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Abstract

While deep neural networks extract rich features from

the input data, the current trade-off between depth and

computational cost makes it difficult to adopt deep neu-

ral networks for many industrial applications, especially

when computing power is limited. Here, we are inspired

by the idea that, while deeper embeddings are needed to

discriminate difficult samples (i.e., fine-grained discrimina-

tion), a large number of samples can be well discriminated

via much shallower embeddings (i.e., coarse-grained dis-

crimination). In this study, we introduce the simple yet ef-

fective concept of decision gates (d-gate), modules trained

to decide whether a sample needs to be projected into a

deeper embedding or if an early prediction can be made at

the d-gate, thus enabling the computation of dynamic repre-

sentations at different depths. The proposed d-gate modules

can be integrated with any deep neural network and reduces

the average computational cost of the deep neural networks

while maintaining modeling accuracy. The proposed d-gate

framework is examined via different network architectures

and datasets, with experimental results showing that lever-

aging the proposed d-gate modules led to a∼43% speed-up

and 44% FLOPs reduction on ResNet-101 and 55% speed-

up and 39% FLOPs reduction on DenseNet-201 trained on

the CIFAR10 dataset with only∼2% drop in accuracy. Fur-

thermore, experiments where d-gate modules are integrated

into ResNet-101 trained on the ImageNet dataset demon-

strate that it is possible to reduce the computational cost of

the network by 1.5 GFLOPs without any drop in the model-

ing accuracy.

1. Introduction
Advances in deep learning have led to tremendous suc-

cess in a wide variety of applications in visual and audio

perception such as image classification [29, 13, 15], object

detection [12, 23, 21], and speech recognition [1]. What’s

∗The work has been done while as a visiting scholar at University of

Waterloo.

interesting about deep convolutional neural networks is that

it brings together the notions of feature extraction, feature

projection, and prediction within an end-to-end learning

framework to produce more coherent and more discrimi-

native predictors.

The excitement around deep learning and recent find-

ings that increasing network depth [27] typically results in

greater modeling capacity has led researchers to focus on

designing deeper and more complex deep neural networks

to improve modeling accuracy.

Although having deeper architectures was demonstrated

to provide better modeling performances, a number of chal-

lenges arise as we increase network depth. Besides becom-

ing more prone to overfitting and becoming more difficult to

train to convergence, deeper neural networks also result in

a significant increase in not only the number of parameters

in the network, but also dramatically increases the compu-

tational cost of network inference.

A number of strategies have been proposed to tackle the

various challenges associated with deeper neural network

architectures. For example, Szegedy et al. [28, 29] intro-

duced the concept of inception modules which helps to in-

crease the depth of deep neural networks while maintaining

the number of parameters. Specifically, inception modules

consist of several convolutional layers with different recep-

tive field sizes fed by the same inputs. This architecture

helps the model to extract better features with fewer num-

ber of computations. While this new module mitigates the

computational complexity to some extent and extends the

possibility of having deeper networks with fewer parame-

ters, deeper network architectures still suffer from vanish-

ing gradient issues and thus a degradation in learning.

He et al. [13] took a different strategy to address the

problem and tackled the former issue of degradation in

learning deeper neural networks (e.g., vanishing gradient)

by introducing the concept of residual learning, where

learning is based on the residual mapping rather than di-

rectly on the unreferenced mapping. This novel idea

brought forth the possibility of much larger and deeper net-
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works by easing the training of such networks.

Following that, Xie et al. [32] incorporated the idea be-

hind inception modules (i.e., split-transform-merge strat-

egy) within a residual block structure to provide better sub-

space modeling while resolving the degradation problem

at the same time, resulting in a ResNext architecture that

achieved improved modeling accuracy. Several other ar-

chitectures have been proposed based on these observa-

tions to provide better modeling accuracy. For example,

the DenseNet [15] architecture connects each layer to every

other layer in a feed-forward fashion. In this network archi-

tecture, the feature maps of all preceding layers are used as

inputs to the next layer, thus alleviating the vanishing gra-

dient issue. Zoph et al. [33] devised an evolutionary algo-

rithm to search through a huge set of possible computational

blocks and found the most optimized block architecture to

design a every deep neural network with. The parameters of

the computational block are trained during the search proce-

dure and the whole network are fine-tuned with the training

data as well.

