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Abstract

Efficient deep palmprint recognition has become an ur-

gent issue for the demand of personal identification on

mobile/wearable devices. Compared to other biometrics,

palmprint recognition has many unique advantages, e.g.

richness of features, high user-friendliness, suitability for

private security, etc. Existing deep learning based meth-

ods are computationally exhaustive in feature representa-

tion and learning, which are not suitable for large-scale de-

ployment in portable authentication systems. In this paper,

we combine hash coding and knowledge distillation to ex-

plore efficient deep palmprint recognition. Based on deep

hashing network, palmprint images were converted to bi-

nary codes to save storage space and speed up matching.

Combining hashing coding with knowledge distillation can

further compress deep model to achieve an efficient recog-

nition by light networks. Unlike previous palmprint recog-

nition on datasets collected by dedicated devices in a con-

trolled environment, we establish a novel database for un-

constrained palmprint recognition, which consists of more

than 30,000 images collected by 5 different mobile phones.

Moreover, we manually labeled 14 key points on each image

for region of interest (ROI) extraction. Comprehensive ex-

periments were conducted on this palmprint database. The

results indicate the feasibility of our database and the po-

tential of palmprint recognition to be used as an efficient

biometrics for deployment on consumer devices.

1. Introduction

Recently, information security has become especially

important. Traditional methods for identification, such as

keys and passwords, have many drawbacks [1]. Biometrics

is a technique that uses physiological or behavioral proper-

ties of human body for identification [12]. Two types of bio-

*The corresponding author is Dexing Zhong, email: bell@xjtu.edu.cn.

metric recognition are mainly considered in literature: bio-

metric verification and biometric identification [11]. Bio-

metric verification refers to the comparison between the

tester and her own biometric template in the database to de-

termine whether the claim is true or not, which is one-to-

one comparison. Biometric identification refers to match-

ing the tester with all the samples in the database to deter-

mine the identity, which is one-to-many comparison. As

one of the unique biometric characteristics, palmprint has

received wide attention from researchers [40]. Many excel-

lent palmprint recognition algorithms are emerging, such as

robust line orientation code (RLOC) [14], linear program-

ming (LP) formulation [25], and discriminative and robust

competitive code (DRCC) [29]. Satisfactory results have

been obtained on some public palmprint databases, such

as PolyU multi-spectral dataset [32]. However, the current

palmprint recognition system still has many shortcomings.

Firstly, dedicated palmprint acquisition devices limit the ef-

ficient usage of palmprint recognition. In order to avoid

external illumination interference, additional lighting needs

to be added to a enclosed space for acquisition. In addi-

tion, volunteers need to limit their palms during acquisition,

which reduces user-friendliness. Secondly, the recognition

accuracies of traditional palmprint algorithms are relatively

low, such as method based on Scale Invariant Feature Trans-

form (SIFT) [39] and method based on Histogram of Ori-

ented Gradients (HOG) [23]. Though the deep learning-

based methods can greatly improve the performance, they

could have high model complexity and low computational

efficiency, which cannot meet the requirement of its practi-

cal application. For biometric recognition, recognizing effi-

ciently is as critical as recognizing accurately. Proper acqui-

sition of data is the basis of efficient identification. Feature

representation and learning approaches are the key to effi-

cient recognition.

In response to the above problems, in this paper, we car-

ried out a comprehensive study on efficient deep palmprint

recognition. Using 5 different mobile phones, we captured



about 30,000 palmprint images of 100 people in different

environments. Based on this database, we adopted sev-

eral algorithms to perform efficient palmprint recognition.

