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Abstract

Hashing method maps similar high-dimensional data to

binary hashcodes with smaller hamming distance, and it

has received broad attention due to its low storage cost and

fast retrieval speed. Pairwise similarity is easily obtained

and widely used for retrieval, and is widely applied in most

supervised hashing algorithms. As labeling all data pairs is

difficult, semi-supervised hashing is proposed which aims

at learning efficient codes with limited labeled pairs and

abundant unlabeled ones. Existing methods build graphs to

capture the structure of dataset, but they are not working

well for complex data as the graph is built based on the

data representations and determining the representations

of complex data is difficult. In this paper, we propose a

novel teacher-student semi-supervised hashing framework

in which the student is trained with the pairwise informa-

tion produced by the teacher network. The network follows

the smoothness assumption in which the retrieval results are

similar for neighborhood queries. Experiments on large-

scale datasets show that the proposed method reaches im-

pressive gain over the supervised baselines and is superior

to state-of-the-art semi-supervised hashing methods.

1. Introduction

With the explosion of high-dimensional media data,

hashing is widely applied for efficient approximate Nearest

Neighbor(ANN) search [6] due to its short retrieval time and

small storage space [6, 16, 22, 26]. Hashing aims at encod-

ing high-dimensional data into compact hashcodes, so that

similar data are mapped to hashcodes with similar hamming

distance.

Data-dependent learning-to-hash methods aim at learn-

ing hash functions with the training data, and the learned

codes is able to capture the data distributions. Learning-to-

hash methods can be divided into three categories: unsu-

pervised hashing [7, 17], supervised hashing [16, 14] and

semi-supervised hashing [28, 27, 20]. Experiments convey

that the codes learned by (semi-)supervised hashing meth-

ods can capture more semantic information than unsuper-

vised ones. Recently, deep hashing methods have achieved

great success [26, 29, 28, 2]. It aims at learning hashcodes

and the deep networks simultaneously, thus the codes gen-

erated by deep networks contain much better semantic in-

formation.

For ANN search, pairwise similarities between data pairs

play an important role in evaluating the quality of search.

For generating efficient hashcodes, the pairwise similar-

ity is adopted in (deep) supervised hashing problems such

that similar data pairs should be mapped to codes with

small hamming distance. Most hashing methods model

the similarities with the pairwise losses. For ease of

back-propagation, these methods simply generate data pairs

within a mini-batch and achieve good results [15, 3, 4, 13].

Despite the success of supervised hashing, labeling all

the database data (pairs) is almost intractable as the number

of data is dramatically increasing. To utilize the abundant

database data, deep semi-supervised hashing [28, 27] has

been proposed in which the hash function is trained with

the labeled data pairs and abundant unlabeled ones. The

success of semi-supervised hashing lies in the smoothness

assumption such that neighborhood data are likely to have

the same outputs. These methods construct graphs for the

unlabeled data to capture the neighborhood structure among

the samples. However, the data and their representations

may lie in high-dimensional nonlinear manifolds and may

not contain enough semantic information with limited la-

beled data. As the graph is built based on data representa-

tions, the graph may not model the neighborhood structure

of data precisely, which violates the smoothness assumption

to some extent and affect the hashing performance.

Recently, perturbation-based teacher-student semi-

supervised learning (SSL) algorithms have witnessed great

success [11, 23]. These methods follow the smoothness

assumption in which the learned classifiers produce con-

sensus prediction of a noisy input, thus they can better

capture the structure of unlabeled data [30] with the learned
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representations [18]. However, the proposed teacher-

student method can just deal with single data point, but not

consider the pairwise relationship between samples. By

carefully designing the teacher-student architecture and the

loss for pairwise similarities, we may utilize the advantage

of this architecture and obtain a novel semi-supervised

hashing method.

In this paper, we propose a novel semi-supervised

hashing algorithm called Pairwise Teacher-Student Semi-

Supervised Hashing(PTS3H) in which the codes are trained

with pairwise similarities and abundant unlabeled data

pairs. The proposed PTS3H is a teacher-student network

architecture where the student is trained with pairwise loss

and unsupervised regularizers, and the teacher is the ensem-

ble of the student to generate efficient pairwise representa-

tions. For modeling the pairwise information, we propose

the general consistent pairwise loss to follow the smooth-

ness assumptions [23, 11] such that similar pairs correspond

to similar pairwise similarities. More specifically, we pro-

pose two types of losses to model the pairwise similarities

with local and global pairwise information: consistent sim-

ilarity loss for consistent pairwise similarities, and quan-

tized similarity loss in which the quantized [8] similarities

can be modeled by global information within data pairs.