The computational cost associated with deep neural net-

works remain a significant bottleneck for deployment in

many industrial applications. Although some applications

can leverage high-performance computing units such as

GPUs to enable real-time operation, this comes at a very

high financial cost in the form of cloud computing costs or

on-premise equipment and power costs. Furthermore, there

are a large number of industrial applications where access

to high-performance computing devices is simply not possi-

ble. As such, mechanisms for reducing computational cost

of deep neural networks while retaining modeling accuracy

is highly desired.

To tackle the issue of computational cost, a wide variety

of methods have been proposed. One common strategy is

precision reduction [16], where the data representation of

a network is reduced from the typical 32-bit floating point

precision to low-bit fixed-point or integer precision. This

technique is suitable mainly for the specialized hardware

with the faster lower precision arithmetic calculation. An-

other common strategy is model compression [11], which

involves leveraging traditional data compression methods

such as weight thresholding, hashing, and Huffman cod-

ing. Such compression methods are mostly beneficial in

storage reduction unless the hardware used supports accel-

erated sparse multiplications. Other strategies include the

use of teacher-student strategies [14], where a larger teacher

network is used to train a smaller student network, as well

as the use of evolutionary algorithms [24, 25] for evolving

the architecture of deep neural networks over generations to

be more compact.

More recently, conditional computation [3, 6, 20, 31]

and early prediction [30] methods have been proposed to

tackle this issue, which involve the dynamic execution of

different modules within a network. Conditional compu-

tation methods have largely been motivated by the idea that

residual networks can be considered as an ensemble of shal-

lower networks. As such, these methods take advantage

of skip connections to determine which residual modules

are necessary to be executed, with most leveraging rein-

forcement learning. For example, a controller is typically

trained within a reinforcement framework where the con-

troller plays the role of deciding which network block needs

to be executed based the input image. The controller is usu-

ally a shallower network.

Early prediction techniques, on the other hand, divide the

network into several partitions, with fully-connected layers

(i.e., classification layers) integrated into the network at the

end of each partition. In previous work [30], the new net-

work is then trained based a multi-loss function with re-

spect to all of the integrated fully-connected layers. After

the network and all of the integrated fully-connected layers

are trained, a threshold is calculated for each of the inte-

grated fully-connected layer classifiers based on the outputs

of the Softmax layer to determine whether the sample can

be predicted in the current fully-connected layer or requires

prediction after the next partition. A particular limitation to

past early prediction approaches is that the fully-connected

layers are trained based on a cross-entropy loss, which has

been shown to produce predictions that may not be as reli-

able as desired1. Furthermore, not only are such previous

techniques quite difficult to set up, they also require the net-

work to be trained from scratch with these techniques inte-

grated for strong performance.

In this study, we explore the idea of early prediction but

instead draw inspiration from the soft-margin support vec-

tor [4] theory for decision-making. Specifically, we intro-

duce the concept of decision gates (d-gate), modules that

are trained via hinge loss to decide whether a sample needs

to be projected into a deeper embedding or if an early pre-

diction can be made at the d-gate, thus enabling the condi-

tional computation of dynamic representations at different

depths. The proposed d-gate modules can be integrated with

any deep neural network without the need to train networks

from scratch, and thus reduces the average computational

complexity of the deep neural networks while maintaining

modeling accuracy.

2. Methodology

Deeper neural network architectures have been demon-

strated to provide a better subspace embedding of data when

compared to shallower architectures, resulting in a better

discrimination of data in the new space and better model-

ing accuracy. Although it has been demonstrated that go-

ing to deeper layers provides better representational features

(i.e., more discriminative feature) for the data, particularly

for samples with high similarity to each other that would

1We will discuss more about this issue in Section 2.



require fine-grained discrimination, the hypothesis here is

that a huge set of samples in the data space do not need

a very detailed and descriptive feature representation to be

discriminated from other samples (i.e., coarse-grained dis-

crimination). As such, these samples can be predicted ear-

lier at shallower embeddings, which would lead to faster

processing time.