Firstly, we tried to perform region of interest (ROI) extrac-

tion task. In order to extract stable ROIs, in each palmprint

image, we manually marked 14 key points. We achieve au-

tomatic and precise positioning for the key points, and then

extract the central area of palm as ROI. Secondly, based

on the deep hashing network (DHN), we performed palm-

print verification and identification tasks. DHN converts

the palmprint images into binary codes. Due to the effi-

ciency of hashing, we only need to obtain the Hamming

distance between codes through XOR operation to realize

identity recognition. Furthermore, to reduce the complex-

ity of model, we implement efficient palmprint recogni-

tion tasks based on knowledge distillation (KD). The DHN,

based on a pretrained VGG-16, is regarded as a teacher net-

work. A light model with only two convolutional layers and

three fully connected layers is selected as the student net-

work. Through the guidance of teacher network, the student

network can achieve higher recognition accuracy and effi-

ciency. To the best of our knowledge, our proposed dataset

is the most comprehensive palmprint database until now, al-

lowing for multiple research tasks in addition to the above.

The contributions can be summarized as follows:

1. Based on deep hashing network and knowledge

distillation, we have realized efficient palmprint verifica-

tion and identification. DHN converted images into binary

codes, which reduced storage space and comparison time.

Based on knowledge distillation, light student networks can

achieve efficient performance under the guidance of teacher

network.

2. We introduced a comprehensive palmprints database.

It was collected from 5 mobile phones under unconstrained

environments, containing more than 30,000 images and 10

domains, called Xi’an Jiaotong University Unconstrained

Palmprint database (XJTU-UP) 1. In order to obtain ROIs,

14 key points were manually marked.

This paper consists of 5 sections. Section 2 introduces

related works. Section 3 explains our proposed efficient

palmprint recognition methods in detail. The experiments

and results are presented in section 4. Section 5 concludes

the paper.

2. Related Works

2.1. Palmprint Recognition

Palmprint recognition has enjoyed great research popu-

larity for identity authentication these years [16, 21]. Typ-

ically, a palmprint recognition pipeline consists of image

acquisition, preprocessing, feature extraction and match-

ing [40]. For image acquisition, there are several popular

1http://gr.xjtu.edu.cn/web/bell/resource

benchmark datasets until now [32, 31, 7, 17, 35] . Be-

sides, there are also some databases acquired by mobile de-

vices. Chora and Kozik et al. [3] used a smartphone to

collect 252 palmprint images from 84 samplers. Jia et al.

[13] used 2 smartphone cameras and a compact camera to

collect 12,000 palmprints under two different illumination

conditions for cross device recognition. Even though there

are many mobile phone-based palmprint datasets, most of

them are not open to public. Only Adrian-Stefan Ungure-

anu et al. [27] publicized their NUIG Palm1 dataset col-

lected by 5 smartphone cameras. After image acquisition

and preprocessing, feature extraction will be conducted for

identifying different profiles in the registered dataset. Exist-

ing palmprint recognition methods can be divided into sev-

eral categories, such as structure-based and texture-based

methods [33]. Guo et al. [6] proposed binary orientation

co-occurrence vector (BOCV) to represent multiple orien-

tations for a local region. After that, Zhang et al. [34] in-

corporated fragile bits information in the code maps from

different palms and proposed extended binary orientation

co-occurrence vector (E-BOCV). Dai et al. [4] designed

a ridge-based palmprint matching system. Currently, deep

learning-based methods have been introduced to recognize

palmprints [43, 22, 44, 41]. Zhao et al. [37] trained the

parameters of a deep belief net and obtained higher accu-

racy compared with traditional methods. Izadpanahkakhk

et al. [10] extracted ROI and discriminative features from

palmprints using transfer learning fusion.

