
Scan-flood Fill(SCAFF): an Efficient Automatic Precise Region Filling Algorithm

for Complicated Regions

Yixuan He1,2 Tianyi Hu1,2 Delu Zeng1∗

{Y.He-48, T.Hu-9}@sms.ed.ac.uk dlzeng@scut.edu.cn

1 South China University of Technology; 2 The University of Edinburgh.

Abstract

Recently, instant level labeling for supervised machine

learning requires a considerable number of filled masks. In

this paper, we propose an efficient automatic region filling

algorithm for complicated regions. Distinguishing between

adjacent connected regions, the Main Filling Process scans

through all pixels and fills all the pixels except boundary

ones with either exterior or interior label color. In this

way, we succeed in classifying all the pixels inside the re-

gion except boundary ones in the given image to form two

groups: a background group and a mask group. We then

set all exterior label pixels to background color, and in-

terior label pixels to mask color. With this algorithm, we

are able to generate output masks precisely and efficiently

even for complicated regions as long as boundary pixels

are given. Experimental results show that the proposed al-

gorithm can generate precise masks that allow for various

machine learning tasks such as supervised training. This

algorithm can effectively handle multiple regions, compli-

cated ‘holes’ and regions whose boundaries touch the im-

age border. By testing the algorithm on both toy and prac-

tical images, we show that the performance of Scan-flood

Fill(SCAFF) has achieved favorable results.

1. Introduction

Nowadays, big datasets are widely used in training mod-

els for supervised machine learning in many areas, such as

salient object segmentation [1, 2, 3] and lung nodule detec-

tion [4]. Although bounding box method can be used to

quickly generate training labels [5, 6], instant-level based

learning such as segmentation, recognition and detection

usually depend on precise masks [7, 1, 2, 3]. To com-

press the size of the datasets, some of them only anno-

tate the boundary pixels of instances instead of providing

all mask pixels. For instance, the LIDC-IDRI dataset [4]

widely used for lung nodule detection only provides .XML

∗Corresponding author.

files that contain the edges of lung nodules. However, in

order to achieve better performance on neural networks, es-

pecially convolution-based neural networks [8, 9], it is usu-

ally important to generate masks, for training. Correspond-

ingly, filling masks from the annotated boundaries is usually

a compulsory process in generating ground truth labels for

instances. Figure 1 provides an example of how region fill-

ing can be used to generate masks for salient object segmen-

tation, given a label image with merely boundary pixels.

Figure 1: A practical example for region filling in generating

masks for supervised machine learning.

In general, region filling refers to an approach to fill

some bounded regions with given colors. Based on the do-

main of the graphics they operate in, region filling algo-

rithms can be classified into raster filling and vector filling

[10]. In this paper, we focus on raster filling algorithms, i.e.

on filling regions in raster graphics. This method means fill-

ing connected components (defined mostly by 4-connected

or 8-connected regions) with required colors. As an impor-

tant algorithm of Computer Graphics, region filling has var-

ious applications in areas such as Computer Aided Design,

Realistic graphics, Geographic Information System and Im-

age processing. [11]



Generally, region filling algorithms can be categorized

as seed filling and edge filling (or scan-line filling) [12].

However, current algorithms have several shortcomings or

potential problems that need to be considered.

Firstly, most of the filling algorithms cannot run auto-

matically. Many seed filling algorithms, such as ordinary

boundary fill and flood fill, require at least one known inte-

rior pixel within the boundary. Therefore, they are depen-

dent on operator-provided seeds. For complicated objects

of interests, multiple seeds may be required and they can be

quite hard to be automatically detected[10].

Secondly, some of the filling algorithms cannot deal with

complex boundaries. Scan-fill algorithm is capable of fill-

ing a polygon’s boundaries [13], but may mostly fail to deal

with arbitrary boundaries.

Thirdly, it is possible that some of the interior regions’

boundary pixels can lie on the border of the image. Hence,

it should not be assumed that pixels on the border of an

image are all background pixels. The mutual exterior of

inner shapes can also be disconnected.

Also, some objects have ‘holes’ inside. If we simply con-

sider filling connected regions that are not connected to the

border of the whole image, we may fail to obtain the precise

result.