Interestingly, this hypothesis has been explored in re-

lation to the human brain, where the processing time of

an individual when discriminating between objects that are

highly distinctive based on coarse-grained visual charac-

teristics is much faster than when discriminating between

more difficult objects where the differentiating characteris-

tics are more subtle and fine-grained [22, 17]. For example,

Macé et al. [22] studied the human processing speed when

categorizing natural scenes as containing either an animal

(superordinate level), or a specific animal (bird or dog, ba-

sic level). What they found was that the human visual sys-

tem can very rapidly recognize superordinate categories of

objects by accessing a coarse/abstract visual representation,

while the processing time was much slower for discriminat-

ing between objects at the basic level since additional time

is needed to visually analyze more detailed representations

of the objects.

To better motivate the hypothesis, Figure 1 illustrates a

simple experiment where we investigate the type of clas-

sification results that can be produced using shallow em-

beddings. In particular, the output features from the first

three residual blocks of ResNet-101 [13] (which constitutes

a shallow embedding) are utilized to train a linear classi-

fier for the CIFAR10 dataset, such that the correctly classi-

fied samples as well as misclassified samples are identified

and analyzed qualitatively. It can be observed that the sam-

ples that were correctly classified have highly discrimina-

tive characteristics that humans can recognize very rapidly.

On the other hand, the samples that were incorrectly classi-

fied have very subtle characteristics that even humans have

a hard time picking up and require longer processing for hu-

mans to recognize. The interesting observation here is that

the misclassified images are assigned a class label which

can be considered in the same superordinate category as

their ground truth class labels, which reflects the obser-

vations made in the aforementioned study with regards to

superordinate-level vs. basic-level discrimination [22]. For

example, the misclassified cat images are classified as frog,

dog, or bird (which including cats are all types of animals)

while the misclassified truck images are categorized as ship,

car, or plane (which including trucks are all types of vehi-

cles).

Inspired by the result in Figure 1, we make a hypothe-

sis that while deeper subspace embeddings are necessary to

discriminate samples that lie close to the decision bound-

aries in the lower embedding space, their effect on samples

that already lie far from decision boundaries in the shal-
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Figure 1. Example classification results using shallow embed-

dings, with the first row illustrating correctly classified samples

and the bottom row illustrating incorrectly classified samples. It

can be observed that the samples that were correctly classified

have highly discriminative characteristics that humans can recog-

nize very rapidly. On the other hand, the samples that were incor-

rectly classified have very subtle characteristics that even humans

have a hard time picking up and require longer processing for hu-

mans to recognize.

lower embedding space may be insignificant and unneces-

sary. Therefore, an effective yet efficient mechanism for

determining the distance between samples and the decision

boundaries in the lower layers of the network would make it

possible to perform early predictions on these samples with-

out projecting them into a deeper embedding space. Such

an approach would reduce the average computational cost

of prediction significantly.

2.1. SoftMargin Support Vector Theory

Despite the promise shown in early prediction mecha-

nisms [30], devising an efficient yet effective way to de-

termine whether a sample is a boundary sample is a very

challenging problem, especially in the conventional setup

applied to train a deep neural network. Although cross-

entropy loss with Softmax [10] is the most common ap-

proach to train deep neural networks, past research [19]

have argued that cross-entropy loss provides a small mar-

gin between the decision boundaries and the training data.

This issue associated with cross-entropy loss is exempli-

fied by the frequent observation that neural networks could

misclassify samples that are just slightly different from the

training data, and even minor modifications to a sample can

lead to a change in prediction. As such, this limitation also

makes it very difficult to determine whether a sample is an

boundary sample or not based on the output of Softmax

layer.

To address this limitation, we are instead motivated to

draw inspiration from soft-margin support vector [4] theory

for decision-making, where we aim to optimize with the no-

tion of maximizing the soft-margin of the separating hyper-

plane in scenarios where the data is not perfectly separa-

ble. More specifically, a training sample with a higher mar-

gin would receive less weight than an example with lower

margin. As a result, for the purposes of early prediction at

shallower embeddings, a soft-margin loss function can pro-

vide the best possible linear hyperplane to determine sam-

ples that are likely to be classified correctly at an earlier
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Figure 2. Example of hinge loss within a binary classification sce-

nario. Loosely speaking, optimization via a hinge loss positions

the samples in a way that samples that are harder to classify are

closer to the decision boundary while easier samples are further

from the decision boundary.

stage.

