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Abstract

Deep convolutional neural networks (DCNNs) have re-

cently demonstrated high-quality results in single-image

super-resolution (SR). DCNNs often suffer from over-

parametrization and large amounts of redundancy, which

results in inefficient inference and high memory usage, pre-

venting massive applications on mobile devices. As a way

to significantly reduce model size and computation time, bi-

narized neural network has only been shown to excel on

semantic-level tasks such as image classification and recog-

nition. However, little effort of network quantization has

been spent on image enhancement tasks like SR, as network

quantization is usually assumed to sacrifice pixel-level ac-

curacy. In this work, we explore an network-binarization

approach for SR tasks without sacrificing much reconstruc-

tion accuracy. To achieve this, we binarize the convolu-

tional filters in only residual blocks, and adopt a learnable

weight for each binary filter. We evaluate this idea on sev-

eral state-of-the-art DCNN-based architectures, and show

that binarized SR networks achieve comparable qualitative

and quantitative results as their real-weight counterparts.

Moreover, the proposed binarized strategy could help re-

duce model size by 80% when applying on SRResNet [18],

and could potentially speed up inference by 5×.

1. Introduction

The challenging task of estimating a high-resolution

(HR) image from its low-resolution (LR) counterpart is

referred to as super-resolution (SR). SR, particularly sin-

gle image SR, has received substantial attention within

the computer vision research community, and has been

widely used in applications ranging from HDTV, surveil-

lance imaging to medical imaging. The difficulty of SR is to
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reconstruct high-frequency details from the low-frequency

information in the input image. In other words, it is to revert

the non-revertible process of low-pass filter and downsam-

pling that produces LR images.

Recent literatures have witnessed promising progress of

SR using convolutional neural networks [6, 13]. How-

ever, inefficiency and large model size raise big issues

for practical application of deep neural networks, due to

over-parametrization. To address these issues, neural net-

work quantizations, e.g., using binary weights and oper-

ations [5, 23], are proposed for semantic-level tasks like

classification and recognition. Binarized values have huge

advantages from an efficiency perspective, since multiplica-

tions can be eliminated, and bit-wise operations can be used

to further reduce computational cost. Nevertheless, little ef-

fort of neural network quantization has been spent on image

enhancement tasks like SR, as it was assumed to sacrifice

the desired pixel-level accuracy for those tasks.

(a) (b) (c)
Figure 1. Example of binarized networks based on SRResNet [18],

with a factor of 4×. (a) Real-weight network; (b) Fully-binarized

network using binarization strategy [23]; (c) Our binarized net-

work.

In this work, we explore a network binarization approach

for SR methods. To our best knowledge, it is the first work

to explore neural network binarization for image SR task.

We show that simply binarizing the whole SR network does

not generate satisfactory results. Therefore, we propose a

binarization strategy for SR task, by (1) applying binariza-
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tion only to residual blocks, and (2) using learnable weights

to binarize convolutional filters.

We apply this strategy to a few state-of-the-art SR neural

networks to verify its effectiveness. The experimental re-

sults show that the binarized SR network perform similarly

to the real-weight network without sacrificing much image

quality, but with significant model size and computational

load saving, making it possible to apply state-of-the-art SR

algorithms in mobile device applications, video streaming,

and Internet-of-Things (IoT) edge-device processing.

2. Related Work

Single-image super-resolution has achieved significant

progress in recent years. Pioneer methods on single-image

super-resolution have been well discussed in the survey

work [21, 29]. In this work we focus our discussion on the

most updated SR paradigms based on convolutional neural

network (CNN), and the progress in neural network quanti-

zation.

CNN-based super resolution. As one of the first pro-

posed SR method based on convolutional structure, SR-

CNN [6] trained an end-to-end network using the bicubic

upsampling of the LR image as the input. The VDSR net-

work [13] demonstrates significant improvement over SR-

CNN by increasing the network depth. To facilitate train-

ing a deeper model with a fast convergence speed, VDSR

aims on predicting the residuals rather than the actual pixel

values. In [14], the authors provide a deep convolutional

structure that allows a recursive forward propagation of a

certain layer, giving decent performance and reducing the

number of parameters. ESPCN [24] manages to improve

the network’s performance in both accuracy and speed by

directly learning the upsampling filter, and using the LR

images as input instead of their bicubic upsampled images.