To overcome these drawbacks, and to reduce the tedious

or time-consuming manual work when generating ground

truth masks for machine learning, we devise a novel region

filling algorithm called Scan-flood Fill(SCAFF) algorithm.

To show that the algorithm resolves all problems mentioned

here, we focus on scenarios described in Table 1.

Table 1: Scenarios for images to be considered in region filling.

Case #Objects Touch Border ‘Holes’ in Object

1 1 No No

2 1 No Yes

3 1 Yes No

4 1 Yes Yes

5 >1 No No

6 >1 No Yes

7 >1 Yes No

8 >1 Yes Yes

In summary, the main contributions of our work include:

1) We propose an efficient automatic precise region filling

algorithm for complicated regions, robustly dealing with

cases listed in Table 1. 2) Scan-flood Fill(SCAFF) algo-

rithm frees operators from having to provide starting seeds

for region filling. It can detect seeds automatically. 3) The

basic version of our proposed algorithm, EFCI, can deal

with regions without ‘holes’ effectively.

2. Related Works

One of the most common region filling algorithms is

seed filling algorithm, or flood filling algorithm, which

is usually based on the notion of 4-connectivity or 8-

connectivity. Mathematically, let P = (x, y) denote the

coordinate of a pixel, then its 4-Connected region C4(P )
in the bitmap is defined as

C4(P ) = {(x, y − 1), (x, y + 1), (x− 1, y), (x+ 1, y)} ,
(1)

and its 8-Connected region C8(P) in the bitmap is defined

as

C8(P ) = C4(P ) ∪ {(x− 1, y − 1), (x+ 1, y + 1),

(x− 1, y + 1), (x+ 1, y − 1)}, (2)

A visual illustration is given in Figure 2.

Figure 2: Concept of connectivity. The pixel in the middle of the

box is the pixel of interest, and its 4-connected of 8-connected

region consists of all pixels that can be reached by arrows starting

from it.

Seed filling algorithm starts from a known pixel in a

closed area, and recursively finds all the pixels within the

connected region of the known pixel. To reach all pixels

in each region (normally a 4-connected or 8-connected re-

gion as defined above), a stack may be required, and pixels

within the region will be visited recursively [14].Depth-first

search (DFS) algorithm [15] can be used to fill a certain re-

gion from a starting seed. It is efficient in time, but costly in

space. Therefore, ‘span’ filling methods were proposed to

reduce the considerable stack required for searching [16]. In

1994, Henrich [17] analyzed several algorithms that saved

memory regardless of speed. After that, Yanovsky et al.

[18] proposed a linear-time constant-space algorithm for

the boundary fill problem. However, this algorithm cannot

lower the efficiency overhead of revisiting the same nodes.

Later, Duo-Le and Ming[11] suggested a ‘Marking Method’

to tackle the problem of unnecessary pixel revisiting.

Edge filling is another popular approach in region filling,

primarily for polygon filling [13, 19]. This algorithm relies



on the detection of the spans of the scan line lying inside

the polygon, using the odd-parity rule [20]. However,filling

by parity may fail when we obtain the number of line seg-

ments incorrectly [21].Although scan line filling algorithms

are initially designed for polygons, some authors generalize

them to wider applications. For example, Cai [22] took into

account the connectivity of pixels in the same region and

also made use of a scanning line. Wherever the closed area

intersects the scanning line, the scanning line seed filling al-

gorithm takes merely one seed pixel and starts to fill from it

to the left and right directions. Nevertheless, repeated judg-

ing of the pixel colors and unnecessary backtracking oper-

ations lower the efficiency of this algorithm [10]. Vučković

et al. [23] introduced a generalized iterative scanline fill al-

gorithm useful in real-time applications. In this paper, we

adopt some ideas of scan line filling and apply them to label

different connected regions.

It is usually difficult to set seeds automatically, and

searching for all interior pixels may be time and memory

consuming[10, 21]. To automatically find the starting seed,

Khayal et al. proposed a modified algorithm for seed filling

[24]. However, this method needs to discover all contour

pixels, and compute their angles. In our algorithm, contour

computation is omitted, but we use region labels instead.

