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Abstract

The emergence of Full Field-Optical Coherence Tomog-
raphy (FF-OCT) for fingerprint imaging has shown it’s
ability in addressing and solving the drawbacks of tradi-
tional fingerprinting solutions such as spoofing attacks,
low accuracy for abraded fingerprint. With the availability
of multiple internal fingerprints (from subsurface captured
at different depths), it is also essential to consider the as-
pects of ideal biometrics where the privacy of the fingerprint
data is preserved. In this work, we propose a new frame-
work for fingerprint template protection, highly customized
to FF-OCT by exploring the interplay between subsurface.
As a first of it’s kind work attempting template protection
for FF-OCT fingerprints, we explore deeply learnt features
to derive first level of template for subsurface fingerprint
image. We further propose to intertwine subsurface level
templates to provide better and robust templates. With
the set of extensive experiments on a FF-OCT fingerprint
database of 200 unique fingerprints with a total of 2400
images, we demonstrate reliable biometric performance re-
sulting in EER of 5.69% for unprotected template at first
layer (subsurface) of fingerprint in FF-OCT, an EER of
5.86% for the protected templates at same layer and EER
of 5.08% with the final protected templates with proposed
intertwining of subsurface fingerprint. Further, through
the security analysis, we also validate the strength of the
proposed approach with near ideal unlinkability.

1. Introduction

Authenticating an individual based on various bio-
metric characteristics has become ubiquitous way of
verifying identity in various secure access control ap-
plications. A number of biometric characteristics such
as face, iris, fingerprint and palmprint have become

widely used for verification and identification appli-
cations. The vulnerability due to presentation attacks
through lifted fingerprints and the production of arte-
facts based on silicone and other material, the tradi-
tional problem of cuts, abrasions and burns on the
fingerprint has resulted in loss of biometric perfor-
mance and loss of trust in classical fingerprint solu-
tions [20].

Figure 1: Sample fingerprint imaged at various sub-
surface depth captured using FF-OCT device. The
Layer-1 to Layer-6 corresponds to images acquired at
the depth of 70µm to 420µm in the steps of 70µm. The
varying information across different layers can be no-
ticed due to attenuation of the light by various tissues
in the subsurface of the fingerprint.

The need for capturing the fingerprint in a reliable
manner cannot be undermined. However the newer
image acquisition technologies have emerged for cap-
turing not just the external/surface fingerprint, but
also internal fingerprints. These newer approaches
have demonstrated to handle the problems arising
due to surface degradation or loss of outer finger-
prints as a result of injuries and also address the pre-
sentation attacks [2, 4, 32, 15, 28]. Optical coherence
tomography (OCT) is one such approach that is able
to acquire subsurface images from deep within living
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tissue, such as the finger [14]. An improved version
with Full Field-OCT (FF-OCT) based fingerprint sen-
sors was recently developed [2, 3]. The FF-OCT sen-
sors are able to acquire the full volumetric (3D) data
by translating the reference reflector in small steps
and strategically pick only a set of images to record at
different depths below the external fingerprint. The
data captured using such OCT sensors have demon-
strated good biometric performance for different sub-
surface imaging lengths [28, 6]. Apart from the con-
ventional fingerprint that is recorded from the top
of the stratum corneum and apart from sweat ducts
that can be recorded from the inside of the stratum
corneum, a low contrast fingerprint pattern could
also be captured inside the stratum corneum.

While the new field of FF-OCT is promising to ad-
dress the traditional challenges of abrasions, captures
beneath skin can result in partial fingerprint instead
of full fingerprint structure as shown in Figure 1. Fur-
ther, it can be noted from Figure 1 that not all the lay-
ers can provide full fingerprint information includ-
ing the minutiae positions due to imaging challenges
beneath skin. While it is convenient for commercial
algorithms (for instance, (Neurotech Verifinger [22]))
to extract minutiae from external fingerprint images
and thereby to provide robust performance, they do
not perform optimally for subsurface fingerprints ob-
tained from OCT/FF-OCT.

