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Abstract

Convolutional neural networks are potent models that

yield hierarchies of features and have drawn increasing

interest in the visual tracking field. In the paper, we de-

sign an end-to-end trainable tracking framework based on

Siamese network, which proposes to learn the low-level

fine-grained and high-level semantic representations simul-

taneously with the aim of mutual benefit. Due to the distinct

and complementary characteristics of the feature hierar-

chies, different tracking mechanisms are adopted for differ-

ent feature layers. The low-level features are exploited and

updated with a correlation filter layer for adaptive track-

ing and the high-level features are compared through cross-

correlation directly for robust tracking. The two-level fea-

tures are jointly trained with a multi-task loss function end-

to-end. The proposed tracker takes full advantage of the

adaptability of the low-level features and the generalization

ability of the high-level features. Extensive experimental

tracking results on the widely used OTB and TC128 bench-

marks demonstrate the superiority of our tracker. Mean-

while, our proposed tracker can achieve a real-time track-

ing speed.

1. Introduction

Visual object tracking is an established yet rapidly

evolving research area in computer vision. In general, it

aims to estimate the spatial trajectory of a target object in

an image sequence, given its initial state, i.e., location and

underlying area. It provides a fundamental component for

high-level visual understanding problems such as motion

analysis, event detection, situational awareness, and activity

recognition. Despite significant process in recent years,

finding the corresponding object regions across multiple

frames is still a challenging problem due to factors such as

occlusion, deformation, illumination change, fast motion,

and background clutter. In this paper, we only focus on

single camera, single-target, short-term and model-free

tracking and refer the interested readers to [1] and [2] for a

thorough review of the existing tracking algorithms.

Ours SiamFC

Figure 1: Tracking snapshots of SiamFC and our tracker in

the presence of similar distractors on the Coupon and Bas-

ketball sequences [3]. The SiamFC tracker is based on high-

level semantic embeddings and drifts to surrounding dis-

tractors in the given sequences while our tracker performs

well.

Accuracy has always been the pursuit of all tracking

algorithms. In recent years, Convolutional Neural Net-

works (CNNs) have been pervasively adopted in various

computer vision tasks such as image classification [4],

object detection [5] and semantic segmentation [6], due

to the excellent performance in representing visual data.

However, the scarcity of training data and real-time demand

greatly limit the applications of CNNs in the tracking field.

Some researchers propose to utilize a pre-trained CNN

that was learned for a different but related task to extract

deep features in the existing “shallow” tracking methods

[7, 8, 9]. However, this kind of practice does not take

advantage of the benefits of end-to-end training. Later,

end-to-end methods are proposed to fine-tune the last or last

few layers of the pre-trained network [10] but at the cost of

tracking speed. Given this situation, the Siamese network
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based trackers are introduced [11, 12, 13, 14]. Generally,

these trackers learn embedded semantic features for clas-

sification with massive training data, i.e., ILSVRC2015

video detection dataset [4] offline, and then estimate the

target position through one network forward-propagation

online. As the embedded features mainly capture category-

aware semantics and are robust to significant and dramatic

appearance variations, these trackers perform well in

distinguishing targets of different categories. However,

an issue ensues with such an approach. The semantic

feature representation neglects the low-level fine-grained

details and blurs the intra-class difference. In specific, the

trackers can easily distinguish a dog from a cat, but cannot

differentiate person in red clothes with the other in blue.

When faced with distractors with the same category, the

tracker may drift as shown in Figure 1. As pointed in

[15], the different layers of a CNN provide multiple levels

and different perspective characteristics of a target in a

feature hierarchy. The earlier feature layers mainly provide

fine-grained features, which is beneficial to separate target

from similar distractors and retains high spatial resolution

for precise localization. Considering that the low-level

features have been computed through the network forward

propagation, a naı̈ve solution to the issue mentioned above

is to combine the feature representations from different

layers directly. In our previous work, we adopt a skip-layer

connection to constitute hyper-feature representations of

the target [14], however, a limited improvement is achieved

on the tracking performance. We attribute this to the

fixed feature representations during tracking. When the

high-level feature is adopted to discriminate the target

from the background, fixing the representation does not

affect the tracking performance much, as verified in [11].