One effective way to maximize the classification margin

based on soft-margin support vector theory is the use of a

hinge loss. In the binary classification case, the hinge loss

is used to determine the decision boundary that maximizes

the margin between the samples of two classes:

ℓ(y) = max
(

0, 1− y · ŷ
)

s.t. ŷ = wTx− b (1)

where y is the ground truth label for the input data x and ŷ

is the predicted class label via the d-gate module with the

set of weights w and biases b. The set of weights w has

a dimensionality of f × c, where f denotes the number of

input features and c denotes the number of class labels in

the classification task. This formulation provides an impor-

tant benefit where the result of wTx − b is the distances of

the sample to the corresponding decision boundary of each

class label in the embedding space. As shown in Figure 2

the interesting property of this loss function would be the

harder samples to classify is closer to the decision bound-

ary compared to the easier samples which their distances

can be computed easily by (1). Hinge loss can be extended

to multi-class problems in an one-vs-all manner; it is not

differentiable but the sub-gradient is applied with respect to

w to optimize the loss function:

∂l

∂w
=

{

−y · x ŷ < 1

0 otherwise
(2)

when y and ŷ have the same sign and |ŷ| ≥ 1, the loss is

zero and, therefore, there is no gradient; otherwise the loss

increases linearly. Therefore, traditional gradient descent

can be adapted here, where a step is taken in the direction

of a vector selected from the function’s sub-gradient [26] to

find the optimized values.

Algorithm 1 Decision Gate

1: procedure D-GATE(x, t) ⊲ x: feature set, t: d-gate threshold

2: d̄← wTx− b ⊲ w: weights, b: bias

3: ⊲ d̄: the set of distances to the boundaries

4: if max(d̄) ≥ t then ⊲ distance to a boundary is larger than the threshold

5: cl← argmax(d̄)
6: return cl ⊲ cl: class label is predicted.

7: else

8: return NULL ⊲ The sample is projected to a deeper embedding space.

2.2. Decision Gates

Inspired by the aforementioned soft-margin support vec-

tor theory, we formulate the early prediction problem as a

risk minimization problem, and introduce a set of single-

layer feed-forward networks (which we will refer to as

decision gates (d-gate)) that are integrated directly into a

deep neural network (see Figure 3). The goal of d-gate

modules is to not only decide whether a sample requires

projection into a deep embedding space, but also minimize

the risk of early wrong classifications as well. Specifically,

we train d-gate modules that are integrated into a deep neu-

ral network via a hinge loss [7] that minimizes the risk of

early misclassification in lower embedding while deciding

whether the sample is a boundary sample. Training the d-

gate module in this way provides a linear classifier where

samples that do not require deeper embeddings for discrim-

ination are those with larger distances (i.e., with the positive

sign) from the decision boundary. It is important to note that

single layer nature of d-gate modules is designed to account

for efficiency.

The d-gate module is trained via the training data utilized

to train the deep neural network and the objective for each

d-gate module is to minimize the classification error on the

training data. Therefore, the loss function on the training

data can be formulated as:

L(Y, Ŷ ;w, b) =
1

n

n
∑

i=1

max
(

0, 1− yi(w
Txi − b)

)

− λ ‖w‖

where Y and Ŷ denote the set of ground truth labels and

predicted ones for all training data. What is most inter-

esting about L(Y, Ŷ ;w, b) is the fact that L(·) is a convex

function of w and b, and as such can be optimized via gra-

dient descent. As a result, the d-gate can be trained within a

mini-batch training framework, which makes it is very con-

venient for utilizing in the training of deep neural networks

with large datasets.

2.3. Early Prediction Framework

Given that the proposed d-gate module can calculate the

distance of each sample to the decision boundaries based on

wTx− b, where x is the feature set fed into the d-gate mod-

ule, it is possible to integrate a d-gate module at any place



Figure 3. Decision gates (d-gate) are integrated directly into deep neural networks, and are trained to predict whether decisions can be made at the d-gate

or require projecting into deep embeddings.

in the network to enable early prediction. As such, deciding

where to integrate d-gate modules becomes an important

consideration, as integrating multiple d-gate modules will

allow for early prediction at various embedding depths.