Despite the promising solutions offered by the new
generation sensors against presentation attacks, the
threat of template level attacks on the databases re-
main unaddressed. Thus, the necessity of template
protection can be underlined even for the fingerprint
data captured through new generation of sensors.
Further, template protection schemes for such data
is also necessary to preserve the privacy of the fin-
gerprint images in accordance to EU-General Data
Protection Regulations (GDPR) [9]. The template
protection scheme should further strive to achieve
ideal properties that allow to revoke the template un-
der compromise situations. Further the standardised
framework for biometric information protection in
ISO/IEC 24745 requires the unlinkability of individ-
ual protected biometric templates, which are stored in
multiple services, while maintaining the recognition
accuracy of the biometric system [17, 5]. It is further
noted that most of the template protection schemes
for fingerprint recognition today are customized for
traditional sensors such as optical/capacitive sensors
which typically capture only the external fingerprint
with good minutia details. Although the new gen-
eration of fingerprint sensors like FF-OCT and sub-
surface fingerprint imaging sensors are emerging, the

problem of template protection is not addressed for
FF-OCT in the literature to the best of our knowledge.

1.1. Related Works and Challenges

A number of approaches have been adopted to
deal with the problem of biometric template protec-
tion [29, 26, 25, 24, 13] for multiple modalities includ-
ing fingerprint images captured through traditional
sensors [18, 8, 11, 30, 11, 31, 10]. The template protec-
tion schemes has been explored traditionally by em-
ploying the minutia points from fingerprint from con-
ventional sensors through well used Minutiae Cylin-
der Code (MCC) [7, 8, 11]. Taking a similar approach,
the next set of works used the minutia vicinity to cre-
ate better template protection schemes [30, 11]. In a
different paradigm, the authors in [31] provide a tem-
plate protection scheme using the topology and struc-
ture information. The next set of works in the similar
direction employed the strengths of minutia vicinity
and complemented the strengths of Bloom filters to
robust templates, specifically for fingerprints [1].

Although a plethora of works have proposed ap-
proaches for fingerprint template protection, due to
the inherent nature of imaging in FF-OCT, these ap-
proaches cannot be directly employed to obtain op-
timal biometric performance after template protec-
tion. A primary reason is the different structural
information such as ridges, valley, bifurcations and
minutia information revealed across layers can be dif-
ferent compared to external fingerprint alone, espe-
cially when the external fingerprint is damaged due
to abrasions or cuts. Thus, a template protection
scheme for such FF-OCT fingerprints needs to fully
utilize the layers under the external fingerprint to ob-
taining complementary features to derive robust tem-
plates. It was also reported in [19] that even commer-
cial state-of-the-art fingerprint SDK (Neurotech Ver-
ifinger [22]) do not perform ideally across subsur-
face fingerprints in FF-OCT fingerprints due to dif-
fering/missing information and the reported results in-
dicate the need for customized and reliable feature extrac-
tion in addition to minutia in FF-OCT images. A direct
implication of such missing minutia information renders
the current template protection scheme based on minutia
information sub-optimal for FF-OCT images with certain
limitations in biometric performance.

1.2. Contributions

Motivated by such factors and to employ the dif-
ferent subsurface images of FF-OCT fingerprint im-
ages to extract the complementary features to de-
sign a better template protection scheme, we intu-
itively explore the power of deep-Convolutional Neu-