The authors found that updating the feature representation

of the exemplar online through linear interpolation does

not gain much performance and thus they keep it fixed.

However, the low-level representation mainly focuses on

fine-grained spatial details and needs to be updated to adapt

to the video-specific appearance variations of the target.

Correlation filter is an efficient online learning method and

has been integrated into CNN as a differential layer in the

previous work [16, 17]. Through end-to-end training, the

feature can be updated easily and tightly coupled to the

correlation filter.

From the above two paragraphs, we have the following

observations. First, Siamese network based trackers are few

real-time trackers that perform end-to-end tracking based

on CNNs, which is a crucial factor that we build our work

on them. Second, the low-level fine-grained and high-level

semantic representations from CNNs provide complemen-

tary characteristics of the target and can function jointly to

reinforce the representation. Finally, the low-level features

need to be updated to capture the video-specific variation

of the target and this can be achieved through embedding a

correlation layer in the network. In the paper, we design an

end-to-end multi-task learning based tracker on the basis

of the Siamese network, which learns two tasks simultane-

ously with the aim of mutual benefit. The low-level features

are exploited and updated with a correlation filter layer

for precise tracking; the high-level features are utilized

through cross-correlation for robust tracking. The main

contributions of our work are three-fold:

(1) We design an end-to-end tracking framework based

on Siamese network, which utilizes different tracking

mechanisms for different feature layers according to their

specific characteristics.

(2) We adopt a multi-task strategy to train the network and

learn a collaborative and reinforced representation for the

target. The proposed tracker takes full advantage of the

adaptability of the low-level features and the generalization

ability of the high-level features.

(3) Extensive experimental results on the widely used

tracking benchmarks demonstrate that our method can

achieve state-of-the-art tracking performance and real-time

tracking speed.

2. Related Work

There have been many advances in the object tracking

literature in the recent years. Due to space limitations, here

we focus on those that are most relevant to our work.

2.1. Correlation Filter based Tracking

Correlation filters have attracted considerable attention

in the tracking field due to the fair robustness and extreme

efficiency. Bolme et al. pioneer the work with a minimum

output sum of squared error correlation filter [18]. Hen-

riques et al. introduce a kernelized correlation filter [19] and

extend the feature representation to multi-channel. Later,

based on the standard DCF formulation, different variants

of correlation filters have been proposed to boost tracking

performance using scale estimation [20, 21], boundary ef-

fect alleviation [22, 23, 24], context learning [25], comple-

mentary cues [26], target adaptation and feature integration

[27, 28]. Recently, driven by the popular trend of CNNs

in other fields, researchers in the tracking community have

started to combine DCFs with CNNs. The conventional ap-

proach is to integrate CNN features to the DCF framework.

DeepSRDCF substitutes hand-crafted features with shallow

CNN features in a spatially regularized DCF framework and

achieves superior tracking performance [29]. CF2 employs

CNN features extracted from multiple convolutional lay-

ers to encode both spatial details and high-level semantics

[7]. Despite significant performance improvements, these

methods extract CNN features from a pre-trained classifica-

tion network and the feature extraction process is separate



from the filter training, the tracking results may be subop-

timal. Thus CFnet [16] proposed by Jack Valmadre et al.

and DCFNet [17] put forward by QiangWang et al. inter-

pret the correlation filter as a differentiable layer in a deep

neural network and train the network end-to-end to find the

features most suitable for the correlation filter. Inspired by

these trackers, in the paper we incorporate the correlation

filter as a differential layer in our network to update the low-

level features and further implement precise target location.