2.2. Deep Hashing Network

Deep hashing network recently thrived with the devel-

opment of deep learning [45, 2]. Due to the storage and re-

trieval efficiency, Zhu et.al. [45] firstly proposed supervised

hashing to approximate nearest neighbor search for large-

scale multimedia retrieval, which improved the quality of

hash coding by exploiting the semantic similarity on data

pairs. Cao et.al. [2] proposed Deep Visual-Semantic Quan-

tization (DVSQ) to learn deep quantization models from la-

beled image data as well as the semantic information under-

lying general text domains. For effective palm vein verifica-

tion, Zhong et al. [42] adapted DHN for extracting features

in the palm vein configuration and matching, which reached

an Equal Error Rate (EER) close to 0%. Currently, DHN is

mainly based on convolutional neural networks (CNN) and

hashing algorithms. There are several types of DHN: net-

work in network hashing (NINH) [18], deep semantic rank-

ing based hashing (DSRH) [38], deep regularized similarity

comparison hashing (DRSCH) [36] and so on.

2.3. Knowledge distillation

Knowledge distillation is a technique for transferring in-

formation from a complex deep model to a light model [19].

KD has been widely used for model compression and ac-



celeration to improve the performance of fast and light net-

works [5]. Hinton et al. [8] first distilled knowledge from

an ensemble of pre-trained models to improve a small target

net via high-temperature softmax training. Then, FitNet de-

veloped KD using the pre-trained wide and shallow teachers

hint layer to assist thin and deep students guided layer [24].

Li et al. [20] proposed a unified distillation framework to

use a small clean dataset and label relations in knowledge

graph to guide the distillation process. Yim et al. [30] pro-

posed a method of transferring the distilled knowledge as

the flow between two layers by computing the inner prod-

uct between features, and the student model outperformed

the original model that was trained from scratch. Recently,

KD is also successfully used for pedestrian detection [9]

and face recognition [26]. Wei et al. [28] quantized a large

network and then mimiced a quantized small network for

object detection. The model improved the performance of

a student network by transferring knowledge from a teacher

network.

3. Method

3.1. Deep hashing network

DHN combines the high accuracy of deep learning and

the efficiency of hash coding. In this paper, it converts palm-

print images into 128-bit binary codes. On the one hand, the

storage space of binary codes is greatly compressed com-

pared to the original image, so that the storage efficiency is

greatly improved. On the other hand, a simple XOR op-

eration can be used to obtain the Hamming distance be-

tween codes, and their similarity can be quickly obtained

to improve the efficiency of palmprint retrieval. In this pa-

per, DHN based on VGG-16 is used for efficient palmprint

recognition. VGG-16 has 5 batches of convolutional lay-

ers and 3 fully connected layers. We use the weights from

batch-1 to batch-4 which are trained on ImageNet, as shown

in Figure 1. The batch-5 and fully connected layers are

trained with our palmprints. In fact, DHN transforms the

softmax layer of VGG-16 into a coding layer, where sgn

function is used as activation function. In order to obtain

hash codes, the activation function of the last fully con-

nected layer is set to tanh. The optimization goal consists

of two parts: hash loss and quantization loss.

Hash loss: hash loss is based on contrastive loss, mainly

to close the distance between similar samples and to extend

the distance between heterogeneous images. Suppose for

two images i and j, the features extracted by DHN are hi and

h j, respectively, and the hash loss between them is defined

as:

Lhi, j
=

1

2
Si, jD

(

hi,h j

)

+
1

2

(

1−Si, j
)

max
(

t −D
(

hi,h j

)

,0
)

, (1)

where Si, j represents their relationship label. If images i

and j are from the same class, Si, j = 1, otherwise, Si, j =

0. t is a threshold used to balance the distance between

heterogeneous images.

Quantization loss: the quantization loss is mainly due to

the fact that the feature is directly converted to binary code

by the sgn function, which is defined as:

Lqi
= ‖hi −bi‖2 = ‖|hi|−1‖2 , (2)

where bi is the code of image i. Assuming we have N im-

ages in total, the optimization goal is:

minL =
N

∑
i=1

N

∑
j=i+1

Lhi, j
+w×

N

∑
i=1

Lqi
= Lh +wLq, (3)

where w is used to balance the weight between hash loss

and quantization loss.