Fortunately, many of the popular network architectures

proposed in literature and in widespread use are composi-

tional architectures consisting of several well-formed com-

putational blocks. Therefore, one can take advantage of the

modularity of such network architectures to integrate d-gate

modules after each computational block in the network. For

example, as seen in Figure 3, the ResNet-101 architecture

is composed of four computational blocks (main blocks) of

3, 4, 23, and 3 residual blocks, respectively, and the d-gate

modules are applied after each of the first three computa-

tional blocks.

The calculated distances are compared to the decision

threshold t of each d-gate to determine whether early pre-

diction on the sample can be performed at the d-gate or have

the sample moved to a deeper stage of the deep neural net-

work to project into a better embedding space for improved

prediction. Algorithm 1 demonstrates how a d-gate mod-

ule determines whether the sample should be projected to

a deeper embedding space (i.e., returns NULL) or the class

label can be predicted correctly with a high probability at

the current d-gate module.

The samples that are far from the decision boundaries

result to output larger values in wTx − b; therefore, if the

d-gate distance for a sample satisfies the d-gate decision

threshold, the class corresponding to the largest distance is

assigned as the predicted class label for the sample in this

early prediction step.

3. Experimental Results & Discussion

We explore and investigate the efficacy of the proposed

d-gate modules using a series of experiments across differ-

ent network architectures for multiple datasets.

More specifically, the first experiment studies the effect

of leveraging hinge loss vs. cross entropy loss in the train-

ing of d-gate modules. Following that, the second experi-

ment studies the trade-offs between efficiency vs. effective-

ness when varying the decision thresholds of d-gate mod-

ules integrated into a ResNet-101 network architecture. The

third experiment studies the performance of integrating d-

gate modules (in terms of computational cost and model-

ing accuracy) into two well-known network architectures:

i) ResNet-101, and ii) DenseNet-201. Finally, the fourth

experiment studies in a statistical as well as qualitative fash-

ion the distribution of classes that is handled for early pre-

diction by the individual d-gate modules integrated within a

ResNet-101 architecture.

3.1. Datasets

To train different network architectures to analyze the

advantage of the proposed d-gate modules, two datasets

were utilized: i) CIFAR-10 [18], and ii) ImageNet [5]. The

CIFAR-10 dataset is comprised of 32 × 32 natural images

with 50000 training images and 10000 test images in 10

different class labels. The ImageNet dataset has 1000 class

labels of natural images. For this paper we use the 1.2M

training data of ILSVRC2012 challenge dataset for training

the network while the validation set comprised of 50000

images are used to test the networks.

Training Setup

Each d-gate module in the network is trained independently

based on all training data. This is because of the fact that

if the d-gate modules are trained together, then the d-gate

modules toward the end of the network might not be pro-

vided with enough training data as the samples are classi-

fied in the earlier d-gate modules in the network. It is worth

noting that the parameters of the convolutional layers are

frozen during the training of the d-gate modules, and only

a linear classifier is trained for calculating the distance of

sample to the decision boundary.

The reported decision threshold values used by the d-

gate modules in the paper were calculated via a cross-

validation approach, where the goal is to set the decision

thresholds such that the resulted network achieves a pre-

determined accuracy (with specific margins from the orig-

inal accuracy). Although the d-gate modules were trained

separately, the decision thresholds were selected in a se-

quential manner to incorporate the dependency among the

d-gate modules in the network. More specifically, the deci-

sion thresholds are tuned via an objective function such that

a specific modeling accuracy is achieved at the lowest aver-

age FLOPs computation based on the validation dataset.

3.2. Experiment 1: Cross Entropy Vs. Hinge Loss

Given that one of the main contributions and key differ-

entiating aspects of the proposed work is the introduction of

a hinge loss that minimizes the risk of early misclassifica-

tion in lower embeddings to train the d-gate modules within
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Figure 4. Accuracy vs. number of FLOPs: The performance

of the network with decision gates trained via the proposed hinge

loss is compared with decision gates trained via a conventional

cross-entropy approach. It can be observed that the decision gates

trained via the hinge loss provide greater computational efficiency

with higher accuracy than if cross-entropy loss is leveraged.