ral Networks (CNN). The CNNs come with the inher-
ent advantage of providing complementary features
in the pipeline of feature extraction, for e.g., at vari-
ous points of fully-connected-layers within the CNNs.
With number of works that have reported impressive
accuracy with such CNNs for fingerprint recognition
[23, 33], we employ a similar idea to first extract dis-
criminative information and thereafter use it for re-
liable template protection design by using different
subsurface fingerprint images. While addressing the
need of template protection for FF-OCT, we also pro-
pose a novel framework with subsurface level inter-
twined protected templates that is not only robust for
biometrics but also provide high degree of unlinka-
bility. Further, to assert our idea of exploring multi-
ple subsurface fingerprint for robust template protec-
tion, we perform the experiments on a currently avail-
able large scale FF-OCT fingerprint database with 200
subjects. Specifically, we employ a set of 5 subsur-
face images from different depths (in the range of
70− 420µm in the step size of 70µm) from the FF-OCT
fingerprint database whose details are briefed in the
Section 3. The proposed framework performs very
similar in biometric performance when compared to
unprotected fingerprint recognition indicating the ap-
plicability of proposed approach for the deployment.
The summary of our contributions can therefore be
listed as below:

• We present the first work for fingerprint recogni-
tion from FF-OCT imaging sensors by employing
the features from deep neural networks to fully
leverage the complementary/supplementary in-
formation from different subsurface across vari-
ous lengths of imaging. The state-of-art results
are achieved by fine-tuning the AlexNet CNN
[21] for the task of sub-surface fingerprint imag-
ing in FF-OCT domain.

• Further, we present the first work and a novel
framework for template protection for FF-OCT
fingerprint images by employing multiple fea-
ture extraction layers (Fully-Connected Layer 6

(fc6) and Fully-Connected Layer 7 (fc7)) within fine-
tuned CNN.

• Through the experiments on the presently avail-
able and largest FF-OCT fingerprint database
[19] that was acquired with a novel FF-OCT fin-
gerprint sensor [3], we demonstrate that the pro-
posed framework can be employed for individual
subsurface fingerprints with very high accuracy.

• As another novel and customized scheme for
template protection for FF-OCT fingerprint im-
ages, we propose a layer intertwined architec-
ture with high biometric performance and near

ideal unlinkability. With the set of experimen-
tal results, we also demonstrate the applicability
of proposed approach through extensive experi-
ments and provide an analysis of security level
of proposed template protection.

In the remainder of the paper, we present the pro-
posed approach in Section 2 and then we briefly
describe the FF-OCT fingerprint image database in
Section 3. Subsequently evaluations through exper-
iments are outlined in Section 4 and the results are
discussed in the same section. Finally, we provide se-
curity analysis in Section 5 and the potential future
works are listed in Section 6.

2. Proposed Approach

Figure 2: Proposed template protection framework
for FF-OCT fingerprint images.

Figure 2 presents the framework of the proposed
approach for FF-OCT fingerprint template creation.
As observed from the schematic of proposed ap-
proach, it can be seen that the features for the
proposed template protection scheme are obtained
through the fine-tuned deep CNN - AlexNet [21].
The specific choice of AlexNet comes from the ap-
plicability of the network to handle a small volume of
data and yet provide superior biometric performance
( for instance, for palmprint recognition [23]). Given
a FF-OCT fingerprint image for a subsurface s, we
obtain the Region of Interest (ROI) by manually crop-
ping regions outside of fingerprint pattern. This is
specifically done to remove all the biasing factors that
may be introduced due the nature of FF-OCT imag-
ing. The cropped ROI corresponding to subsurface s,
represented by Is is further resized to 227 × 227 pix-
els to comply with the input layer of AlexNet. With a
chosen subset of fingerprints from 10 different sub-
jects, we perform the fine-tuning to tailor AlexNet
for the task at hand. In order to adapt the network
easily, we bump the learning rate of the final layers
and convergence is achieved in a relatively smaller
time. With such adaptations, we learn the weights
of the newer layer without modifying the network in
the initial stages of AlexNet. Specifically, in our pro-
posed framework we have employed a weight learning
rate factor of 10 and bias learning rate factor of 20.



Figure 3: Core principle of intertwined layer level template protection. The red arrow in the image indicates the
interrelation between the features from two different feature set from same subsurface fingerprint.