Experiment shows that the proposed PTS3H achieves great

improvement over the supervised baselines, and it is supe-

rior or comparable with the state-of-the-art semi-supervised

hashing algorithms.

2. Background

Suppose we are given n data samples x1,x2, ...,xn ∈
X , and X is the training dataset. Denote S as a set such

that (i, j) ∈ S implies xi,xj have similarity information,

and we denote sij = 1 if (i, j) ∈ S , and sij = 0 otherwise.

In practical applications, the similarity information of some

data pairs is unknown, which are denoted as U .

Denote b as the length of the hashcode to learn, the goal

of the semi-supervised hash learning is to learn the hash

function H(x) = [h1(x), ..., hb(x)]
⊤ ∈ {−1, 1}b with n

data samples and the pairwise similarities. We denote hi =
H(xi), i = 1, 2, ..., n as the learned hashcode of xi.

2.1. Pairwise Loss for Supervised Hashing

Pairwise losses is widely used in (deep) supervised hash-

ing algorithm [16, 14, 15, 3, 13, 27]. For the given training

data and pairwise information, the basic formulation of pair-

wise loss is

Ls =
1

|S|

∑

(i,j)∈S

l(uij , sij), uij = sim(hi,hj) (1)

where uij = sim(hi,hj) are the similarity (or distance)

between the codes hi,hj .

Different types of l(uij , sij) are discovered in different

supervised hashing algorithms such that

• KSH loss: l(uij , sij) = [b(2sij − 1) − uij ]
2, uij =

h
⊤
i hj in KSH [16] and FastH [14];

• DSH loss: l(uij , sij) = −sijuij + (1 −
sij)max(0, 2b+uij), uij = −(hi−hj)

2 in DSH [15];

• DPSH loss: l(uij , sij) = −sijuij + log(1 +
euij ), uij =

1
2h

⊤
i hj in DPSH [13], DHN [3].

Optimizing l(uij , sij) is expected to learn hashcodes

such that similar data pairs have codes with small hamming

distance, and vice versa. It should be noticed that the su-

pervised information is just pairwise information, which is

widespread in the real world.

2.2. Semi­Supervised Hashing

Semi-supervised hashing focuses on learning hash func-

tion with limited labeled data pairs as well as abundant un-

labeled pairs. The general form of loss to be optimized is

L = Ls + ωRu (2)

where Ls is Eq. (1), Ru ls the regularization term for un-

labeled data. SPLH [24] adopts the bit-balanced constraint

for regularization, but it does not consider the relationship

between samples. Graph-based methods like SSDH [28]

and BGDH [27] construct an affinity graph for unlabeled

samples, and the regularization loss is constructed based on

the graph, which intends to follow the smoothness assump-

tions. However, the graph is constructed by data representa-

tions where the semantic gap may be involved, violating the

smoothness assumptions. Recently, deep generative models

have achieved success in SSL, and DSH-GANs [20] pro-

poses a GAN [21] based hashing method. The conditional

GAN is trained with labeled and unlabeled data to gener-

ate labeled samples, which are used for training the hashing

network. It achieves state-of-the-art in some datasets, but

cannot be trained with the pairwise supervision.

2.3. Teacher­Student Network for Semi­Supervised
Learning

Semi-supervised learning (SSL) aims at learning with

limited labeled data and abundant unlabeled data. Most SSL

methods lies in the smoothness assumption such that simi-

lar data correspond to the same label. Various approaches

are discovered such as transductive approach [9, 25], graph-

based approach [1, 30], but they are not working well in

complex dataset as the underlying structure of data is hard

to capture. Recently, perturbation-based semi-supervised

learning approach has achieved great success, where the

perturbed inputs correspond to the consensus prediction.

These methods propose a dual role, i.e., the teacher and the
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Figure 1. Overview of the PTS3H algorithm. (a) The general framework of the PTS3H algorithm. The input data is x1,x2 and the pairwise

similarity is s12 if available. Ls is computed for labeled pairs and Ruc,Rup,Ruq are computed for unlabeled pairs. (b) Illustration on

training with different unsupervised regularizations.

student. The student is learned as before; the teacher gener-

ates the targets for training the student. Formally, consider-

ing the dataset X where part of data are labeled, we aim at

optimizing the following loss function:

L(c) = L(c)
s + ωR(c)

u (3)

where c denotes classification, L
(c)
s is the supervised term

such as the softmax loss, R
(c)
u is the unsupervised regular-

ization such that

R(c)
u =

∑

x∈X

d(f(x̃(1)), fT (x̃
(2))) (4)

where x̃
(1), x̃(2) are two random perturbations, f(·), fT (·)

are the outputs of student and teacher network respectively,

and d(·, ·) is the distance between two output. There are

several ways to define the teacher fT . TempEns [11] con-

siders fT as the exponentially moving average(EMA) of the

student’s output; Mean Teacher [23] ensembles the student

to form the teacher network; VAT [19] regards the adver-

sarial perturbations to form the teacher. These methods

achieve state-of-the-art on SSL problems.