2.2. CNN based Tracking

Simply regarding CNNs as a feature extractor does not

take full advantage of the benefits of CNNs. To fully ex-

ploit the representation power of CNNs in visual tracking,

it is desirable to train them on large-scale dataset special-

ized for visual tracking. MDNet [10] trains a multi-domain

lightweight network offline with massive data and perform

SGD to fine-tune the last few layers of the network dur-

ing online tracking. MDNet achieves state-of-the-art re-

sults but fails to operate in real-time. As the essence of

tracking is to find the region in a search image most similar

to the given target bounding box, the Siamese architecture

has been exploited in the tracking field and shows impres-

sive performance. Held et al. introduce GOTURN [12], in

which the motion between successive frames is predicted

using a deep regression network. Tao et al. propose to

train a Siamese network to identify candidate image loca-

tions that match the initial object appearance and term their

method as Siamese Instance search Tracker [13]. Bertinetto

et al. [11] put forward a novel fully-convolutional Siamese

network (SiamFC) to measure the similarity between two

images and locate the target in the current frame. The

fully-convolutional architecture enables dense and efficient

sliding-window evaluations with a bilinear layer and makes

the tracker real-time. However, these Siamese network

based methods share a common problem that the feature

representations are based on the high-level semantic lay-

ers and no fine-tuning is performed, which may drift in the

presence of same-category distractors. Based on SiamFC,

Y. Kuai et al. propose to combine different layers of the

network in SiamFC to constitute a more abundant represen-

tation of the target [14], but a limited performance improve-

ment is achieved due to the absence of model update in the

low-level features. In the paper, we propose to combine

the low-level and high-level features to reinforce the feature

representations of the target, and according to their specific

characteristics, we select different tracking mechanisms for

different feature layers.

2.3. Collaborative Tracking

Due to the different and complementary characteristics

of different features and trackers, methods based on ensem-

ble deep features and trackers are proposed. In terms of

deep feature ensemble, J. Li et al. [15] build a general net-

work (GNet) and a specific network (SNet) on top of the

conv5 and conv4 feature layers respectively. The two net-

works are used interchangeably based on distractor detec-

tion scheme. Chao et al. [7] learn the correlation filters

from the features in the third, fourth and fifth convolutional

layers successively and then determine the target location

according to the maximum response of each filter compre-

hensively. Feature ensemble helps complement different

representations, similarly, the tracker ensemble is proposed

to combine the advantages of different trackers. PTAV [30]

proposed by H. Fan et al. combines short-term correlation

filter based tracking with long-term re-detections based on

Siamese network with a switching mechanism. Instead of

adaptive selection, Y. Kuai et al. utilize correlation filter

trackers to refine the tracking results based on Siamese net-

work [31]. Our tracker proposed in this paper is a combi-

nation of both deep features (low-level and high-level) and

trackers (correlation filter based deep tracker and Siamese

network based tracker).

3. Reinforced Convolutional Feature Learning

for Visual Tracking

In the paper, we design an end-to-end multi-task learning

based tracker on the basis of Siamese network, which learns

two tasks simultaneously with the aim of mutual benefit.

In this section, the overall network architecture of the pro-

posed tracker is given at first. Then we introduce two pri-

mary components of our tracker, namely the high-level ro-

bust semantic tracking and the low-level fine-grained adap-

tive tracking. At last, the collaborative training and tracking

procedures are described.

3.1. Overall Network Architecture

The overall network architecture is shown in Figure 2.

The main part of our network architecture resembles the

two-branch network used in SiamFC, and each branch is

composed of five convolutional layers and two max pool-

ing layers. A correlation filter layer is imposed on the low-

level features (after pool2 layer) for fine-grained target lo-

cation and efficient model update, and the high-level se-

mantic features (after conv5 layer) of exemplar and search

branches are compared directly through cross-correlation

for robust tracking. Although the feature after pool1 layer

is more fine-grained and beneficial for precise target loca-

tion, adopting such feature brings much burden to the track-

ing efficiency. To make our tracker real-time, we select the

feature after pool2 layer to balance the tracking efficiency

and accuracy. The detailed dimensions of network param-

eters and output activations in different layers are given in

Table 1. As the search image shares the same size with the

exemplar image, here we only provide the parameter dimen-

sions in the exemplar branch.
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Figure 2: The network architecture of our proposed tracker. The main part of the network is a two-branch Siamese network.