The work [7] adopts a similar idea as ESPCN but with more

layers and fewer parameters. DCSCN [28] proposes a shal-

lower CNN than VDSR, by introducing skip-connections at

different levels; directly using LR image as the input, DC-

SCN investigates and divides the network’s function to fea-

ture extraction module and reconstruction module, giving

one of the highest super-resolution performance. Johnson

et al. [12] investigates a perceptual loss related to human

perception of high-resolution image, and incorporates the

loss with the difference between high-level features from

a pretrained VGG network of the predicted and target im-

ages. SRGAN [18] introduces generative adversarial net-

work (GAN) [8, 22] into SR technique, with a combined

content loss and adversarial loss for the perceptual loss

function; its generator model, also described as SRResNet,

adopts a deep residual framework for feature extraction and

uses subpixel-convolutional layer for upscaling reconstruc-

tion. EDSR [20] moves beyond SRResNet by simplifying

the the residual blocks and proposes a multi-scale SR sys-

tems, achieving even higher performances. LapSRN [16]

adopts a Laplacian pyramid to predict HR image; given a

fixed upscaling factor for a single level, multiple levels of

pyramid could be stacked for larger upscaling factor, and

the convolutional filters are shared between different pyra-

mid levels, significantly reducing the number of parameters.

Neural network with low-precision weights. A great

amount of efforts have been made to the speed-up and com-

pression on CNNs during training, feed-forward inference

or both stages. Among existing methods, the attempt to

restrict CNNs weights into low-precision versions (like bi-

nary value or bit-quantized value) attracts great attention

from researchers and developers. Soudry et al. [25] pro-

pose expectation back-propagation (EBP) to estimate the

posterior distribution of the weights of the network, which

are constrained to +1 and −1 during feed-forward infer-

ence in a probabilistic way. BinaryConnect [4] extends the

idea of EBP, to binarize network weights during training

phase directly and updating the real-value weights during

the backward pass based on the gradients of the binarized

weights. BinaryConnect achieves state-of-the-art classifi-

cation performance for small datasets such as MNIST [17]

and CIFAR-10 [15], showing the possibility that binarized

CNNs can have a performance extremely close to real-value

network. BinaryNet [5] moves beyond BinaryConnect,

whose weights and activations are both binarized. XNOR-

net [23] extends further beyond BinaryNet and BinaryCon-

nect, by incorporating binarized convolution operation and

binarized input during feed-forward inference, showing a

significant reduction of memory usage and huge boost of

computation speed, despite at certain level compromise of

the accuracy. Later on, other than binarized networks, a

series of efforts have been invested to train CNNs with

low-precision weights, low-precision activations and even

low-precision gradients, including but not limited to ternary

weight network (TWN) [19], DoReFa-Net [32], quantized

neural network (QNN) [11], and incremental network quan-

tization (INQ) [31], but we are focusing on binary net-

work in this paper. CNNs with low-precision weights have

been shown to exhibit extremely closed performance as

their real-value counterparts, on semantic-level tasks such

as image classification [4] (like TWN, XNOR, QNN, INQ,

etc.); however, it is widely presumed that CNNs with low-

precision weights would fail on pixel-level tasks such as im-

age reconstruction and super resolution, due to the reduced

model complexity.

In this work, we are proposing an efficient network bi-

narization strategy for image super-resolution tasks, based

on BinaryNet and XnorNet [5, 23], to speed up inference

and simultaneously achieve similar image quality as the

full-precision network. To verify the effectiveness of the

proposed strategy for general CNN-based SR methods, we



evaluate two state-of-the-art SR models SRGAN [18] and

LapSRN [16], and compare them with their real-value coun-

terparts, on three benchmark metrics the peak-signal-to-

noise-ratio (PSNR), structure similarity (SSIM) [27], and

information fidelity criterion (IFC) calculated on y-channel

to evaluate the performance of super resolution.