In spite of this, perturbation-based methods is just able to

regularize the single data point, but do not consider neigh-

borhood structure between samples. SNTG [18] constructs

a graph by the teacher to capture the neighborhood struc-

ture, and experiments convey that introducing the graph

achieves better performance. However, the graph in SNTG

is built specifically for classification.

With the success of teacher-student network for semi-

supervised learning, in this paper, we propose a novel

teacher-student framework for semi-supervised hashing in

which only small portion of pairwise similarity informa-

tion is provided. Considering we perform the hamming dis-

tance learning, we propose a novel consistent pairwise loss

in which the consistent distances for similar data pairs are

reached so that it is able to follow the smoothness assump-

tion where neighborhood queries achieve similar retrieval

results. Experiments show its superiority over the state-of-

the-art semi-supervised hashing algorithms.

3. Methodology

In this section, we propose the novel deep semi-

supervised hashing called Pairwise Teacher-Student Semi-

Supervised Hashing(PTS3H), in which the teacher-student

network is adopted.

3.1. The Teacher­Student Framework

The proposed PTS3H is a teacher-student architecture

shown in Figure 1(a). The architecture of teacher network

and the student are the same, in which the last layer is

the fully-connected layer with b outputs (b is the hashcode

length), and the rest layers can be the basic deep network

like AlexNet, VGGNet, etc.

The update rule of the teacher-student network is simi-

lar as Mean Teacher [23]. The student is learned with la-

beled data pairs and guided by the teacher. Denote θ(t) and

θT (t) as the parameters of the student and teacher network

at training step t respectively, the teacher network is updated

by EMA as follows:

θT (t) = αθT (t− 1) + (1− α)θ(t) (5)

as the teacher is the average of the student, the teacher’s

output can be regarded as the mean of the student’s.

Denote F (x), FT (x) ∈ R
b as the output of the student

and teacher networks respectively, the binary codes of data

x can be easily obtained with the embedded teacher network

HT (x) = sgn(FT (x)). Note that the x is not perturbed.

3.2. Loss Function

The general form of loss to be optimized is Eq. (2). For

labeled data pairs, the training loss is the pairwise loss in

Eq. (1). For unlabeled data, Ru should be defined such that

the teacher network generates targets to guide the student

network. As we focus on the pairwise similarities, learning

the similarities of the embedded hamming space are quite

important. For input pairs, the targets for the student should

be the similarities of the codes generated by the teacher. We



therefore propose the general form of the consistent pair-

wise loss such that

Ru =
1

|X |2

∑

x1,x2∈X

lc(u12, uT12)

u12 = sim(H(x̃1
(1)), H(x̃2

(1)))

uT12 = sim(HT (x̃1
(2)), HT (x̃2

(2)))

(6)

where x̃i
(1), x̃i

(2), i = 1, 2 are two random perturbations

of xi, lc(u, uT ) is a certain type of loss and u, uT denote

the pairwise similarities of codes generated from the student

and the teacher respectively. Eq. (6) is quite different from

the original Mean Teacher [23] in which only the single data

point is considered for training.

For Eq. (6), We propose two efficient losses named con-

sistent similarity loss and quantized similarity loss.

Consistent Similarity Loss It is expected that the

learned codes should follow the smoothness assumption in

that a noisy input query correspond to the consistent re-

trieval results. To what follows, the similarities of codes

between the noisy data pairs should be consistent. As il-

lustrated in Figure 1(b.2), if x1,x2 is quite similar and so

as x3,x4, the difference between sim(H(x1), H(x3)) and

sim(HT (x2), HT (x4)) should be small. Thus the consis-

tent similarity loss is defined with

lc(u, uT ) = (u− uT )
2 (7)

where lc(u, uT ) are the same as Eq. (6). We rename the Ru

as Rup if Eq. (7) is introduced.