And to comprehensively utilize the features from different CNN layers, a correlation filter layer is imposed on the low-level

feature (after pool2 layer) for fine-grained target location and efficient model update, and the high-level semantic feature

(after conv5 layer) is compared directly through cross-correlation for robust tracking.

Table 1: Dimensions of network parameters and output ac-

tivations in the designed network. In the table, KS is the

kernel size of the filters. IC(input channel) represents the

dimensions and number of filters used. EAS stands for acti-

vation size for exemplar image. OC(output channel) means

the dimension of each output activation.

Layer KS IC Stride EAS OC

Input 255×255 3

Conv1 11×11 3×16 2 123×123 16

Pool1 5×5 2 61×61 16

Conv2 5×5 16×32 1 57×57 32

Pool2 3×3 1 55×55 32

Conv3 3×3 32×64 1 53×53 64

Conv4 3×3 64×128 1 51×51 128

Conv5 3×3 128×32 1 49×49 32

CF 55×55 32

Crop1 23×23 32

Crop2 17×17 32

3.2. Generic Semantic Learning for Robust Track-
ing

For each pair of exemplar and search images (z, x), the

network applies the embedding transformation f to them

and generates the feature representations f(z), f(x) af-

ter conv5 layer. As the high-level feature representations

mainly focus on object category and are robust to target

appearance variations, we compare the similarity between

f(z) and f(x) directly through cross-correlation g and ob-

tain the response map D1. The computed value is denoted

as v1 = g(f(z), f(x)). The pixels y1 on the response map

is labeled {+1,-1} according to their distances to the center.

And we adopt the logistic loss function to measure the dif-

ference between the computed value v1 and labeled ground

truth value y1 on the response map, as shown in Equation 1.

Lhigh =
1

|D1|

∑

u∈D1

log(1 + exp(−y1[u] · v1[u])) (1)

Where D1 represents the response map and |D1| denotes

the number of pixels on the response map. The generic se-

mantic learning is optimized by minimizing the above loss

function with SGD.

3.3. Correlation Filter Learning for Adaptive
Tracking

Different from the robust high-level feature representa-

tions, the low-level features mainly capture fine-grained de-

tails, such as edge, texture, contour, and need updating to

adapt to variations of the target. A correlation filter layer

is imposed on the low-level features to achieve this. We

select the feature after pool2 layer to balance the tracking

efficiency and accuracy.

Discriminate correlation filter formulation: Given a

scalar-valued image x and the corresponding Gaussian la-

bel y, the correlation filter template w can be obtained by



regressing all the circular shifted version of x to the label y.

In specific, w is solved using the following equation:

argmin
w

1

2n
‖w ∗ x− y‖2 +

λ

2
‖w‖2 (2)

Where n is the effective number of samples, ∗ denotes

circular cross-correlation. By the use of the Lagrange mul-

tiplier method and the property of circulant matrix in the

Fourier domain, the solution of Equation 2 is illustrated in

Equation 3. ⎧
⎨
⎩

k̂ = 1

n
(x̂∗ · x̂) + λ✶

α̂ = 1

n
k̂−1 · ŷ

ŵ = α̂∗ · x̂

(3)

Here, x̂ represents the Fourier transform of the variable

x, x̂∗ represents the complex conjugation of x̂ and ✶ is a

signal of ones. The product and division in Equation 3 are

point-wise operations.

Back-propagation: Given the image sample and the corre-

sponding label, we can figure out the coefficients of correla-

tion filter and accomplish the network forward propagation.

And to integrate the correlation filter as a differential layer

in the network, we also need to derive the back-propagation

equation. Given the output scalar loss l and the derivative of

l on w, namely ∇wl, the derivation propagation from ∇wl

to ∇xl and ∇yl can be solved as Equation 4. The detailed

derivation procedures of Equation 3 and Equation 4 can be

found in [16].
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇̂αl = x̂ · (∇̂wl)
∗

∇̂yl =
1

n
k̂−∗ · ∇̂αl

∇̂kl = −k̂−∗ · α̂∗ · ∇̂αl

∇̂xl = α̂ · ∇̂wl +
2

n
x̂ ·Re

{
∇̂kl

}
(4)

After derivations of the forward and backward propaga-

tion of the correlation filter layer, we construct the loss func-

tion Llow of the low-level feature representations as shown

in Equation 5, which is similar to the high-level feature

branch.