Making use of Connected Component Labeling

(CCL), which is a fundamental operation in image

processing[25], Miao et al. [26] proposed a regional filling

algorithm based on connected region labeling. However,

they did not distinguish between different ‘interior’ regions,

but filled all of them in the same color. Our basic algorithm

adopts this idea, and then develops a more precise algorithm

using similar ideas to CCL.

3. Proposed Algorithm

In this paper, we propose an automatic(with respect to

setting starting seeds for filling) region filling algorithm,

built on a basic version. The proposed algorithm is to fill

arbitrary regions in a given image, based on the observation

that the exterior of a region has to be connected to the bor-

der of the whole image. Neither of the basic version and

the improved version of our algorithm requires a seed to be

given by the operator at the beginning. The basic version

of our algorithm can fill arbitrary regions without interior

‘holes’ precisely, regardless of how many regions there are

in the image, and can also handle the case where some re-

gions have some of their boundary pixels on the border of

the whole image. The proposed algorithm(i.e. the improved

version built on the basic version) takes into account poten-

tial ‘holes’ inside a region. Those versions of the algorithm

are described as follows.

3.1. Basic Version: ExteriorFill and Color Inver
sion (EFCI)

Our method makes use of the property of the exterior

mentioned above. The algorithm starts from an image with

only boundary pixels in boundary color and the rest in back-

ground color. Padding in background color is first added.

Then, the mutual exterior of the regions is filled with a tem-

porary exterior label color. In version 1 of the algorithm

(where ‘floodfill’ refers to flood filling algorithm based on

the color of the seed, such as OpenCV floodfill [27, 28]), the

color of the mutual exterior is set to background color, while

the interior is filled with the desired mask color. We call the

latter process Crop-and-‘Inverse’ process. ‘Inverse’ here

means to change colors. That is why this basic version of

the algorithm can be called Exterior-Fill and Color Inver-

sion (EFCI). An example of how the image changes are

given in Figure 3.

Algorithm 1: Exterior-Fill and Color Inversion(img)

Input: img

Output: resultImg

1 padImg← pad img with background color;

2 padImg← floodfill(padImg,seed = (0,0)) with exterior

label color;

3 croppedImg← crop padImg to original size, delete

padding;

4 resultImg← croppedImg;

5 for x in range(resultImg.height) do

; // color inversion

6 for y in range(resultImg.width) do

7 if resultImg[x][y] == background color then

8 resultImg[x][y]← mask color;

9 if resultImg[x][y] == exterior label color then

10 resultImg[x][y]← background color;

11 return resultImg

In order to start from a pixel in background color, the

padding is needed, since the origin of the original image

may be a boundary pixel. Besides, multiple regions can be

filled within one implementation, without requiring initial

seeds inside them to start from. However, since EFCI can

only capture the mutual exterior region, which is connected

to the origin in the padded image, it cannot handle the case

where there are ‘holes’ inside regions that should not be

filled.

3.2. Filling Complicated Regions with Interior
‘Holes’

To handle the case with annuli, ‘holes’ or even more

complicated structures in regions, an improved version of



Figure 3: Evolution of an image during the the implementation of EFCI. The flow chart illustrates how EFCI acts on an image: first pads

the image, then fills the exterior with exterior label color. After cropping, the algorithm ‘inverses’ colors to resulting ones.

the algorithm is needed. The intuition is that adjacent con-

nected regions should be treated differently. For example,

to fill an image with interior ‘holes’, as described in Figure

4(a), a desirable filling result should be Figure 4(d), while

EFCI tends to give the result in Figure 4(c). If we consider

different connected areas to be either background or region

to be filled, then adjacent connected regions should be of

different types. To be precise, adjacent connected regions

refer to two connected regions R1,R2 such that:

∃P1 ∈ R1, P2 ∈ R2 : P1P2 ⊆ R1 ∪R2 ∪B, (3)

where P1P2 denotes the line segment between R1 and

R2, and B denotes the set of all boundary pixels of the

regions in the image.

Intuitively, adjacent connected regions can be merged

into one connected region if we take away all boundary pix-

els. In our example, the connected regions are labelled as

1,2,3,4,5 in Figure 4(b). 1 and 2, 2 and 3 are adjacent con-

nected regions, hence should be treated differently.