3. SR Network Binarization

The original binary neural networks [5, 23] are designed

to binarize the parameters of convolution layers, and are

shown to be effective for semantic-level tasks, without sac-

rificing much accuracy. Unlike semantic-level tasks, SR

is an image reconstruction task with a focus on the pixel-

level accuracy. And simply applying the binarization strat-

egy [5, 23] to the SR networks does not work well. Fig-

ure 1(b) shows an example from a fully binarized (bina-

rize all the parameters of convolution layers) SRResNet net-

work [18] with a factor of 4×, using the strategy [23]. The

results show that the fully binarized network does not gen-

erate satisfying results. In fact, this network does not con-

verge well, due to the limited network capacity and the vari-

ation of the pixel-level reconstruction. Therefore, network

binarization needs to be specially designed for the SR task,

as well as other image reconstruction tasks.

3.1. Motivation

For a neural network, deeper network structure usually

means more representation capacity and therefore better

performance, but higher difficulty of convergence. Residual

blocks [9] are designed to facilitate the training process of

very deep neural networks by a skip connection of the origi-

nal feature. Recent SR algorithms utilize residual structures

in their deep neural networks to effectively forward color

and structure information from the input image, and achieve

decent results.

The residual structure has some similarities to the multi-

scale image pyramids that are commonly used for image

reconstruction tasks [1, 3]. Image pyramids represent an

image with a series of band-pass filtered images. The base

layer contains the low-frequency information and the gra-

dient layers capture sub-band information and most high-

frequency details. Similarly, SR tasks can be considered as

reconstructing high-frequency information based on a low-

pass filtered image (LR image). And the recent residual-

structure-based SR networks function in a similar way as

the image-pyramid reconstruction process, where the resid-

ual structure and the skip connection in neural network re-

semble to the gradient layers and the upsampled images

from coarser scales in image pyramid.

In image pyramid, the gradient layers are known to hold

good sparsity property. We represent images using the

Laplacian pyramid [3], and collect the statistics of the inten-

sity values in the gradient layers (See Figure 2). As shown

Figure 2. Statistics on histograms of the gradient layers in the

Laplacian pyramid. The range of the image pixel intensity is [0, 1].

in the figure, value distribution is highly centralized around

0 and most of the pixels (≈ 40%) has a value of 0. Those

facts indicate that the gradient layer of a Laplacian pyra-

mid can be approximated by a layer with a small number of

values, and therefore motivate us to represent it via binary

filters with scaling factors in a neural network.

3.2. Binarization Method

Binary weights, from its quantization property in na-

ture, would cause information loss comparing to real-value

weights. Since SR tasks aim at enhancing image details

from its original image, binary weights should be carefully

used in the network. Based on the analysis in Section 3.1,

we propose a SR network binarization strategy that bina-

rizes the residual blocks and couples each binary filter with

a learnable weight in the network. The convolutional filters

outside the residual blocks will be kept in real-values, and

the propagation and parameter update steps are the same as

usual.

Algorithm 1 Binary Forward Propagation

for l = 1 to L layer do

for k = 1 to K output channel do

αlk ← UpdateAlpha() //using (4)

Blk ← sign(Wlk)
end for

end for

ISR ← BinaryForward(ILR, αB)

To binarize residual blocks in the network, we first define

our binarization function as in [5] to transform real values

to +1 or −1:

xb = sign(x)

{

+1, if x > 0,
−1, otherwise,

(1)

where x is the real-value variable, and xb is the corre-

sponding binarized weight. For the practical applications,

booleans can be used to represent the binarized weights. In

the binarized network, a scaling factor α is assigned to each



Figure 3. System architecture of the generator network in SRResNet/SRGAN [18] that transforms the low-resolution input image ILR to

high-resolution image ISR. The red boxes indicate the binarized layers in our network. k is the filter size, n denotes the number of filters

and s represents the stride number in convolution layer.