a deep neural network, we first explore the efficacy of such

an approach compared to the utilization of cross-entropy

loss for d-gate training. Although cross-entropy loss with

Softmax is the most commonly-used approach to training

deep neural networks, past studies [8, 19] have argued that

it results in a small margin between the decision boundaries

and the training data. Softmax trained via Cross Entropy

does not provide as much information about the distance

of the sample to the margin when compared to trained via

the Hinge loss approach. To demonstrate the effectiveness

of the hinge loss leveraged in the proposed d-gate mod-

ules compared to the cross-entropy loss, a comparative ex-

periment was conducted with adding two decision gates to

ResNet-101 trained on CIFAR-10 dataset. However, rather

than train using the proposed hinge loss, the decision gates

were instead trained via a cross-entropy loss. This enables

us to compare the effect of hinge loss vs. cross-entropy loss

on decision gate functionality.

Figure 4 demonstrates the accuracy vs. number of

FLOPs for the network where the decision gates were

trained based on the proposed hinge loss approach com-

pared to trained using a regular cross-entropy training pro-

cedure. It can be observed that, with the same number of

FLOPs in the network, the network where the decision gates

were trained based on the proposed hinge loss provides

much higher modeling accuracy compared to that trained

via cross-entropy loss. The accuracy gap increases expo-

nentially when the decision gates are configured such that

the network uses fewer number of FLOPs. What this il-

lustrates is the aforementioned issue with the use of cross-

entropy loss and decision boundaries. Therefore, it can be

clearly observed that leveraging the proposed hinge loss for

decisions gates yields significant performance benefits over

the use of a conventional cross-entropy loss.
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Figure 5. Effectiveness Vs. efficiency trade-off using d-gate mod-

ules: The plots show how changing the decision thresholds of the

d-gate modules can affect the efficiency of the network (a) and the

overall modeling accuracy of the network (b). Therefore, the in-

corporation of d-gate modules into network architectures result in

networks with dynamic representations that can achieve dynamic

trade-offs between speed and accuracy as needed.

3.3. Experiment 2: Efficiency Vs. Effectiveness

In the second experiment, we analyze the effect of incor-

porating d-gate modules on computational complexity and

accuracy of a deep neural network. More specifically, two

d-gate modules were added to a ResNet-101 architecture

trained on the CIFAR-10 dataset after the first and second

main blocks, as shown in Figure 3. The first main block in

ResNet-101 is comprised of three residual blocks, while the

second main block has four residual blocks. We then exam-

ined the trade-offs between efficiency and effectiveness of

the resulting network by varying the decision thresholds of

the d-gate modules. Figure 5-(a) illustrates the number of

FLOPs when the d-gate decision thresholds are varied. It

can be observed that, as expected, when the d-gate thresh-

olds are decreased the number of FLOPs decreases as well,

since more samples undergo early prediction at shallower

embeddings. Figure 5-(b) illustrates the modeling accuracy

when the d-gate decision thresholds are varied. It can be

seen that, when the d-gate decision thresholds are set to

(t1, t2) = (0, 0), the number of FLOPs is reduced by 6×
compared to the original network with a 9% accuracy reduc-

tion. However the modeling accuracy increases by specify-

ing higher threshold for the d-gate modules and it reaches

to the same level of the accuracy as the original network

when the decision thresholds exceed 2, while still providing

a ∼20% reduction in the number of FLOPs compared to

the original network. The plots in Figure 5 illustrates that,

by incorporating the proposed d-gate modules within a net-

work architecture, it is possible to construct networks with

dynamic representations that can achieve dynamic trade-

offs between speed and accuracy. This dynamic nature of

networks with integrated d-gate modules can be especially

important for applications where when the amount of com-

puting power varies from time to time due to factors such as

energy consumption.