To achieve the distinction between different connected

regions, we need to introduce the classification of pixels.

3.3. Classification of Pixels

In the proposed algorithm, there are five types of pixels.

Type 1: Boundary pixels

Boundary pixels are in boundary color (pixel value 255

in our experiment), and are used to distinguish between dif-

ferent connected regions, especially during the process of

flood filling. Their color is not changed during the imple-

mentation of the algorithm.

Type 2: Background pixels

Background pixels are in background color (pixel value

0 in our experiment), whose concept varies during the im-

plementation.

In the Main Filling Process of our algorithm (line 4 - 15)

background pixels correspond to those pixels that have not

yet been visited (filled, by either exterior or interior label

color). Hence, when visiting a background pixel, the algo-

rithm sets it as the seed of the flood filling algorithm, and

(a) Input Image (b) Image Region

(c) Incorrect Fill (d) Correct Fill

Figure 4: A region filling example with ‘holes’. EFCI fails to fill

the ‘holes’ inside boundaries, since it cannot distinguish between

adjacent connected regions such as 1 and 2, 2 and 3.

then fill its connected region with either exterior or interior

label color.

During the Crop-and-‘Inverse’ process (line 16 - 23),

exterior label pixels are set to the background color, since

their label color merely represents temporary labels, instead

of their final color.

Type 3: Exterior Label pixels

Exterior label pixels are in exterior label color (pixel

value 80 in our experiment). In the Main Filling Process,

they are labeled as future ‘background pixels’, which are

to be set back to background color during the Crop-and-

‘Inverse’ process. However, they are colored in a temporary

different color from the background, so that the algorithm

can tell that they have been visited. A region whose pix-



els are in exterior label color is also useful in determining

what color its adjacent connected region should be. In this

case, its adjacent connected region should be in interior la-

bel color.

Type 4: Interior Label pixels

Interior label pixels are in interior label color (pixel

value 128 in our experiment). In the Main Filling Process,

they are labelled as future ‘mask pixels’. However, they

are colored in a temporary different color from mask color,

which is usually the same as boundary color, so that the al-

gorithm can tell that they are not boundary pixels. A region

whose pixels are in interior label color is also useful in de-

termining what color its adjacent connected region should

be. In this case, its adjacent connected region should be

in exterior label color. Finally, they are set to mask color

during the Crop-and-‘Inverse’ process.

Type 5: Mask pixels

Mask pixels are in mask color (pixel value 255 in our

experiment), which do not appear until the Crop-and-

‘Inverse’ process, when interior label pixels are set to mask

color. Those mask pixels mutually make up the resulting

masks for the output.

3.4. Proposed Algorithm: Scanflood Fill(SCAFF)

We illustrate our algorithm below. Given an image with

boundary pixels, padding is added. Then we start from the

origin of the padded image and use flood filling algorithm

to fill the connected region of the origin with label color.

After that, we search through all other pixels in the image,

setting each unprocessed non-boundary pixel (i.e. a back-

ground pixel) as a new seed for flood filling, and fill its

connected region with a certain color, either exterior or in-

terior label color, based on the color of its adjacent filled

connected region. In other to capture the color of its adja-

cent filled connected region, the algorithm searches back-

ward until reaching a filled pixel, either an exterior or inte-

rior label pixel. When all background pixels are filled, we

extract the image of the original size from the padded one

and transform label color into the background color. Since

our algorithm scans through the image to set potential start-

ing seeds for flood filling, and scans backward to determine

the color to be filled for the present visited region, we call

it Scan-flood Fill(SCAFF). An example of how the image

changes is given in Figure 5, and the pseudocode is given in

algorithm 2.

As illustrated above, this improved version of the region

filling algorithm, Scan-flood Fill algorithm, can success-

fully deal with ‘holes’, or even more complicated regions.