3.2. Knowledge distillation based DHN

The above DHN-based palmprint recognition can obtain

potential results. However, the model based on VGG-16 is

quite complex, which costs a lot of training time. In order

to solve this problem, a KD model is applied here to re-

alize efficient recognition under a light network. The KD

model includes a teacher and a student network. In gen-

eral, the teacher network is a complex network with strong

feature extraction capabilities to to obtain distinguishable

features. The student network is a light network with lim-

ited recognition capabilities but high recognition efficiency.

During training, the feature learned by the teacher network

is transferred to the student network as knowledge, so that

the student network can achieve the same performance as

the teacher network. In this paper, we introduce a KD-

based DHN for both palmprint verification and classifica-

tion. The teacher network is the above-mentioned VGG-

16-based DHN. The student network consists of only three

fully connected layers and two convolutional layers. The

schematic of the model are shown in Figure 2, and related

parameters are in Table 1.

Different optimization goals are selected to train the stu-

dent network for different recognition tasks. For palmprint

classification, a common classification model with cross en-

tropy loss is adopted. In order to transfer the knowledge

from the teacher to the student network, we refer to Hin-

ton’s method and introduced the soft labels. In general, the

neural network converts the output of the last layer into a

class probability through softmax layer to achieve the pur-

pose of classification.

qi =
exp(zi)

∑zi
exp(zi)

, (4)

where zi is the output of the i−th neuron in the last layer,

corresponding to the i−th category. qi is the probability that

the input image belongs to the i−th category. A temperature



Student Network

Conv1 3×3×16, stride 4, padding 0, ReLU

Pool1 max-pool

Conv2 5×5×32, stride 2, padding 0, ReLU

Pool2 max-pool

Full3 FC-512, ReLU

Full4 FC-128, tanh

Full5 FC-128, sgn

Table 1: Parameters of student network. In the

convolutional layers, the first column specifies the number

of filters and channels; the second column is convolution

stride and spatial padding; the third column is activation

function. Full3 and full4 specify the number of neurons

and activation function.

T is introduced in Eq. (5) to provide a soft label for the

student network, which improves the discrimination ability

and generalizability of a model.

qT
i =

exp(zi/T )

∑zi
exp(zi/T )

, (5)

where qT
i is the soft probability for the teacher network.

When T is equal to 1, Eq. (4) and Eq. (5) are equivalent.

Using a higher value of T produces a softer probability dis-

tribution over classes.

Wei et al.[28] trained very tiny CNN through the quan-

tization method and the knowledge transfer-based mimic

method. Inspired by it, for palmprint verification, DHN can

be seen as a simple quantitative method. The realization of

KD is mainly to find a way to contact the teacher network

and the student network. Suppose for image i, the code ob-

tained by the teacher network is bT
i , and the code obtained

by the student network is bS
i . The task of KD is to make

bT
i and bS

i as similar as possible. Here L2 loss is used to

constrain the difference between them.

Lbi
=
∥

∥bT
i −bS

i

∥

∥

2
, (6)

Figure 1: The schematic diagram of DHN

Figure 2: The schematic of KD model proposed based on DHN



Device iPhone 6S HUAWEI Mate8 LG G4 Galaxy Note5 MI8

Pixels 12 million 16 million 8 million 16 million 12 million

Image Size 3264×2448 3456×4608 5312×2988 5312×2988 4032×3024

Table 2: Details of acquisition devices

The teacher network is firstly trained in a supervised man-

ner where T is set to 20. L is used to train the DHN and the

cross entropy loss with T is adopted to train the classifica-

tion network. In order to combine KD and DHN to achieve

efficient palmprint verification and classification in a single

network, their loss functions need to be added as the final

optimization target.