3.4. Experiment 3: Dgate Performance

The efficacy of the proposed d-gate modules is examined

with two different network architectures (ResNet-101 [13]



Figure 6. Image examples from classes where early prediction is

performed at d-gate1 and d-gate2. It can be observed that d-gate1

and d-gate2 are very good at discriminating classes with very dis-

tinguishable characteristics than other classes, where shallower

embedding are sufficient to make good classification predictions.

and DenseNet201 [15]) on the CIFAR10 dataset in this sec-

tion. A key benefit of the proposed d-gate modules is that

it enables fine control over the trade-off between modeling

accuracy and computational cost by adjusting the d-gate de-

cision thresholds. As mentioned in the previous section,

by decreasing the d-gate decision thresholds, the number

of samples undergoing early prediction increases, thus re-

ducing the average computational cost of network predic-

tions greatly. For this experiment, we integrated three d-

gate modules in ResNet-101 (after the first and second main

blocks and third main blocks) and DenseNet-201 (after the

first, second and third dense blocks), and explore different

d-gate configurations. The networks are implemented in the

Pytorch framework and the prediction speeds are reported

based on single Nvidia Titan Xp GPU.

Table 1 shows the experimental results for ResNet-101

with 4 different d-gate configurations compared with the

original ResNet-101 accuracy and performance. It can

be observed from Table 1 that the computational cost of

ResNet network can be reduced by 1090 MFLOPs while

maintaining the same level of accuracy as to the original

ResNet-101 by integrating three d-gate modules with de-

cision thresholds of (t1, t2, t3) = (2.4, 2.4, 1.5) for the d-

gate modules which results to 22% speed up on the model

performance. The integration of d-gate modules can reduce

the computational cost of ResNet-101 network by 1.78×
(i.e., lower by 2.2 GFLOPs) with ∼1.7% drop in accu-

racy compared to the original ResNet-101 (with distance

thresholds (t1, t2, t3) = (1.0, 1.8, 1.5) in d-gate1, d-gate2,

d-gate3), resulting in a ∼43% speed-up on the GPU.

The experimental results for DenseNet-201 are shown

in Table 2. As seen, it is possible to reduce the number

of FLOPs by 460 MFLOPs without any meaningful drop

in accuracy, leading to a 28% speed-up on the GPU. Fur-

thermore, a 2× speed-up can be achieved with d-gate mod-

ules, (t1, t2, t3) = (1.1, 1.7, 1.0), compared to the original

DenseNet-201 with a ∼2% accuracy margin.

The experimental results illustrates that the proposed

d-gate modules can lead to a significant increase in predic-

tion speed with the ability to control the accuracy drop in

a model which makes it well-suited for industrial applica-

tions.

Additionally, the performance of the proposed d-gate

framework is examined on ResNet-101 trained on the Im-

ageNet dataset [5]. For comparison purposes, three state-

of-the-art methods were also evaluated: i) BlockDrop [31],

which learns to dynamically choose which layers of a deep

neural network to execute during inference via a policy net-

work, ii) ACT [9], which utilizes an RNN with halting

unit to determine the the probability of progressing with the

computation, and iii) SACT [9], which extends upon ACT

to apply to each spatial position of multiple image blocks.

The Top-1 accuracy of ResNet-101 trained on ImageNet

was reported [31] as 76.4% at 15.6 GFLOPs2. ACT [9]

achieved an accuracy of 75.3% at 13.4 GFLOPs, while

SACT [9] achieved an accuracy of 75.8% at 14.4 GFLOPs.

BlockDrop, which is considered as the state-of-the-art in

this area achieved an accuracy of 76.8% at 14.7 GFLOPs

(5.7% reduction in computations). The proposed d-gate

framework achieved 76.8% at 14.1 GFLOPs (9.6% reduc-

tion in computations).

3.5. Experiment 4: Distribution of Classes Across
dgate Modules

In the fourth and final experiment, we study in a statisti-

cal as well as qualitative fashion the distribution of classes

that is handled for early prediction by the individual d-

gate modules integrated within a ResNet-101 architecture

on the classification of the ImageNet validation dataset.

More specifically, the main objective of this experiment is

to study which of the classes are classified at the different

d-gate modules within a network. The plots in Figure 7(a)-

(c) demonstrate the prediction statistics of the validation set

of ImageNet dataset at each of the three d-gate modules (d-

gate1, d-gate2, d-gate3) that are integrated into ResNet-101,

respectively. The X-axis of plots shows the 1000 class la-

bels of ImageNet dataset while Y-axis represents the num-

ber of images that can be classified by each d-gate mod-

ule correctly with a distance equal or larger than one from

the decision boundary (i.e., which means the d-gate module

classifies them with a very high certainty).