4. Experiments

We test both the basic version and our proposed algo-

rithm on a set of images of different sizes, where regions

inside have different properties. Comparing their resulting

Algorithm 2: Scan-flood Fill(img)

Input: img

Output: resultImg

1 padImg← pad img with background color;

2 seed← (0,0);

3 padImg← floodfill(padImg, seed) with label color;

4 for x in range(padImg.height) do

; // Main Filling Process

5 for y in range(padImg.width) do

6 if padImg[x][y] == background color then

7 seed← (x,y), i← 1;

8 while padImg[x][y-i] == boundary color

do

9 i← i + 1;

10 if padImg[x][y-i] == boundary color then

11 floodfill(padImg, seed) with filling

color;

12 if resultImg[x][y] == exterior label color then

13 resultImg[x][y]← background color;

14 else

15 floodfill(padImg, seed) with label color;

16 croppedImg← crop padImg to original size, delete

padding;

; // Crop-and-‘Inverse’ process

17 resultImg← croppedImg;

18 for x in range(resultImg.height) do

19 for y in range(resultImg.width) do

20 if resultImg[x][y] == exterior label color then

21 resultImg[x][y]← background color;

22 if resultImg[x][y] == interior label color then

23 resultImg[x][y]← mask color;

24 return resultImg

images, we also compute and analyze their running time.

All experiments are performed on a PC with Intel(R) Core

i7-8550U processor and 16GB RAM.1

4.1. Datasets

The input images for our toy experiment are generated

by dilation of eight 200×200 basic images. Each of the ba-

sic images represents a case in Table 1. Define the property

3-tuple of an image to be (multiple, border, holes), whose

entries are all Boolean variables, to represent each of these

eight cases. For example, (F, F, T ) means that the image

has only one object inside, has no regions whose bound-

aries meet the border of the whole image but has ‘holes’

1Codes and more related details are given in the following website:

https://github.com/SherylHYX/Scan-flood-Fill.



Figure 5: Evolution of an image during the the implementation of Scan-flood Fill(SCAFF) algorithm. The flow chart illustrates how

Scan-flood Fill(SCAFF) acts on an image: first pads the image, then labels different connected regions. After cropping, the algorithm

sets different regions to resulting colors.The Main Filling Process is illustrated in details, where the algorithm scans through the image,

searching for the next seed to start flood fill. The red pixel represents the next seed, and the blue area represents the scanned area.

Figure 6: Performance comparison on toy examples

inside regions. This notation will be used to illustrate the

comparison on toy examples. To show that our algorithm

can also be useful in practical ground truth masks generat-

ing process, we also consider images in MSRA10K [29].

4.2. Performance Comparison on Toy Examples

For one thing, most filling algorithms require human-

provided starting seeds. For another, among those auto-

matic (with respect to seed selection) region filling algo-

rithms, there are few that share the same filling purpose with

us (i.e. to fill the regions and to generate masks for machine

learning). Hence, we may have different definitions for ‘ac-

curacy’. For these reasons, we conduct the performance

comparison and evaluation mainly on our proposed algo-

rithm as well as its basic version. We first compare their

performance on our toy examples. A visual result compari-

son is shown in Figure 6.

From the result, we conclude that free from requiring

users to provide initial seeds to start from, both algorithms

can fill an arbitrary number of irregular regions without

‘holes’ successfully. Thanks to the padding in the first step

of each version of the algorithm, the result will not be influ-

enced by regions whose boundaries lie on the boundary of

the whole image. However, when it comes to more compli-

cated regions such as annuli, rings and regions with interior

‘holes’, only Scan-flood Fill can generate desirable results.



Table 2: The time(in seconds) consumed on different image sizes.

Size
Version of Algorithm

EFCI (s) Scan-flood Fill(SCAFF) (s)

200 × 200 0.07766529 0.1186108

400 × 400 0.26739229 0.4606119

600 × 600 0.58787846 1.0168558

800 × 800 1.07662390 1.7586195

1000 × 1000 1.60052500 2.7622317

1200 × 1200 2.32550920 4.1238358

1400 × 1400 3.16818610 5.6745079

1600 × 1600 4.44347420 7.4507671

1800 × 1800 5.45135353 9.4607772

2000 × 2000 6.62144210 11.7155405

4.3. Time complexity evaluation

Table 2 illustrates the average running time of each im-

age in folders with different sizes of input images. For a fair

comparison, the time efficiency evaluations of both versions

of the algorithm are performed on the same PC. Though

Scan-flood Fill takes a bit longer time, the time consumed

is not much longer, and the result is more precise.