Figure 4. System architecture of the Laplacian Pyramid network [16] for SR. The red boxes indicate binarized layers in our network.

binarized filter, so a real-value weight filter W in the con-

volutional neural network is replaced with α ·sign(W ). The

factor α is a vector of the same length as the output channel

size of the corresponding convolutional layer.

At each iteration of the training phase, it takes LR im-

age patches ILR, corresponding HR image patches IHR,

the cost function C(IHR, ISR) and the learning rate η as

inputs, and outputs updated weights W t. For the forward

propagation, we first update the factor α and binarize the

real-value weight filter B = sign(W ), then αB is used for

the following computation. Algorithm 1 demonstrates the

procedure of forward propagation, and we will describe α

updating strategy in Section 3.3. For the backward propa-

gation, the gradients of the weights are kept in real values.

Similar to [23], we take derivatives of l-th layer cost Cl with

respect to the binarized weight Blk as
∂Cl

∂Blk

. The gradients

are clipped to range (−5, 5) for stability, and are used to

update the real weight by
1

αlk

∂Cl

∂Blk

. The real-value param-

eters and binary parameters are then updated by accumulat-

ing gradients as shown in Algorithm 3.

Algorithm 2 Binary Backward Propagation

for l = L to 1 layer do

for k = 1 to K output channel do

gWlk
← Clip(

1

αlk

∂Cl

∂Blk

,−5, 5)

Wlk ← UpdateBinaryParameter(Wlk, η, gWlk
)

end for

end for

3.3. Updating Scaling Factors for Binary Filters

In [23], the scaling vector α is determined in a determin-

istic way, by solving the following optimization:

J(B,α) = ||W − αB||2, (2)

where the binary filter B = sign(W ) is obtained by the bi-

narization function. The optimal value of the scaling factor

α∗ is calculated as:

α∗ =
1

n
||W ||l1. (3)



Figure 5. System architecture of the discriminator network in SRGAN [18] that is trained to distinguish super-resolution results ISR from

high-resolution image IHR. k is the filter size, n denotes the number of filters and s represents the stride number in convolution layer.

However, this α∗ is optimized for approximating W with

αB, instead of optimized for closing the gap between the

prediction and ground truth in pixel-level.

Algorithm 3 Accumulating Parameter Gradients

for t = 0 to T do

θt+1 ← UpdateNonBinaryParameter(θt, ηt, gθ)
W t+1 ← UpdateBinaryParameter(W t, ηt, gW )
ηt+1 ← UpdateLearningRate(ηt)

end for

To better approximate the gradient information, we pro-

pose to train α as a parameter in the network,

αt

c ← UpdateAlpha(αt−1
c , η, gαc

), (4)

instead of

αc ← avg(abs|Wc|1). (5)

Experimental comparison between these two methods will

be provided in Section 4.

4. Experiment

To verify the proposed binarization strategy for SR tasks,

we evaluate this strategy on several state-of-the-art SR ar-

chitectures: SRResNet/SRGAN [18] and LapSRN [16]. We

evaluate the methods using NTIRE 2017 dataset [26], which

includes 800 HR training images and 100 HR validation im-

ages as our training and test datasets. To train/test 2× and

4× models, the corresponding LR images are generated us-

ing the bicubic downsampling, with a scale factor of 2× and

4×, respectively.

4.1. Training Details

We test our binarization strategy on three different mod-

els, SRResNet, SRGAN, and LapSRN, all of which employ

residual blocks in their networks. We will describe the mod-

els and training details for each method below. For all the

three models, we set larger learning rates for the binary ver-

sions, with a factor of 3×-4× comparing to those for the

real-value network. The reason is that it requires larger mo-

mentum to change the binary weights/ switch signs. Within

this learning-rate setting, the binary network converges at a

similar pace as the real-value network. We show the learn-

ing curves for both real-value networks and their binary

weight counterparts in the supplementary material. We use

a batch size of 16 for all the training. For data augmen-

tation, we adopt the following approaches: 1) randomly

cropping patches; 2) randomly flipping horizontally or ver-

tically, rotation and noise; 3) randomly rotating images by

{0, 90, 180, 270} degrees; 4) adding Gaussian noise to HR

training patches.