Figure 6 shows image examples from classes where early

prediction is performed at d-gate1 and d-gate2. It can be

observed that both d-gate1 and d-gate2 are very good at

discriminating classes that have very distinguishable char-

acteristics when compared to other classes in the ImageNet

dataset. This observation matches intuition as highly dis-

tinguishable classes can be well characterized and discrimi-

nated with shallower embeddings, and as such earlier d-gate

modules are sufficient to make good classification predic-

tions given the shallower embeddings.

The other interesting observation in the plot (a) of Fig-

ure 7 is that, there are certain class labels which require

projection to deeper embeddings for accurate classification,

and as such are predicted at a later d-gate module like d-

2The comparison results are reported from [31].



Table 1. Experimental results for ResNet-101 with different d-gate configurations. The average number of FLOPs and accuracy for each

configuration are compared with that of the original networks. dg(t1, t2, t3) denotes network with three d-gate modules configured with

decision thresholds t1, t2, and t3 respectively.

Model ACC. FLOPs (G) FLOPs Reduction Speed (ms) Speed-up

dg(1.0, 0.6,1.5) 91.99% 2.22 55.77% 6.39 55.71%

dg(1.0, 1.8,1.5) 92.97% 2.82 43.82% 8.18 43.31%

dg(1.5, 1.7,1.0) 93.99% 3.20 36.25% 9.24 35.96%

dg(2.4, 2.4,1.5) 94.70% 3.93 21.71% 11.23 22.17%

Original 94.71% 5.02 – 14.43 –

Table 2. Experimental results for DenseNet-201 with different d-gate configurations. The average number of FLOPs and accuracy for

each configuration are compared with that of the original networks. dg(t1, t2, t3) denotes network with three d-gate modules configured

with decision thresholds t1, t2, and t3 respectively.

Model ACC. FLOPs (G) FLOPs Reduction Speed (ms) Speed-up

dg(1.0, 1.0,1.0) 92.21% 1.50 44.85% 7.27 61.45%

dg(1.1, 1.7,1.0) 93.20% 1.66 38.97% 8.39 55.51%

dg(1.5, 2.4,1.0) 94.20% 1.85 31.98% 9.82 47.93%

dg(3.5, 3.5,2.5) 95.20% 2.26 16.91% 13.56 28.10%

Original 95.29% 2.72 – 18.86 –
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(a) d-gate1 (b) d-gate2 (c) d-gate3

Figure 7. Prediction statistics at each of the three d-gate modules integrated into ResNet-101 (configured as (t1, t2, t3) = (1.0, 1.0, 1.0))
for the ImageNet test dataset.

Figure 8. Example images from classes where prediction was per-

formed at d-gate3. A very interesting observation is that the

these classes are typically associated with fine-grained classifi-

cation problems. For example, classes associated with different

breeds of dogs, different types of insects, different types of pri-

mates, and different types of weasels, which are distinguishable

only by more subtle fine-grained characteristics, were classified

at d-gate3, which leverage at deeper embedding, as opposed to at

d-gate1 and d-gate2, which leverage shallower embeddings.

gate3 within the network. We investigated those classes to

figure out which type of objects are hard to classify at ear-

lier stages of the network. Figure 8 demonstrates three ex-

amples of those class labels. As seen, the d-gate1 module

could not classify different dog breeds, types of primates,

types of insects, and types of weasels. Intuitively, a shal-

low network cannot discriminate against fine-grain class la-

bels in the ImageNet dataset as there are several classes

of dog, monkey and insect in the ImageNet dataset. Due

this fact, it is suggested that a hierarchical classification ap-

proach might help to improve the classification accuracy in

the deep neural networks specifically for these types of ar-

chitectures. It has been also observed by other research [2]

that refining the class labels can improve the classification

accuracy of the models.

4. Conclusion
In this paper we proposed a new framework, (d-gate)

modules, to handle the trade-off between the computational

complexity and modeling accuracy of deep neural networks.

The d-gate modules are added in different parts of the net-

work architecture to decide whether the input data needs to

be projected into the deeper embedding space of the net-

work or not. Experimental results showed the effectiveness

of the proposed framework in reducing the computational

complexity while maintaining the modeling accuracy. The

qualitative experiment showed that it is possible to apply a

hierarchical classification technique to improve the model-

ing performance as the future work for this framework.
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