Figure 7: Running time comparison on toy examples.The time

consumed is approximately proportional to the number of pix-

els in the image for each of EFCI and Scan-flood Fill. ‘Adj R2’

means adjusted R square, ‘intercept’ means the vertical intercept,

and ‘slope’ means the slope of the regression line.

We also analyze and compare the time complexity of

each version of the algorithm. Plotting the number of pix-

els in an image and the time consumed, we obtain almost

straight lines, as shown in Figure 7. By regression, we claim

that they both consume almost linear time with respect to

the number of pixels of an image, and the approximate com-

plexities are bothO(p), where p denotes the number of pix-

els in the image. Furthermore, in order to save more time

for Scan-flood Fill, it is also possible to consider cropping

immediately after the first flood fill in the Main Filling Pro-

Table 3: Comparison of quantitative results including F1 score

(larger is better) and MAE(Mean Absolute Error, smaller is bet-

ter), on dataset MSRA10K.

Metric
Version of Algorithm

EFCI Scan-flood Fill

F1 score 0.985600323 0.988181049

MAE 0.005224898 0.004115951

cess, i.e. exactly after line 3 in Algorithm 2, and then scan

through the cropped image, instead of cropping after the

whole Main Filling Process.

4.4. Practical Use to Generate Ground Truth Masks

We test Scan-flood Fill Algorithm as well as its basic ver-

sion(EFCI) on 9,918 out of 10,000 images from MSRA10K

[29], where edges are relatively easy to be extracted from

masks(since this dataset does not provide edge informa-

tion). Starting from an image with ‘only’ boundary pixels

(i.e. masks not yet generated), Scan-flood Fill can generate

corresponding masks effectively. To be comparable with

ground truth masks given by MSRA10K [29], we set mask

color to be boundary color, i.e., pixel value 255 in our case.

A visual result for some of the images is shown in Figure 8.

We also obtain a comparison of quantitative results in-

cluding F1 score[30] (larger is better) and MAE[31](Mean

Absolute Error, smaller is better), as is given in Table

3. The quantitative results indicate that Scan-flood Fill

achieves better performance than EFCI on the given dataset.

The difference between them probably lies in the exis-

tence of ‘holes’ within regions to be filled. Besides, since

MSRA10K [29] does not provide edge images, and the gen-

erating process of edges may result in differences of bound-

ary pixels between ground truth images and generated edge

images, it is reasonable that Scan-flood Fill cannot achieve

100 percent accuracy in this case, when compared to GT

masks given by the dataset. The Scan-flood Fill results are

almost the same as ground truth results, so they can be used

as ground truth for supervised learning and would probably

not affect training accuracy.

4.5. Advantages of Scanflood Fill(SCAFF) Algo
rithm

In previous works, seed filling algorithms such as flood

filling algorithm from OpenCV and boundary filling algo-

rithms have been applied to generate filled masks [27, 28].

Although these are used in part of our approach, there ex-

ists a considerable difference in that our starting seeds are

automatically provided by the algorithm instead of being

given beforehand. We propose to integrate seed filling al-

gorithms and scan-line filling algorithms, together with the

properties of adjacent connected regions, for complicated

arbitrary region filling problems.



Figure 8: Some practical examples to generate ground truth masks for supervised learning, i.e., from left to right: different images with

different types of object shapes; from top to bottom: original input images, boundary images, ground truth images, the corresponding output

images with EFCI, and the corresponding output images with Scan-flood Fill(SCAFF).The Scan-flood Fill(SCAFF) results are almost the

same as ground truth images, so they can be used as ground truth images and would probably not affect training accuracy.

Besides, Scan-flood Fill(SCAFF) enables us to handle

complicated regions such as a pig face and the examples

from MSRA10K [29]. This is by virtue of the classification

of pixels, especially label pixels, and the Crop-and-‘Inverse’

process. We compare Scan-flood Fill(SCAFF) with its ba-

sic version EFCI for region filling. The results in Figure 6

demonstrates the potential superiority of more precise algo-

rithms taking the relationship between adjacent connected

regions into account.