Further, for each image processed through the fine-
tuned AlexNet, we extract the features from fully con-

nected layers f c6 and f c7 as represented by I
f c6
s and

I
f c7
s for the subsurface fingerprint s. As the features

from f c6 and f c7 amount to 4096 features for each
layer and real valued in nature, we apply the L2 nor-
malization to center the features with zero − norm.

I
f c6
s =

I
f c6
s

‖I
f c6
s ‖

; I
f c7
s =

I
f c7
s

‖I
f c7
s ‖

As features from f c6 and f c7 layers are not equiv-
alent, such normalization across the features from
those two layers aids us in retaining the discrimina-
tive information even after normalization. Specific
choice of L2 normalization is to retain the features
without any explicit knowledge of feature space and
also make the normalization to be non-sparse. An
additional motivation stems from the rotation invari-
ance of L2 normalization for a given set of features.
As the features post-normalization is in the range
of [−1, 1], we simply adopt binarization by a hard
threshold to transform the features from real-valued
domain to binary domain as formulated below:

I′s =

{

1, if I
f c6
s ≥ 0

0, otherwise
I′′s =

{

1, if I
f c7
s ≥ 0

0, otherwise

where I′s and I′′s represent binarized features from f c6
and f c7 respectively. Given the features are com-
plementary from both f c6 and f c7, employing the
template protection directly will lead to protected bi-
nary templates with large collision rates. As a sec-
ondary problem, challenges may arise due to linka-

bility of templates across different databases of pro-
tected templates as reported in earlier works [16]. In
order to account for these two factors, we present a
new formulation of protected template creation and
also introduce database-specific/application-specific
key through a bijective function (XOR) that not only
helps in maintaining unlinkability but also provides
a means of revokability when the templates are com-
promised. The specific formulation of our proposed
approach can be seen from Figure 3. Given I′s and

Figure 4: Fully intertwined template protection em-
ploying both inter-layer templates and all subsurface
images from the FF-OCT fingerprint. The reader is
referred to Figure 3 to obtain the details of core prin-
ciple of layer level template protection.

I′′s , we first reorganize the features to a matrix of size
32 × 128 for each of them. The rearranging of fea-
tures also helps in introducing diffusion and creat-
ing a new neighbourhood relation to achieve better



templates. Further, we divide the rearranged features
into number of blocks with a fixed bit size as given
by blocks× bits, which is further represented by L× B
for the sake of simplicity. For each chosen block m of
a specific bit size b, we create protected templates T′

s
and T′′

s corresponding to I′s and I′′s using three follow-
ing specific steps: (i) create the template by setting
the bit of the location (l1) provide by bijective func-
tion (XOR) with the help of database-specific key d1

for the chosen block m and the bit location bm of I′s.

f (d1, bm) 7−→ l1,

T′
s [m(l1)] = 1.

(1)

(ii) for the corresponding selected block in I′′s , set the
bit at location (l2) using a bijective function and the
database-specific key d2 and the location l1 computed
previously

f (l1, f (d2, bm)) 7−→ l2,

T′′
s [m(l2)] = 1.

(2)

(iii) in the third step, we introduce another level of
diffusion by interleaving the protected templates T′

s
and T′′

s to derive final layer intertwined protected
template Tp for a given subsurface image.

Tp = T′
s 9 T′′

s (3)

While the above Equation 3 provides a template pro-
tection scheme that is suitable for a single layer of
the FF-OCT fingerprint, it does not inherently exploit
the characteristics of FF-OCT images. Specifically, the
number of images obtained from the subsurface stack
s is not fully employed to derive a better protected
template. Thus, we propose another approach build-
ing on the concepts outlined before and employing
the stack of subsurface images. Considering the s
subsurface fingerprint images and the features from
f c6 and f c7 for each of these subsurface images, it
is intuitive to create a multi-bucket intertwined pro-
tected template by obtaining the protected template
for each layer as provided above. We further consider
that different subsurface images of FF-OCT show cor-
related information leading to correlated protected
templates. In order to address this and minimize such
a risk, we introduce unique keys for each subsurface
such that unlinkability keys total to d1, d2, . . . d2∗s. It
can be further noted that the number of keys can be
exactly equal to number of subsurface images such
that the key used for T′

s of layer can be used for T′
s+2

for instance. Thus, for a given set of s subsurface
images in the range s ∈ {1, 2, . . . s}, one can derive