Therefore, we formulate the loss of palmprint classifica-

tion as follows:

Lc = mLs (pi,qi)+nLT

(

pi,q
T
i

)

, (7)

where Ls is the normal cross entropy loss for student net-

work, and LT is soft cross entropy after adding temperature

T which is set to 5.
Similarly, the loss of palmprint verification is:

Lv =
N

∑
i=1

N

∑
j=i+1

Lhi, j
+w×

N

∑
i=1

Lqi
+α ×

N

∑
i=1

Lbi
+β ×

N

∑
i=1

LT

(

pi,q
T
i

)

= Lh +wLq +αLb +βLT .

(8)

Lv is used to update the network parameters of DHN.

Lc is only used to update the parameters of classification

network.

4. Experiments and result analysis

4.1. Dataset

Our palmprint database is collected under unconstrained

environments. It reduces the constraints of acquisition com-

pared to other public databases. First of all, the collection

devices are 5 most commonly used smartphones, i.e. iPhone

6S, HUAWEI Mate8, LG G4, Samsung Galaxy Note5, and

MI8. The details related to the acquisition devices are

shown in Table 2.

The volunteers captured palmprint images indoors with-

out other controlled equipment. They chose the angles and

backgrounds of shooting as they wish, as long as the en-

tire palm was captured. In order to increase the diver-

sity of samples, the postures and backgrounds of palms

are continuously changed in each acqusition scenario. Two

kinds of illumination are taken, one is the indoor natu-

ral illumination, and the other is flash lighting of mo-

bile phone. 100 volunteers, which are 19 to 35 years

old, provided their palmprint images. For different mo-

bile phones, each volunteer was asked to capture about

10 to 15 images of the left and right hands under differ-

ent illuminations. So for every tester, there are at least

5 (devices)×2(illuminations)×10×2(palms) = 200 images

with a total of 5 (devices)×2 (illuminations) = 10 domains.

The size of each RGB image is shown in Table 2. The ex-

emplary images are shown in Figure 3. In the images ac-

quired from the unconstrained environments, the palm area

is difficult to extract, especially under natural illumination,

which has a great influence on the ROI extraction methods

based on contour and valley points. In order to extract sta-

ble ROIs, 14 key points are manually marked in every im-

age, as shown in Figure 3(d). These points include 3 val-

ley points between fingers, 8 points at the bottom of fin-

gers, and 3 points on either side of palm. Compared to

other points, the points on the sides of palm are less af-

fected by the posture of hand. A ROI extraction method

based on these feature points will be given in subsequent

sections. According to the acquisition devices and illumi-

nations, 10 sub-databases were named as IN (iPhone 6s un-

der Natural illumination), IF (iPhone 6s under Flash illumi-

nation), HN (HUAWEI Mate8 under Natural illumination),

HF (HUAWEI Mate8 under Flash illumination), LN (LG

G4 under Natural illumination), LF (LG G4 under Flash il-

lumination) SN (Samsung Galaxy Note5 under Natural il-

lumination), SF (Samsung Galaxy Note5 under Flash illu-

mination), MN (MI8 under Natural illumination), and MF

(MI8 under Flash illumination).

To extract the ROIs in our dataset, we try to find the

points based on the regression trees algorithm and then ex-

tract the ROI based on distance since it is difficult to extract

the palm and its contours in the practical scenarios. The

method mainly includes three steps: palm detection, key

point positioning, and ROI extraction, as shown in Figure

4.

Step 1: Palm detection. In order to improve the accu-

racy and efficiency of key point positioning, the palm is

firstly positioned. The target recognition algorithm based

on HOG is mainly used. The HOG features of palm image

are extracted. Then, in several scaled images of the orig-

inal image, several candidate positions of target palm are

detected using sliding window algorithm based on the pre-

trained Support Vector Machine (SVM). Finally, the palm

position is selected from these candidate positions using

non-maximum suppression algorithm, as shown in Figure

4(b).