Quantized Similarity Loss The consistent similarity

loss is only able to capture the locally structure of a certain

data pair, ignoring the global structure between samples. In-

spired by the quantization methods in which large amount

of information can be compressed with quantization [8], we

quantize the pairwise similarity produced by the ensembled

teacher to guide the hash learning. As the quantization pro-

cedure is based on global unlabeled data pairs, it is expected

that the quantized similarities contain global pairwise infor-

mation, leading to better learned codes.

We denote W ∈ {0, 1}n×n as the quantized similarity

matrix to be learned, where n is the number of training sam-

ples. Denote Wij as the element at ith row and jth column,

thus Wij = 1 indicates xi and xj are pseudo similar pair,

and 0 otherwise. Considering the teacher output HT (x) is

the ensemble of embedded codes of x, HT (x) can be re-

garded as the precise feature embedding of the data point

x. To what follows, we use the teacher output to determine

the pseudo similar pairs. The similarity matrix is defined

according to the distances of teacher output such that

Wij =

{

1 uTij ≥ thr

0 uTij < thr
(8)

where uTij = sim(HT (x̃i
(2)), HT (x̃j

(2))) is defined the

same as Eq. (6), thr is the threshold, which is set accord-

ing to the dataset. In practical applications, the distribution

between labeled and unlabeled pairs are expected to be the

same. We can set thr such that the ratio of pseudo sim-

ilar pairs is the same as the ratio of similar pairs among

labeled pairs, so that the distribution of similarities in unla-

beled data are expected to the same as labeled ones.

Given the generated pseudo similarity pairs, we can sim-

ply train the student with Eq. (1) to capture the global struc-

ture of the hashcodes. We propose the quantized similarity

loss by defining lc such that:

lc(u12, uT12) = l(u12,W12) (9)

where l(·, ·) has the same form as Eq. (1). It should be

noticed that Eq. (9) can be regarded as the ranking loss for

the global data pairs in that similar representations produced

by the teacher are more likely to be pseudo similar pairs. We

rename Ru as Ruq if Eq. (9) is introduced.

Overall Training Loss The overall training loss is de-

fined the same as Eq. (2), where Ls is defined in Eq. (1),

and Ru can be regarded as the combination of consistent

similarity loss and quantized similarity loss such that

Ru = Rup + γRuq (10)

As the teacher outputs in Eq. (10) lead to better repre-

sentations and can model the pairwise information locally

and globally, it is expected that the proposed loss can better

meet the smoothness assumptions. Moreover, the hamming

distances is accordant with the similarities on both labeled

and unlabeled data.

Implementation and Relaxation Eq. (10) conveys that

both the original and the perturbed samples should be fed

into the network. For simplicity, we just regard the per-

turbed data as input, shown in Figure 1.

It is clear that directly optimizing Eq. (2) is intractable as

the discrete constraints are involved. As used in most deep

hashing algorithms [3, 28, 27], the simple and efficient way

is removing the sgn function and adding the quantization

loss. We reformulate the relaxed problem as follows

min
F

L = L(r)
s +ωR(r)

u +η
1

|X |

∑

x∈X

‖h−F (x̃(1))‖1 (11)

where h = sgn(F (x̃(1))), L
(r)
s ,R

(r)
u is the relaxation of

Eq. (1,10) respectively such that

L(r)
s =

1

|S|

∑

(i,j)∈S

l(ur
ij , sij)

R(r)
u =

1

|X |2

∑

x1,x2∈X

[

(ur
12 − ur

T12)
2 + γl(ur

12,W12)
]

(12)

For L
(r)
s , we directly remove the sgn function to com-

pute ur
ij , and ur

ij is defined the same as that in Eq. (1).

For R
(r)
u , we use ur

12 = sim(F (x̃1
(1)), F (x̃2

(1))), ur
T12 =

sim(FT (x̃1
(2)), FT (x̃2

(2))), and sim(s, t) = −‖ s

‖s‖ −
t

‖t‖‖
2 where ‖·‖ is the L2 normalization. The use of L2 nor-

malization is inspired by the original Mean Teacher where

the consistent output is the normalized probabilities.



Algorithm 1 Mini-batch Training of PTS3H

Require: Input data X , pairwise labels S , parameters

ω(t), η, γ, α
1: for t in num-epochs do

2: Determine the unsupervised weight ω = ω(t)
3: for each mini-batch B do

4: for xi ∈ B do

5: Sample two random perturbations x̃i
(1), x̃i

(2)

6: end for

7: for (xi,xj) ∈ B ×B do

8: Compute Wij by Eq. (8)

9: end for

10: Compute mini-batch version of L such that replac-

ing X with B in Eq. (12)

11: Update θ with optimizers, e.g. SGD

12: Update θT with Eq. (5)

13: end for

14: end for

15: return learned student and teacher networks

As a result, the consistent pairwise losses can capture

both the local and global neighborhood structure. More-

over, semantic information can be embedded with super-

vised pairwise loss, and the real-valued space is able to be

mapped into hamming space with the quantization loss.