Llow =
1

|D2|

∑

u∈D2

log(1 + exp(−y2[u] · v2[u])) (5)

Where D2 represents the response map for low-level fea-

tures, |D2| denotes the number of pixels on the response

map, y2 and v2 respectively denotes the ground truth and

computed value on the response map.

3.4. Collaborative Training and Tracking

In the training stage, to collaboratively learn the fine-

grained and robust semantic features, we propose to train

the network with a multi-task loss function in a unified way.

The detailed loss function is as follows:

L = Lhigh + Llow + P (θ) (6)

Where P (θ) is a l2-norm punishment item of the network

parameters θ for better regularization. The network param-

eter θ is obtained by minimizing the multi-task loss above

with SGD.

In the tracking stage, for frame t, the search image area

xs is cropped around the target location in frame t− 1 with

multiple scale variations s. Through network forward prop-

agation, we acquire response maps for the low-level and

high-level branches, respectively expressed by q and h. The

two response maps are linearly added. And the target lo-

cation is estimated by finding the maximum on the fused

response map as shown in Equation 7:

argmax
u,v,s

qu,v(xs) + hu,v(xs) (7)

And in order to adapt to the target appearance variations

during tracking, the correlation filter coefficients w in the

low-level branch is updated via a simple linear interpolation

as follows:

wt = αw + (1− α)wt−1 (8)

Where α is the linear weighting coefficient, wt and wt−1 re-

spectively denotes the correlation filter coefficients in frame

t and t − 1, w is the computed coefficients in the current

frame. On the contrary, the semantic representation in the

high-level branch is fixed after being computed in the first

frame, which avoids the background contamination caused

by tracking drift and reserves the original accurate target in-

formation. Through combinations of per-frame updating in

the low-level branch and the fixed accurate representation

in the high-level branch, our tracker captures the fixed and

variant information of the target simultaneously and per-

forms well.

4. Experiments

4.1. Implementation Details

Data and parameters: Our algorithm is implemented

in Matlab using MatConvNet toolbox [32]. The initial net-

work parameters follow a Gaussian distribution, which is

further updated by minimizing Equation 2. The total train-

ing number is set to be 50, each consisting of 53200 pairs of

images from the ILSVRC2015 object detection dataset. The

weight decay is 10−3 and learning rate is annealed geomet-

rically at each epoch from 10−2 to 10−5. To handle scale

variation, the tracking target is searched over three scales

1.025{−1,0,1}. The linear weighting coefficient α in Equa-

tion 8 is set to be 0.41, which follows the default parame-

ter setting in CFnet [16]. All the parameters are fixed for

all experiments. And all the trackers are run on a machine

equipped with a single NVIDIA GeForce GTX Titan GPU

and an Intel Core i7-6700K at 4.0GHz.

Evaluation methodology: On OTB and TC128 bench-

marks, the evaluation is based on two metrics: precision



plot and success plot in a one-pass evaluation. The preci-

sion plot is computed as the percentage of frames in the

sequences where Euclidean distance between the ground-

truth and the estimated target position is smaller than a cer-

tain threshold. The success plot is plotted over the range

of intersection over union (IOU) thresholds on all videos.

We use the distance precision (DP) rate at 20 pixels to rank

trackers in the precision plot and the area under curve, also

called overlap success (OS) rate to rank trackers in the suc-

cess plot. Notably, OS rate is used as the primary metric for

ranking methods.

4.2. Experiments on the OTB Dataset

OTB50 [33] is a popular tracking dataset containing 50

fully annotated videos. OTB100 [3] is the extension of

OTB50 and contains 100 sequences. Compared to OTB50,

50 more challenging sequences are included in OTB100. In

this subsection, we first conduct an ablation study between

our tracker and two baseline trackers, and then an experi-

ment is performed to compare our tracker with other state-

of-the-art trackers.