5 protected templates T
f
p ∈ {Tp1, Tp2, . . . Tps} for a

given set of key pair d1, d2, . . . d2∗s corresponding to

each subsurface image.

T
f
p = {Tp1 9 Tp2 9 Tp3 9 Tp4 9 Tps} (4)

using keys {d1, d2, . . . d2∗s} for s ∈ {1, 2, . . . s}

However, considering a set of features to be sim-
ilar across different subsurface images of FF-OCT,
this may potentially lead to random guessing attacks,
where under the worst possible condition, all the sub-
surface templates may be compromised. In order to
address this limitation, we further propose an inter-
twined and interleaved layer architecture in the Fig-
ure 4. Further, it should be noted from the Figure 3

that the approach is highly configurable both with
respect to the number of FF-OCT layers, number of
blocks and the number of bits within each block.

f (ln−1, f (dn, bm)) 7−→ lb,

T′′
s [m(lb)] = 1.

(5)

when n is f c7 features of a specific layer and m is
the block and b is the bit under consideration for a
location l within the block m.

3. Database

This section presents the FF-OCT fingerprint im-
age database employed in this work to demonstrate
the applicability of the proposed approach. The
FF-OCT fingerprint image database [19] consists of
images collected from FF-OCT sensor [3] from 200

unique fingers from different subjects. The data
consists of fingerprint images from the subjects in
the age-group of 20-40 years whose external finger-
prints are not deliberately damaged due to manual
labour, but consists of abrasions arising out of ev-
eryday activity. The database is composed in such
a manner that each of the unique finger was cap-
tured in two different sessions resulting in a total
of 400 images from 200 unique fingerprint instances.
Further, each finger was imaged using the FF-OCT
sensor which can capture 6 different subsurface im-
ages corresponding to 6 layers of depth such as
70µm, 140µm, 210µm, 280µm, 350µm and 420µm. The
database in total consists of 2400 finger print images
captured using FF-OCT sensor from 200 fingers in 2

different sessions. Figure 1 presents one such sam-
ple fingerprint captured at 6 different depth starting
from 70µm, 140µm, 210µm, 280µm, 350µm and 420µm
represented by Layer− 1, Layer− 2, Layer− 3, Layer−
4, Layer − 5 and Layer − 6 respectively. Due to mini-
mal information available in the image corresponding
to 420µm for many subjects (verified experimentally
in [19]), we discard this information and employ only
the layers 1 − 5 for the evaluation of proposed tem-



plate protection scheme.

4. Experiments and Results

In this section, we first present the baseline evalu-
ation of the FF-OCT fingerprint recognition using the
deep-CNN network (AlexNet) for all subsurface im-
ages and the fused subsurface fingerprint image for
each subject. Of the available 200 unique fingerprints,
we employ a small subset of images from 10 differ-
ent subjects for both fine-tuning the CNN and also
to configure the parameters of the proposed template
protection. Further to compare the baseline results
obtained from the fine-tuned CNN, we present the re-
sults from the commercial-off-the-shelf (COTS) Neu-
rotech Verifinger SDK [22] which has reported state-
of-art results in NIST fingerprint benchmarking. We
present the recognition rate through the Equal Error
Rates (EER in %) to report the symmetrical error rates
with respect to both False Match Rate(FMR) and False
Non-Match Rate (FNMR) under the fact that there is
no Failure To Capture (FTC).