Step 2: Key point positioning. After detecting the palm

area, it is necessary to locate the key points in the area. In-

spired by [15], regression tree algorithm is adopted. Each



(a) (b) (c) (d)

Figure 3: Some typical examples in XJTU-UP. (a)-(c) are original images and (d) is the image with 14 key points

Figure 4: Schematic diagram of ROI extraction, (a) is original image, (b) is palm detection, (c) is key point positioning, and

(d) is the ROI extracted

key point is located by a regression tree, and each regression

tree has multiple sub-trees. The parameters of each tree are

updated by the difference between the current shape pre-

dicted and the manually labeled ground truth of each key

point.

Step 3: ROI extraction. After obtaining the precise key

point positions, stable ROIs can be extracted based on dif-

ferent methods. Here, we give a distance-based approach to

extract square ROI. The valley between the index finger and

the middle finger, P3, and the valley between the ring finger

and the little finger, P9, are selected to determine the direc-

tion of ROI. The edge points on both palm sides, P0 and P12,

which are less affected by the postures of palm, are selected

to determine the length of ROI. The valley between the mid-

dle finger and the ring finger, P6, is used to determine the

center point, Po, of ROI. Suppose the distance between P0

and P12 is L, therefor the side length of ROI is set to 3/5L,

and the distance between Po and P6 is 2/5L.The details are

shown in the Figure 5.

4.2. Palmprint verification and identification

In this paper, DHN is mainly adopted for efficient palm-

print verification and identification. For each sub-database,

the first five images of each category were used to train

network parameters and the remaining images were used

for testing. The teacher network, student network, and KD

model are trained separately. For palmprint verification, af-

ter obtaining the code of each image, Hamming distance of

Figure 5: The details of ROI extraction

any two codes was calculated. According to prior knowl-

edge, different distance thresholds were set to get False Ac-

ceptance Rate (FAR) and False Rejection Rate (FRR). FAR

is the ratio of the number of genuine matches, whose dis-

tance is greater than the threshold, to the number of all gen-

uine matches. FRR is the ratio of the number of imposter

matches, whose distance distance is less than the threshold,

to the number of all imposter matches. When FAR is equal

to FRR, the EER can be obtained. The Receiver Operating

Characteristic (ROC) curve can be obtained according to

FAR and FRR. In the palmprint identification, the category

of image is obtained directly through the network, and then



Database
Teacher Student KD

EER (%) Accuracy (%) EER (%) Accuracy (%) EER (%) Accuracy (%)

IF 0.50 98.57 5.91 69.23 3.96 90.31

IN 0.64 98.37 7.29 40.51 4.75 84.57

HF 0.70 97.37 6.47 46.16 5.44 88.38

HN 0.72 97.06 7.76 43.25 7.65 79.90

LF 0.79 97.10 6.36 39.07 5.11 87.25

LN 1.35 95.70 10.45 29.80 9.69 80.20

MF 0.43 97.84 5.29 49.90 5.15 88.45

MN 0.32 97.40 7.75 39.06 6.28 85.10

SF 0.29 97.5 4.14 52.19 4.00 88.75

SN 0.33 97.95 6.49 43.18 6.27 85.54

Average 0.607 97.49 7.47 45.235 5.83 85.845

Table 3: The results of palmprint recognition based on DHN and KD

(a) (b)

Figure 6: The ROC curves of palmprint recognition based on teacher DHN

the accuracy is calculated. Some hyperparameters are set

as: t=180, w=0.5, α=5, β=10, m=0.2, and n=0.8. Table 3

presents the EERs of 10 databases on different models, the

ROC curves of teacher network are shown in Figure 6. Cor-

respondingly, the ROC curves of KD and student network

are shown in Figure 7.

It can be seen from the experiment results that the perfor-

mance of the student network is significantly worse than the

teacher network, especially for the palmprint classification

task. This is because the student network is too simple and

its ability to extract distinguishable features is weaker. In

addition, for each sub-database, the illuminations, angles,

and postures of images change greatly due to the acquisi-

tion environments, which greatly increases the difficulty of

recognition. The limited number of images in every sub-

database is also one of the reasons.