Also, in Scan-flood Fill(SCAFF) algorithm, we do not

need to worry about the potential existence of multiple re-

gions inside an image. This is because our filling algorithm

does not require human-provided starting seeds, but can set

starting seeds whenever needed. Moreover, since we start

from filling exterior label color to the outermost exterior of

an image, which is part of the background for the final re-

sult, we are able to avoid being trapped in a small region.

Moreover, padding with background color guarantees

the robust filling result regardless of whether some bound-

aries of the regions in an image lie on the border of the

whole image.

5. Conclusion

In this paper, we present an efficient automatic region

filling algorithm for arbitrary regions by using a color

scheme to assign different labels to adjacent connected re-

gions. The algorithm scans through all pixels in the image,

automatically sets the seeds for flood filling, and labels all

visited pixels, before the Crop-and-‘Inverse’ process. The

resulting masks distinguish pixels intended to be filled from

background efficiently. The Scan-flood Fill(SCAFF) algo-

rithm is effective in generating masks as ground truth im-

ages used for supervised model training. Experiments on

various types of images clearly demonstrate the effective-

ness of our algorithm, and robustness when handling mul-

tiple regions, complicated ‘holes’ and regions intersecting

image border. Besides, as the problem confronted is to

judge the interior pixels bounded by some arbitrary shapes,

we still consider the proposed algorithm to be eligible in

giving some possible potential insight into overcoming the

related graphics or computational geometry problems.

6. Acknowledgement

This work was supported in part by grants from

National Science Foundation of China (No.61571005,

No.61811530271), the China Scholarship Council (CSC

NO.201806155037), the Science and Technology Research

Program of Guangzhou, China (No.201804010429), the

Fundamental Research Funds for the Central Universities,

SCUT (No.2018MS57).

References

[1] Z. Ren, S. Gao, L.-T. Chia, and I. W.-H. Tsang, “Region-

based saliency detection and its application in object recog-

nition,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 24, no. 5, pp. 769–779, 2014.



[2] L. Wang, H. Lu, X. Ruan, and M.-H. Yang, “Deep networks

for saliency detection via local estimation and global search,”

in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 3183–3192, 2015.

[3] F. Perazzi, P. Krähenbühl, Y. Pritch, and A. Hornung,

“Saliency filters: Contrast based filtering for salient re-

gion detection,” in Computer Vision and Pattern Recogni-

tion (CVPR), 2012 IEEE Conference on, pp. 733–740, IEEE,

2012.

[4] M. F. Mcnitt-Gray, S. G. Armato, C. R. Meyer, A. P. Reeves,

G. Mclennan, R. C. Pais, J. Freymann, M. S. Brown, R. M.

Engelmann, P. H. Bland, G. E. Laderach, C. Piker, J. Guo,

Z. Towfic, D. P.-Y. Qing, D. F. Yankelevitz, D. R. Aberle,

E. J. van Beek, H. Macmahon, E. A. Kazerooni, B. Y. Croft,

and L. P. Clarke, “The lung image database consortium (lidc)

data collection process for nodule detection and annotation,”

Academic Radiology, vol. 14, no. 12, pp. 1464–1474, 2007.

[5] B. Zhong, S. Pan, H. Zhang, T. Wang, J. Du, D. Chen,

and L. Cao, “Convolutional deep belief networks for single-

cell/object tracking in computational biology and computer

vision,” BioMed Research International, vol. 2016, 2016.

[6] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-

cnn,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2018.

[7] S. Cai, J. Huang, D. Zeng, X. Ding, and J. Paisley, “Menet: a

metric expression network for salient object segmentation,”

arXiv preprint arXiv:1805.05638, 2018.

[8] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Con-

volutional networks for biomedical image segmentation,”

in International Conference on Medical Image Computing

and Computer-Assisted Intervention, pp. 234–241, Springer,

2015.

[9] N. Liu and J. Han, “Dhsnet: Deep hierarchical saliency net-

work for salient object detection,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pp. 678–686, 2016.