4.1. Baseline Results

Table 1 presents the results for subsurface fin-
gerprint recognition for layers corresponding to
70µm, 140µm, 210µm, 280µm, 350µm. It can be ob-
served that COTS performs with an EER of 2.08%
for the subsurface images corresponding to 140µm
while ideal result is seen with fine-tuned AlexNet
with CrossEntropy classifier for all subsurface. The
ideal results can be attributed to learning mechanism
for the set of data. However, as our intention is to
use the features from f c6 and f c7 for template pro-
tection, we provide the results just by employing fea-
tures from fine-tuned AlexNet with a simple Cosine
distance measure. As one can anticipate, the results
are slightly degraded due to simple distance measure
as compared to CrossEntropy based classifier within
AlexNet. The results in the Table 1 indicate an EER of
5.69% for combined features from f c6 and f c7 with
cosine distance. Further, we fuse multiple subsurface
image features [19, 22] to evaluate the performance
and the EER drops to 0% for AlexNet with CrossEn-
tropy. Similar performance can be seen with COTS
using the multiple subsurface images in the enrol-
ment [22]. With these results, we proceed further to
evaluate the proposed template protection approach
by employing the features from f c6 and f c7 as de-
tailed further.

4.2. Results for template protection scheme

As one of the goals of our proposed template pro-
tection approach is also to design an efficient scheme,

Table 1: Verification performance obtained for layer
(subsurface) wise fingerprints images.

Protocol
EER (%)

Layer-1 Layer-2 Layer-3 Layer-4 Layer-5

COTS - Layer v/s Layer 2.57 2.08 3.00 2.27 6.24

AlexNet (CrossEntropy) [21] 0 0 0 0 0

AlexNet (Cosine) 5.69 5.69 5.87 5.90 6.95

Fused Subsurface v/s Fused Subsurface 0.00

COTS [22]

Fused Subsurface v/s Fused Subsurface 0.00

AlexNet (CrossEntropy) [21]

we aim at binarizing the features such that the tem-
plates can be stored in compact binary formats. Thus,
we simply threshold the real valued features from
f c6 and f c7 layers using a hard threshold of 0 as ex-
plained in Section 2 1. Owing the nature of binary
features, we adopt a simple Hamming Distance (HD)
to measure the similarity of the templates. All the
results are further reported using binarized features
from f c6 and f c7 layers using HD measures.
Table 2: Performance of proposed template protection
across subsurface fingerprint images.

Subsurface 1 Subsurface 2 Subsurface 3 Subsurface 4 Subsurface 5

Unprotected 5.69 5.69 5.87 5.90 6.95

Configuration Protected Templates - Subsurface depth Wise

(Blocks × Bits)

4x4 5.70 6.70 6.21 6.46 8.14

8x4 6.32 7.31 6.61 8.05 9.70

12x4 6.75 6.86 7.51 8.10 10.35

16x4 7.00 7.17 7.87 7.99 10.18

20x4 10.67 11.66 7.47 13.07 12.69

32x4 26.97 26.76 11.55 26.81 31.36

4x8 5.86 6.62 5.39 6.91 8.81

8x8 7.06 6.37 6.35 7.66 9.99

12x8 7.88 8.34 8.30 8.94 11.35

16x8 9.67 11.20 10.55 9.72 13.18

20x8 13.53 13.23 10.98 13.04 16.93

32x8 19.07 18.48 13.96 16.84 21.30

Experiments were further performed for evalu-
ation of proposed template protection scheme for
subsurface images and also on the fused features.
Further to evaluate the robustness of our proposed
scheme and estimate the performance across differ-
ent configurations, we present the results for different
configurations in the Table 2. We note the following
observations from the Table 2:

• The proposed template protection scheme for
subsurface fingerprint image corresponding to
70µm results in an EER of 5.7% while it increases
by 1% for layers 2-4. It can be further noted that
EER increases to 8.14%.

