN [11] 0.901± 0.014 0.950± 0.006 0.985± 0.002 0.861± 0.038 0.931± 0.004 0.976± 0.003 0.992± 0.003 0.994± 0.003
PRN+ [11] 0.919± 0.013 0.965± 0.004 0.988± 0.002 0.882± 0.038 0.941± 0.004 0.982± 0.004 0.992± 0.002 0.995± 0.001
DR-GAN [27] 0.539± 0.043 0.774± 0.027 - - - 0.855± 0.015 0.947± 0.011 -

DREAM [1] 0.868± 0.015 0.944± 0.009 - - - 0.946± 0.011 0.968± 0.010 -

DA-GAN [37] 0.930± 0.005 0.976± 0.007 0.991± 0.003 0.890± 0.039 0.949± 0.009 0.971± 0.007 0.989± 0.003 -

model A (baseline, only fg) 0.895± 0.015 0.949± 0.008 0.980± 0.005 0.843± 0.035 0.923± 0.005 0.975± 0.005 0.992± 0.004 0.993± 0.001

model B (HFRN2:5) 0.923± 0.013 0.971± 0.006 0.993± 0.002 0.896± 0.038 0.953± 0.004 0.988± 0.003 0.994± 0.003 0.996± 0.003

model C (HFRN+
2:5) 0.929± 0.013 0.975± 0.004 0.998± 0.002 0.902± 0.038 0.958± 0.004 0.992± 0.004 0.994± 0.001 0.996± 0.001

Table 5. Comparison of performances of the proposed HFRN method with the state-of-the-art on the IJB-B dataset. For verification, TAR

vs. FAR are reported. For identification, TPIR vs. FPIR and the Rank-N accuracies are presented.

Method
1:1 Verification TAR 1:N Identification TPIR

FAR=0.00001 FAR=0.0001 FAR=0.001 FAR=0.01 FPIR=0.01 FPIR=0.1 Rank-1 Rank-5 Rank-10

VGGFace2 [2] 0.671 0.800 0.888 0.949 0.706± 0.047 0.839± 0.035 0.901± 0.030 0.945± 0.016 0.958± 0.010

VGGFace2 ft [2] 0.705 0.831 0.908 0.956 0.743± 0.037 0.863± 0.032 0.902± 0.036 0.946± 0.022 0.959± 0.015

FPN [3] - 0.832 0.916 0.965 - - 0.911 0.953 0.975

Comparator Net [32] - 0.849 0.937 0.975 - - - - -

PRN [11] 0.692 0.829 0.910 0.956 0.773± 0.018 0.865± 0.018 0.913± 0.022 0.954± 0.010 0.965± 0.013

PRN+ [11] 0.721 0.845 0.923 0.965 0.814± 0.017 0.907± 0.013 0.935± 0.015 0.965± 0.017 0.975± 0.007

model A (baseline, only fg) 0.673 0.812 0.892 0.953 0.743± 0.019 0.851± 0.017 0.911± 0.017 0.950± 0.013 0.961± 0.010

model B (HFRN2:5) 0.741 0.869 0.930 0.966 0.833± 0.018 0.925± 0.018 0.953± 0.022 0.974± 0.010 0.975± 0.007

model C (HFRN+

2:5) 0.748 0.875 0.943 0.975 0.844± 0.017 0.927± 0.013 0.965± 0.015 0.975± 0.017 0.976± 0.007

All of convolution layers and fully connected layers use BN

and ReLU as nonlinear activation functions.

Experiments on the IJB-A. We evaluated the proposed

method on the IJB-A dataset [12] which contains face im-

ages and videos captured from unconstrained environments.

It features full pose variation and wide variations in imaging

conditions thus is very challenging. It contains 500 subjects

with 5,397 images and 2,042 videos in total, and 11.4 im-

ages and 4.2 videos per subject on average. We detect the

face regions using face detector [36] and facial landmark

points using DAN landmark point detector [13], and then

align the face image by using the alignment method [11].