SRResNet. We provide the binarized SRResNet structure

in Figure 3 and show the binarized layers using red boxes.

Basically, we binarize all the convolutional layers in the

residual blocks, using the algorithms 1, 2 and 3. We train

real-weight and binary-weight SRResNets for 500 epochs,

with each epoch containing 50 iterations. We use 1× 10−4

and 3× 10−4 respectively, as our initial learning rate, and a

decay of 0.9 in every 20 epochs.

SRGAN. We apply the same binarization method used for

SRResNet to the generator of SRGAN. We keep the dis-

criminator in real weights, as the purpose of binarization

is to improve inference performance in terms of speed and

model storage size and the discriminator does not affect in-

ference performance. We pretrain real-weight and binary-

weight generators of SRGAN for 100 epochs with learn-

ing rates of 1 × 10−4 and 3 × 10−4 respectively. Then

we jointly train generator and discriminator for 500 epochs

with a learning rate of 1× 10−4 as our initial learning rate,

and a decay of 0.9 in every 20 epochs.

LapSRN. The Laplacian Pyramid network proposed by Lai

et al. [16] consists of D residual blocks in the Feature Ex-

traction Branch. We binarized all the weights of convo-

lutional layers in residual blocks, as shown in Figure 4.

We train real-weight and binary-weight LapSRNs for 300
epochs, with each epoch containing 800 iterations. We use

3 × 10−5 and 1 × 10−4 respectively, as the initial learning

rates, and a decay of 0.8 in every 30 epochs.

4.2. Evaluation Results

We evaluate our models on three widely used benchmark

datasets Set5 [2], Set14 [30], and Urban100 [10]. To eval-



Ground-truth Bicubic Real-weight LapSRN Binary-weight LapSRN

Real-weight SRResNet Binary-weight SRResNet Real-weight SRGAN Binary-weight SRGAN
Figure 6. Comparisons between real-weight networks and their binarized versions with an upsampling factor of 2.

Ground-truth Bicubic Real-weight LapSRN Binary-weight LapSRN

Real-weight SRResNet Binary-weight SRResNet Real-weight SRGAN Binary-weight SRGAN
Figure 7. Comparisons between real-weight networks and their binarized versions with an upsampling factor of 4.



Algorithm Scale Set5 Set14 Urban100

PSNR/SSIM/IFC PSNR/SSIM/IFC PSNR/SSIM/IFC

Bicubic 4 28.43 / 0.811 / 2.337 25.90 / 0.704 / 2.246 23.15 / 0.660 / 2.386

SRResNet [18] 4 31.10 / 0.875 / 3.091 27.59 / 0.764 / 2.743 25.09 / 0.750 / 3.040

SRResNet Binary (ours) 4 30.34 / 0.864 / 3.052 27.16 / 0.756 / 2.749 24.48 / 0.728 / 2.913

SRGAN [18] 4 30.43 / 0.855 / 2.862 27.00 / 0.749 / 2.493 24.75 / 0.734 / 2.865

SRGAN Binary (ours) 4 30.13 / 0.853 / 2.547 26.98 / 0.746 / 2.336 24.31 / 0.716 / 2.499

LapSRN (4x) [16] 4 30.28 / 0.858 / 2.851 27.15 / 0.748 / 2.566 24.37 / 0.722 / 2.755

LapSRN Binary (4x) (ours) 4 30.21 / 0.857 / 2.865 27.13 / 0.751 / 2.616 24.31 / 0.720 / 2.735

Bicubic 2 33.69 / 0.931 / 6.166 30.25 / 0.870 / 6.126 26.89 / 0.841 / 6.319

SRResNet [18] 2 36.36 / 0.952 / 6.714 32.16 / 0.904 / 6.577 29.96 / 0.901 / 7.016