• The drop in the performance for subsurface 5

is primarily due to missing fingerprint details

1Experimental evaluation did not change over different values
of hard threshold for binarization schemes
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Figure 5: DET Curves for proposed template protec-
tion for different subsurface of FF-OCT fingerprint
images and final intertwined protected template.

when compared to other subsurface as it can be
noted from Figure 1.

• It can further be noted that the error rates in-
crease linearly with the increase in the size of
blocks for the protected template with bit size of
4 indicating a better template protection mecha-
nism under lower block sizes. A large increase
can be seen when the block size increase to 32
blocks deeming it not an ideal candidate config-
uration for the proposed approach. Thus, we do
not increase the block size to next level.

• Generalizing the observation, it can be seen that
the lower size of blocks yields better accuracy in
the protected domain for the task at hand.

• The most important observation is the antag-
onistic nature of proposed template protection
scheme across different subsurface fingerprint
images and the scalability of approaches for dif-
ferent bit sizes for smaller block widths.

Table 3: Performance of Intertwined Subsurface Tem-
plate Protection for FF-OCT Fingerprint. Note - S*
represents the unprotected performance for multiple
subsurface fingerprints.

Unprotected S1 - 5.69 S2 - 5.69 S3 - 5.87 S4 - 5.90 S5 - 6.95

Protected Templates - Intertwined Subsurface Templates

Configuration 4x4 8x4 12x4 16x4 20x4 32x4

EER (%) 5.09 5.88 5.52 6.00 6.54 19.52

Configuration 4x8 8x8 12x8 16x8 20x8 32x8

EER (%) 5.08 6.00 6.78 7.39 11.75 14.48

Further, similar observations can be made when
the templates are fused using the proposed approach
as given by Equation 5. As noted from the Table 3,
fused templates reduce the error rates as against the
subsurface fingerprint based templates alone. Lower
error rates can be attributed to fusion of f c6 and f c7
features from different subsurface fingerprint images
and the subsurface fingerprints.

4.3. Limitations and Future Works

Although the proposed approach results in low
EER as depicted in the Figure 5, a careful observa-
tion indicates that there is potential for improvement
in terms of FMR and FNMR. The proposed approach
needs to further analyze the strategies for reducing
the errors at both the ends of FMR and FNMR which
will carried in the future works.

5. Security Analysis - Unlinkability

Figure 6: Unlinkability analysis of proposed ap-
proach on the configuration of 4 blocks × 8 bits ac-
cording to Unlinkability metrics [12].

We conduct the unlinkability analysis through the
recently proposed framework [12] to establish the
robustness[27] of our proposed approach. As it can
be observed from the Figure 6, the proposed tem-
plate protection scheme results in ideal unlinkability

with D
sys
↔ = 0[12]. It can be further observed from

the Figure 6 that the distribution of mated scores and
non-mated scores overlap significantly and this indi-
cates the low chances of guessability attacks exempli-
fying the antagonistic nature of proposed scheme for
threats on protected templates.

6. Conclusion

In this work, we address a new problem to provide
template protection scheme for new generation of fin-
gerprint sensors - FF-OCT, which can typically cap-
ture multiple subsurface fingerprint images at vari-
ous depths. While multiple subsurface can provide



complementary/supplementary information includ-
ing partial minutia, ridge and valleys, such infor-
mation does not result in optimal recognition per-
formance with current state-of-art systems based on
minutia alone. In this work, we have proposed to em-
ploy deep CNNs to extract complementary features,
first to improve the fingerprint recognition, secondly
to leverage it for template protection using the sub-
surface fingerprints and intertwined protected tem-
plate creation. Through the experimental evaluation,
we have demonstrated the effectiveness of proposed
approach with EER = 5.08% with near ideal unlika-

bility ( D
sys
↔ = 0). In what remains for future works,

the strength of minutiae information can be included
to improve the proposed template protection scheme
to reach ideal biometric performance.
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