[10] M. C. Codrea and O. S. Nevalainen, “Note: An algorithm

for contour-based region filling,” Computers & Graphics,

vol. 29, no. 3, pp. 441–450, 2005.

[11] F. Duo-Le and Z. Ming, “A new fast region filling algorithm

based on cross searching method,” vol. 202, pp. 380–387,

2011.

[12] T. Pavlidis, Algorithms for graphics and image processing.

Digital system design series, Rockville, Md.: Computer Sci-

ence Press, 1981.

[13] D. M. R, “Scan line generator for area fill of extensible poly-

gons,” 1997.

[14] X. Li and L. Huang, “New region filling algorithm based on

chain codes description,” in 2010 3rd International Congress

on Image and Signal Processing, vol. 6, pp. 2806–2809,

IEEE, 2010.

[15] R. Tarjan, “Depth-first search and linear graph algorithms,”

SIAM Journal on Computing, vol. 1, no. 2, pp. 146–160,

1972.

[16] J. D. Foley, F. D. Van, A. Van Dam, S. K. Feiner, J. F.

Hughes, J. HUGHES, and E. ANGEL, Computer graphics:

principles and practice, vol. 12110. Addison-Wesley Profes-

sional, 1996.

[17] D. Henrich, “Space-efficient region filling in raster graph-

ics,” The Visual computer, vol. 10, no. 4, pp. 205–215, 1994.

[18] V. M. Yanovsky, I. A. Wagner, and A. M. Bruckstein, “A

linear-time constant-space algorithm for the boundary fill

problem,” The Computer Journal, vol. 50, no. 4, pp. 473–

477, 2007.

[19] S. Anitha and D. Evangeline, “An efficient fence fill algo-

rithm using inside-outside test,” International Journal of Ad-

vanced Research in Computer science and Software Engi-

neering, vol. 3, no. 11, 2013.

[20] R. C. Gonzalez, Digital image processing. Harlow, United

Kingdom: Pearson Education Limited, fourth edition, global

edition.. ed., 2018.

[21] M. Ren, W. Yang, and J. Yang, “A new and fast contour-

filling algorithm,” Pattern Recognition, vol. 38, no. 12,

pp. 2564–2577, 2005.

[22] Z. Cai, “Restoration of binary images using contour direction

chain codes description,” Computer Vision, Graphics, and

Image Processing, vol. 41, no. 1, pp. 101–106, 1988.

[23] V. Vučković, B. Arizanović, and S. Le Blond, “Generalized

n-way iterative scanline fill algorithm for real-time applica-

tions,” Journal of Real-Time Image Processing, pp. 1–19,

2017.

[24] M. Khayal, A. Khan, S. Bashir, F. Khan, and S. Aslam,

“Modified new algorithm for seed filling,” Journal of The-

oretical and Applied Information Technology, vol. 26, no. 1,

pp. 28–32, 2011.

[25] F. Spagnolo, F. Frustaci, S. Perri, and P. Corsonello, “An effi-

cient connected component labeling architecture for embed-

ded systems,” Journal of Low Power Electronics and Appli-

cations, vol. 8, no. 1, 2018.

[26] M. Longyuan, Y. Zhenglin, and W. Zhen, “Regional filling

algorithm based on connected region labeling,” Journal of

Changchun University of Science and Technology, vol. 41,

no. 4, pp. 114–117, 2018.

[27] G. Bradski and A. Kaehler, Learning OpenCV: Computer vi-

sion with the OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[28] J. Howse, OpenCV computer vision with python. Packt Pub-

lishing Ltd, 2013.

[29] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S.-M.

Hu, “Global contrast based salient region detection,” IEEE

Transactions on Pattern Analysis and Machine Intelligence,

vol. 37, no. 3, pp. 569–582, 2015.

[30] C. Goutte and E. Gaussier, “A probabilistic interpretation

of precision, recall and f-score, with implication for eval-

uation,” in European Conference on Information Retrieval,

pp. 345–359, Springer, 2005.

[31] E. J. Coyle and J.-H. Lin, “Stack filters and the mean absolute

error criterion,” IEEE Transactions on Acoustics, Speech,

and Signal Processing, vol. 36, no. 8, pp. 1244–1254, 1988.