Ablation study: To demonstrate the effectiveness of the

reinforced representation learning proposed in our tracker,

we utilize the success plot to compare our method with

two baseline trackers (SiamFC [11] and CFnet [16]) on the

OTB50 and OTB100 datasets respectively. SiamFC utilizes

the high-level semantic embeddings while CFnet is based

on the low-level fine-grained target localization. The com-

parison result is shown in Figure 3. And it can be seen

that our tracker respectively achieves an absolute gain of

1.8% and 1.9% in the OS rate on the OTB50 and OTB100

datasets when compared to SiamFC. And the performance

improvements are respectively 2.7% and 1.3% when com-

pared to CFnet. Therefore, fusing the high-level semantic

and low-level fine-grained representations is more effective

for tracking than using the two components independently.
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Figure 3: Success plot of our proposed tracker and two

baseline trackers on the OTB50 (left) and OTB100 (right)

benchmarks.

Comparison with state-of-the-art trackers: To further

validate the effectiveness of our proposed algorithm, an

experiment is carried out to compare our algorithm with

seven other state-of-the-art trackers on the OTB100 dataset.

These trackers cover the two mainstream methods in the

tracking field, namely deep learning trackers (DCFNet [17],

SiamFC [11] and CFnet [16]) and correlation filter trackers

(DSST [21], KCF [19], LCT [34] and SAMF [20]. Figure

4 shows the results of all the trackers in comparison men-

tioned above. We also present the quantitative results of OS

rate at 0.5, DP rate at 20 pixels and tracking speed in fps

(frames per second) in Table 2. In general, our proposed

method performs favorably against the trackers in compari-

son in both OS rate and DP rate. And apart from the supe-

rior performance, our tracker also achieves real-time track-

ing speed.
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Figure 4: Success plot (left) and Precision plot (right) of

our proposed tracker and seven other state-of-the-art track-

ers in comparison on the OTB100 benchmark.

Attribute-based evaluation: For detailed performance

analysis, we provide an attribute-based analysis on OTB100

dataset. The sequences in the dataset are annotated with

11 different attributes: illumination variation, scale vari-

ation, occlusion, deformation, motion blur, fast motion,

in-plane rotation, out-of-plane rotation, out-of-view, back-

ground clutter and low-resolution. Figure 5 shows OS plots

under six different attributes. From the curves, we have

the following observations. First, our tracker generally per-

forms better than the correlation filter based trackers, such

as KCF, DSST, LCT and SAMF, due to the advantage of

CNN features over the hand-crafted features. Second, our

tracker combines the merits of SiamFC and CFnet and per-

forms well in the majority of sequences with challenging

attributes.

Qualitative Analysis: Figure 6 intuitively illustrates the

tracking results of our proposed algorithm and its baseline

trackers (SiamFC [11] and CFnet [16]) on seven challeng-

ing sequences from OTB100 dataset. These selected se-

quences cover many difficulties faced in the visual tracking

task, such as heavy occlusions, fast motion, severe defor-

mation, similar distractor, rotations, illumination variation

and et,al. SiamFC utilizes the robust convolutional fea-

tures and performs well in sequences with occlusion (jog-

ging1), fast motion (jumping) and deformation (sylvester,

skiing), but fails when similar distractors occur around

(walking2,skating2) due to the semantic feature represen-

tation and absence of model updating. CFnet is based on



Table 2: Quantitative comparison results with state-of-the-art trackers on the OTB100 benchmark in terms of OS rate at 0.5,

DP rate at 20 pixels and tracking speed in fps.