SRResNet Binary (ours) 2 35.66 / 0.946 / 5.936 31.56 / 0.897 / 5.893 28.76 / 0.882 / 6.112

SRGAN [18] 2 35.31 / 0.941 / 6.332 31.81 / 0.901 / 6.280 29.63 / 0.897 / 6.646

SRGAN Binary (ours) 2 34.91 / 0.938 / 5.840 30.92 / 0.892 / 6.354 28.55 / 0.878 / 6.490
Table 1. Quantitative evaluation of state-of-the-art SR algorithms and their binarized versions.

uate our method, we provide comparisons of the SR im-

ages from the following models and their corresponding bi-

narized versions: SRResNet [18], SRGAN [18], and Lap-

SRN [16]. The results of the bicubic upsampling method

is provided as a baseline. More experiment results can be

found in the supplementary material.

As shown in Figure 6 and 7, the binarized networks using

the proposed method perform similarly to their real-weight

counterparts. Although achieving comparable results, the

binarized networks generate results with slightly more alias-

ing artifacts compared with their real-weight versions. That

is, the binarization strategy still compromises performance

in terms of high-frequency details, due to the limited net-

work capacity.

Model (4x) deterministic learnable

SRResNet 27.06/0.754/2.712 27.16/0.756/2.749

LapSRN 27.02/0.747/2.604 27.13/0.751/2.616

Table 2. Comparison on networks using deterministic and learn-

able scaling factors. The results are evaluated on SRResNet [18]

and LapSRN [16] structures in PSNR/SSIM/IFC.

For quantitative evaluation, we calculate PSNR, SSIM

and IFC metrics [27] between generated images and the

ground truths, and all the reported values in Table 1 are cal-

culated on the Y-channel of the YUV color space. Both the

real-weight and the binary-weight networks achieve better

results than the bicubic baseline in terms of the metrics. In

most of the cases, the binary-weight networks perform sim-

ilarly with their real-weight counterparts, with a difference

less than 0.5 in PSNR or 0.005 in SSIM. And the margin

becomes even smaller for the upsampling factor of 4.

# of Res-Blocks PSNR SSIM IFC

8 26.74 0.738 2.136

16 27.16 0.756 2.749

24 27.19 0.754 2.774

Table 3. Performance of binarized SRRestNet (4x) with 8, 16 and

24 residual blocks on Set14 [30] dataset.

4.3. Model Analysis

To verify the effectiveness of the proposed learnable

scaling factor for binary filters, we conduct experimental

comparisons between networks using the learnable scaling

factors and the deterministic ones in Table 2. In general,

using learnable scaling factors has faster convergence and

achieve better results comparing to the deterministic ones.

The binarized networks reduce the computational load

and enable efficient inference. As deeper networks have

better representation abilities and usually generate better re-

sults, we also evaluate the binarized networks in terms of the

network depth. We train SRResNet-Binary (4x) with 8, 16
and 24 residual blocks, and show the quantitative results in

Table 3. We note that we use 16 residual blocks for the SR-

ResNet in all other experiments, same as in [18]. From the

results, we can see that deeper networks perform better than

shallower ones in general. However, marginal improvement

is achieved after using more residual blocks over 16, and it

suggests that binarized layers in 16 residual blocks are suf-

ficient to represent the high-frequency details of images.

4.4. Model Size and Computational Complexity

In Table 4, we list the number of parameters and model

size of the networks that we test. We use 32-/64-bit floating

point precision to represents real parameters, and the pa-

rameter binarization would reduce it to a single bit, which



Algorithm # of Res-Blocks / # of Binary Params # of Real Params Model Size

Res-Conv-Layer Binary/Real Network Binary/Real Network Binary/Real Network

SRResNet (2x) 16 / 32 1,179,648 / 0 197,059 / 1,374,659 0.928 / 5.499MB

SRResNet (4x) 8 / 16 589,824 / 0 339,651 / 928,451 1.428 / 3.714MB

SRResNet (4x) 16 / 32 1,179,648 / 0 344,771 / 1,522,371 1.518 / 6.089MB

SRResNet (4x) 24 / 48 1,769,472 / 0 349,801 / 2,116,201 1.608 / 8.465MB

LapSRN (4x) 10 / 10 368,640 / 0 152,656 / 520,656 1.494 / 2.083MB
Table 4. Number of parameters and model size of binary and real-weight networks (32-bit floating point). The parameters of binary

networks include binary parameters of filters and float parameters assigned to filters.