When using teacher network for palmprint verification,

the best result is in SF database where EER is equal to

0.29%. The worst result is in LN database where EER

equals to 1.35%. For palmprint identification, the best re-

sult is in IF where the recognition accuracy is 98.75%, and

the worst result is in LN where recognition accuracy is

95.70%. From the experiment results, the average EER is

0.607%, and the average recognition accuracy is 97.49%,

which proves that the databases can be used for palmprint

recognition with high accuracy.

Before transferring the knowledge, the best performance

of student network is in SF with an EER of 4.14%. The best

classification accuracy is 69.23% in IF, where the ultimate

goal for both tasks are not well achieved. After introducing

the knowledge gained from the teacher network, there has

been a potential improvement in recognition performance,

especially for palmprint classification tasks. In IN, the EER

decreases by up to 2.54%; the classification accuracy in the

dataset of LN increases by up to 50.40%.

From the presented results, the performance of palmprint

images acquired under the flash illumination is better than

that under natural illumination for both palmprint verifica-

tion and identification. The flash lights are equivalent to ex-

tra filling light, so the illumination is more uniform, which



(a) (b)

Figure 7: The ROC curves of palmprint recognition based on KD. (a) is on IF and IN, (b) is on HF and HN. Note that we

omit the results on LF, LN, SF SN, MF and MN for simple illustration.

reduces the influence of unbalanced illumination and the

difficulty of recognition. However, when considering the

improvement of recognition accuracy, the experiments un-

der the natural illumination is greater than those under the

flash lights, which proves that the KD model has obtained

useful knowledge from the teacher network.

Compared with teacher networks, light student networks

perform relatively poorly. However, the KD-based student

network achieves efficient palmprint recognition with little

reduction in accuracy. In Table 4, we compare the perfor-

mance of these three models. All the experiments are im-

plemented using TensorFlow on a NVIDIA GPU GTX1080

with 8G memory. The model size and average feature ex-

traction time for each image are obtained for comparison.

The model size and complexity of teacher network are the

largest, which is much larger than of student network. At

the same time, the teacher network is the slowest with re-

spect to the time spent on feature extraction, which is about

4 times the student network. For KD model, although it

is necessary to obtain the trained teacher network before

training the student network, the performance has been sig-

nificantly improved. For palmprint classification, the accu-

racy is more than two times of the student network, but the

speed is not reduced. This is very important for the palm-

print recognition system on the consumer device, because

the complex model cannot work well with limited compu-

tational resources.

5. Conclusion

In this paper, we conduct a comprehensive analysis

for efficient deep palmprint recognition via distilled hash-

ing coding. We built an unconstrained palmprint image

database using 5 mobile phones. Compared to other pub-

Teacher Student KD

Model size 93 M 0.51 M 0.51 M

Total parameters 156 M 48 M 48 M

Feature extraction time 12.30 ms 3.33 ms 3.32 ms

Iterations 10,000 10,000 10,000

Table 4: Computational cost of three different models

lic databases, this database has more palmprint images and

modalities with fewer restrictions on acquisition. There are

14 key points manually labeled on each image for ROI ex-

traction, which will be publicly available to the research

community. Based on the regression tree algorithm, we

achieved the positioning of key points and extracted rela-

tively stable ROIs. With Deep hashing network, we per-

formed efficient palmprint verification and identification

with an average accuracy of 97.49% and average EER of

0.607%. Knowledge distillation algorithm is used to im-

prove recognition performance on light networks. The re-

sults show that the average classification accuracy is in-

creased by 40.61% and the average EER is reduced by

1.64%. Experiment results show that the database we pro-

posed has many advantages and can be successfully used in

the research of multiple tasks. Further research would focus

on deep learning-based models for more efficient represen-

tation learning in order to deploy the palmprint recognition

systems in real world applications.
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