Our models such as model A, model B, and model C

are trained on the roughly 2.8M refined VGGFace2, with no

people overlapping with subjects in the IJB-A dataset. The

IJB-A dataset provides 10 split evaluations with two proto-

cols (1:1 face verification and 1:N face identification). For

1:1 face verification, we report the test results by using true

accept rate (TAR) vs. false accept rate (FAR) (i.e. receiver

operating characteristics (ROC) curve) (Table 4, Figure 5

(a)). For 1:N face identification, we report the results by us-

ing the true positive identification rate (TPIR) vs. false posi-

tive identification rate (FPIR) (equivalent to a decision error

trade-off (DET) curve), Rank-N (Table 4, Figure 5 (b)). All

measurements are based on a squared L2 distance thresh-

old. From the experimental results (Table 4, Figure 5),

we have the following observations. First, compared to

model A, model B achieves a consistently superior accu-

racy (TAR and TPIR) by 1.3-2.8% for TAR at FAR=0.001-

0.1 in verification, 3.0-5.3% for TPIR at FPIR=0.01 and 0.1

in identification open set, and 1.3% for Rank-1 in identi-

fication close set. Second, compared to model A, model

C achieves also a consistently superior accuracy (TAR and

TPIR) by 1.8-3.4% for TAR at FAR=0.001-0.1 in verifica-

tion, 3.5-5.9% for TPIR at FPIR=0.01 and 0.1 in identifica-

tion open set, and 1.7% for Rank-1 in identification close

set. Third, compared to model B, model C achieves also

a consistently superior accuracy (TAR and TPIR) by 0.4-

0.6% for TAR at FAR=0.001-0.1 in verification, 0.5-0.6%

for TPIR at FPIR=0.01 and 0.1 in identification open set,

and 0.4% for Rank-1 in identification close set. Last, more

importantly, model C is trained from scratch, achieves com-

parable results compared to the state-of-the-art (DA-GAN

[37]) in verification, and outperforms DA-GAN by 2.2%

for Rank-1 on identification close set and 1.2% for TPIR

at FPIR=0.01 in identification open set on the IJB-A. This

well shows the effectiveness of the HFRN on large-scale

and challenging unconstrained face recognition.

Experiments on the IJB-B. We evaluate the proposed

method on the IJB-B dataset [30] which contains face im-

ages and videos captured from unconstrained environments.

The IJB-B dataset is an extension of the IJB-A, having

1,845 subjects with 21.8K still images (including 11,754

face and 10,044 non-face) and 55K frames from 7,011
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Figure 5. Results of the IJB-A dataset (average over 10 splits). (a) ROC (higher is better); (b) DET (lower is better).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1

F
a

ls
e

 N
e

g
a

ti
v

e
 I

d
e

n
ti

fi
ca

ti
o

n
 R

a
te

 (
F

N
IR

)

False Positive Identification Rate (FPIR)

model A (baseline)

model B

model C

VGGFace2

VGGFace2_ft

PRN

PRN+

0.7

0.75

0.8

0.85

0.9

0.95

1

0.00001 0.0001 0.001 0.01 0.1 1

T
ru

e
 A

cc
e

p
t 

R
a

te
 (

T
A

R
)

False Accept Rate (FAR)

model A (baseline)

model B

model C

VGGFace2

VGGFace2_ft

FPN

Comparator Net

PRN

PRN+

(a) (b)

Figure 6. Results of the IJB-B dataset. (a) ROC (higher is better); (b) DET (lower is better).

videos, an average of 41 images per subject. Because im-

ages in this dataset are labeled with ground truth bounding

boxes, we only detect facial landmark points using DAN

[13], and then align face images by using the face alignment

method [11].

Our models such as model A, model B, and model C

are trained on the roughly 2.8M refined VGGFace2 dataset,

with no people overlapping with subjects in the IJB-B

dataset. In particular, we use the 1:1 Baseline Verification

protocol and 1:N Mixed Media Identification protocol for

the IJB-B. For face verification, we report the test results by

using TAR vs. FAR (i.e. ROC curve) (Table 5, Figure 6 (a)).

For face identification, we report the results by using TPIR

vs. FPIR (equivalent to DET curve) and Rank-N (Table 5,

Figure 6 (b)). We compare our proposed methods with VG-

GFace2 [2], FacePoseNet (FPN) [3], and PRN [11]. All

measurements are based on a squared L2 distance thresh-

old. From the experimental results (Table 5, Figure 6), we

have the following observations. First, compared to model

A, model B achieves a consistently superior accuracy (TAR

and TPIR) by 1.3-6.8% for TAR at FAR=0.00001-0.01 in

verification, 7.4-9.0% for TPIR at FPIR=0.01 and 0.1 in

identification open set, and 4.2% for Rank-1 in identifica-

tion close set. Second, compared to model A, model C

achieves also a consistently superior accuracy (TAR and

TPIR) by 2.2-7.5% for TAR at FAR=0.00001-0.01 in ver-

ification, 7.6-10.1% for TPIR at FPIR=0.01 and 0.1 in iden-

tification open set, and 5.4% for Rank-1 in identification

close set. Third, compared to model B, model C achieves

also a consistently superior accuracy (TAR and TPIR) by

0.6-1.3% for TAR at FAR=0.001-0.1 in verification, 0.2-

1.1% for TPIR at FPIR=0.01 and 0.1 in identification open

set, and 1.2% for Rank-1 in identification close set. Last,

more importantly, model C is trained from scratch, out-

performs the current state-of-the-art (Comparator Net [32])

by 7.4% at FAR=0.0001 in verification, and PRN+ [11] by

3.0% for Rank-1 of identification close set and FPIR=0.01

in identification open set on the IJB-B. This well shows the

effectiveness of the HFRN on large-scale and challenging

unconstrained face recognition.

5. Conclusion

We proposed the Hierarchical Feature Relational Net-

work (HFRN), which captured the locally detailed relations

in the low-level layers and the locally abstracted global rela-

tions in the high-level layers for the pairs of appearance fea-

tures extracted around facial landmark points, respectively.

These relations were concatenated into a single hierarchical

relation feature, then it was fed into a classification network.

The proposed HFRN achieved comparable performance in

both 1:1 face verification and 1:N face identification tasks

compared to state-of-the-art methods on the IJB-A and IJB-

B datasets.
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