Vote Percentage 2× 4×
SRResNet 0.50 0.45

SRResNet-Bin 0.50 0.55

SRGAN 0.60 0.62

SRGAN-Bin 0.40 0.38

LapSRN 0.51 0.55

LapSRN-Bin 0.49 0.45

Table 5. User study for 2× and 4× SR results from binary and

real-weight networks. The test images are randomly selected from

Set5 [2] and Set14 [30].

is a factor of 32 or 64 in terms of memory used for model

storage. Even though this binarization strategy only applies

to residual blocks in the network, it still yields a 50%−80%
model compression depending on the network structure.

Higher portion of residual components would yield higher

compression rate. This also provides design guideline for

applications with memory limitation, like on-device pro-

cessing in IoT edge devices and mobile platforms.

Another benefit of network binarization is to reduce

computational complexity during inference, as binarized fil-

ter weights enables bit operations instead of float multi-

plication (flops) when computing convolution. For a sin-

gle convolution layer with input tensor size (W,H,C) and

convolutional filters of size (K,K,C, F ), where W,H,C

represent the width, height, and number of input channels

of the intermediate state, and F represent the number of

output channels; there are in total O(WHCFK2) multi-

plication floating-operations (flops), which will be replaced

with bit operations after binarization. Modern computers

can compute 4 flops or 512 bit operations per clock cycle,

and the operation of addition is ∼ 3× faster than that of

multiplication, For a SRResNet 4x model with 16 residual

blocks on an image of size 1200 × 800 × 3, there are in

total ∼ 1014 flops, with about the same number of flops of

multiplication and addition. In this model, more than 75%
of multiplication flops are replaced with bit operations af-

ter binarization. Thus, there is a potential speedup of ∼ 2×
for this SRResNet(4x) model. Applying same calculation to

SRResNet(2x) model results in ∼ 5× computational gain.

4.5. User Study

To better evaluate the visual quality of the results from

real-weight networks and their binarized versions, we con-

ducted a user study on the SR results. We develop a web-

based system to display and collect study results. The sys-

tem provides two side-by-side images at a time, one from

the real-weight network with scaling factor 2× or 4×, and

another from its binary counterpart. Each pair of images is

randomly selected and placed from the dataset Set5 [2] and

Set14 [30]. We have collected results of their preferred im-

ages from 24 users, and each user is asked to rate 20 pairs

of images. The results are shown in Table 5: our binarized

SR models perform similarly as real-weight SR models.

5. Limitation and Future Work

The proposed binarization strategy are designed for SR

tasks, but it is possible to apply this strategy to other pixel-

level tasks like denoising and deblurring. However, specific

network designs are needed when applying binarization to

other tasks, e.g., special handling may be needed for the

kernel estimation process in deblurring. And how to apply

the binarization strategy to other pixel-level image recon-

struction tasks could be a good future research direction.

Although we are able to replace the float multiplications

with bit-wise operation when computing convolution, there

are still rooms of efficiency improvement using binary net-

work. How to binarize input images for further bit-wise

computation remains a difficult and open question.

6. Conclusions

In this paper, we introduce a network binarization strat-

egy for super resolution, without losing much per-pixel ac-

curacy. Inspired by the structure and statistics on the gra-

dient histogram of the Laplacian pyramid, we argue that it

is appropriate to pose binarization components in residual

architectures, and assign a learnable parameter to each bi-

nary convolutional filter. Qualitative and quantitative exper-

iments have shown that residual-based SR networks with

binarized components can generate comparable results to

their real-weight counterparts, and obtain significant im-

provement in model size and computational complexity.
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