Trackers Ours SiamFC[11] CFnet[16] DCFNet[17]

OS rate (%) 72.1 70.8 69.8 71.0

DP rate (%) 76.8 75.8 75.6 75.3

Speed (fps) 25 47 43 41

Trackers DSST[21] KCF[19] LCT[34] SAMF[20]

OS rate (%) 59.2 55.6 70.4 67.7

DP rate (%) 66.6 69.6 76.3 75.3

Speed (fps) 61 413 20 17
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Success plots of OPE - out-of-plane rotation (59)
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Success plots of OPE - scale variation (61)
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Figure 5: The success plots of trackers in comparison under

six challenging attributes: deformation, in-plane rotation,

low resolution, motion blur, out-of-plane rotation and scale

variation.

the low-level features and updated with a correlation filter

layer. It performs well in sequences with similar distrac-

tions (walking2,skating2), but drifts when targets undergo

heavy occlusion (jogging1 ), deformation (sylvester, skiing)

and fast motion (jumping), as a result of the low-level fea-

ture representation and the boundary effect. Due to the com-

plementary characteristics of SiamFC and CFnet, our pro-

posed method proposes to learn collaborative feature rep-

resentations simultaneously with a multi-task strategy. The

proposed algorithm combines the advantages of the adaptiv-

ity of CFnet and robustness of SiamFC and tracks the target

accurately over all the sequences, including sequences dif-

ficult for both trackers (motorRolling).

4.3. Experiments on the TC128 Benchmark

The TC128 dataset [35] contains 128 color sequences

and is specially designed to evaluate the tracking perfor-

mance in color sequences. We perform comparative ex-

periments between our proposed tracker with the existing

top-ranking trackers on the dataset. As shown in Figure 7,

our proposed tracker achieves an OS rate of 51.33% and a

DP rate of 69.75%, which perform better than the majority

���� ���	
 ��
���

Figure 6: Qualitative snapshots of proposed tracker,

SiamFC [11] and CFnet [16] on seven challenging se-

quences from OTB100 [3] (from top to down are jog-

ging1, jumping, sylvester, walking2, skiing, motorRolling

andskating1).

trackers. In specific, our tracker performs much better than

CFnet in both the OS and DP rate, and has similar perfor-

mance with SiamFC.
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Figure 7: Success plot (left) and Precision plot (right) of

our proposed tracker and seven other state-of-the-art track-

ers in comparison on the OTB100 benchmark..

5. Conclusion

In this paper, we propose an end-to-end tracking frame-
work to comprehensively utilize the advantages of feature
representations from different CNN layers (adaptability and
generalization). A correlation filter layer is imposed on the
low-level features to implement model update and adap-
tive tracking. The high-level features are cross-correlated
directly for robust tracking. And the two complementary
components are jointly trained through a multi-task loss
strategy to learn a reinforced feature representation. Ex-
perimental results on the widely used tracking benchmarks
OTB and TC128 demonstrate performance improvements
and limited burden on the tracking efficiency when com-
pared to the existing Siamese network based trackers.
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[29] M. Danelljan, G. Häger, F. S. Khan, and et al. Convolutional

features for correlation filter based visual tracking. IEEE

Conference on Computer Vision Workshop, pages 621–629,

2016.

[30] H. Fan and H. Ling. Parallel tracking and verifying: A frame-

work for real-time and high accuracy visual tracking. IEEE

Conference on Computer Vision and Pattern Recognition,

pages 5487–5495, 2017.

[31] Y. Kuai, G. Wen, and D. Li. When correlation filters

meet fully-convolutional siamese networks for distractor-

aware tracking. Signal Processing: Image Communication,

64:107–117, 2018.

[32] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural

networks for matlab. In Association for Computing Machin-

ery, pages 689–692, 2015.

[33] Y. Wu, J. Lim, and M. H. Yang. Online object tracking:

a benchmark. IEEE Conference on Computer Vision and

Pattern Recognition, pages 2411–2418, 2013.

[34] C. Ma, X. Yang, and C. Zhang. Long-term correlation track-

ing. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 5388–5396, 2015.

[35] P. Liang, E. Blasch, and H. Ling. Encoding color information

for visual tracking: Algorithms and benchmark. IEEE Trans-

actions on Image Processing, 24(12):5630–5644, 2015.