3.3. Mini­batch Optimization

The training procedure is roughly the same as [23]. The

teacher is updated by Eq. (5) each iteration, and the stu-

dent is trained with back-propagation. We use the ramp-up

procedure for both the learning rate and the regularization

term ω = ω(t) in the beginning of training. The training

algorithm is summarized in Algorithm 1.

We mainly focus on training the student network. The

student is trained by optimizing Eq. (11) with SGD.

We randomly sample mini-batch to estimate the losses for

each iteration, where we just compute the pairwise losses

L
(r)
s ,R

(r)
u within each mini-batch B, and so as computing

the pesudo similar pairs. The overall complexity of the loss

just O(a|B| + |B|2) where a is the cost of network and

a > B if |B| is small. It is clear that the network takes main

computation time. To utilize both the labeled and unlabeled

data, the ratio of number of labeled data pairs and unlabeled

ones is constant in a mini-batch.

4. Experiments

In this section, we conduct various large-scale retrieval

experiments to show the efficiency of the proposed PTS3H

method. We compare our PTS3H method with recent state-

of-the-art semi-supervised deep hashing methods on the re-

trieval performance. Some ablation studies and sensitivity

of parameters are also discussed in this section.

4.1. Datasets and Evaluation Metrics

We run large-scale retrieval experiments on three im-

age benchmarks: CIFAR-101, Nuswide2 and ImageNet-

100. CIFAR-10 consists of 60,000 32 × 32 color images

from 10 object categories. ImageNet-100 is the subset

of ImageNet dataset3 with 100 randomly sampled classes.

Nuswide dataset contains about 220K available images as-

sociating with 81 concept labels. Following [17], we only

use the images associated with the 21 most frequent labels,

where the total number of images is about 190K.

The experimental protocols are similar with [26]. In

CIFAR-10 dataset, we randomly select 1,000 images (100

images per class) as query set, the rest 59,000 images as

retrieval database where 5,000 images are selected as the

training data. In Nuswide, we randomly select 2,100 images

(100 images per class) as the query set and 10,500 images

as the training set. In ImageNet-100, we use the same data

split as HashNet [4] such that select 130 images per class

for training, and regard all images in the selected classes

from the validation set as the queries. The rest unlabeled

data in the database are regarded as the unlabeled dataset.

As we just consider the pairwise similarity for training,

the data pairs are constructed among the training data. For

these dataset, similar images share at least one semantic la-

bel. The rest data pairs(pairs between unlabeled data and all

the database) are regarded as the unlabeled pairs.

Our method is implemented with the PyTorch4 frame-

work. We adopt the pre-trained AlexNet [10] for deep hash-

ing methods but replace the last fully-connected layer. The

images are resized to 224 × 224 to train the network. For

supervised pairwise loss in Eq. (1), we mainly use the DSH

loss and DPSH loss and name them as PTS3H-DSH and

PTS3H-DPSH respectively. SGD with momentum 0.9 is

used for optimization, and the initial learning rate of the

last layer is 10−2 which is ten times larger of the lower

layers. The hyper-parameters ω, µ, α is different accord-

ing to datasets, which are selected with the validation set.

We first of all randomly select part of training data as vali-

dation set to determine the parameters. For CIFAR-10, we

use {ω = 0.8, γ = 0.5, η = 0.004} with DSH loss and

{ω = 0.02, γ = 0.5, η = 0.01} with DPSH loss; For

Nuswide, we use {ω = 0.8, γ = 0.1, η = 0.01} with DSH

loss and {ω = 0.2, γ = 0.1, η = 0.01} with DPSH loss.

For ImageNet-100, we use {ω = 0.5, γ = 0.1, η = 0.004}
with DSH loss and {ω = 0.5, γ = 0.02, η = 0.004} for

DPSH loss. Following [23], we set α = 0.995, and the

ratio of number of unlabeled data pairs and labeled data

1http://www.cs.toronto.edu/˜kriz/cifar.html
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
3http://image-net.org
4http://pytorch.org/



Method Net
CIFAR-10 Nuswide ImageNet-1004

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 16 bits 32 bits 48 bits 64 bits

Semi-Supervised Hashing

SSDH VGG-F 0.801 0.813 0.812 0.814 0.773 0.779 0.778 0.778 -1 - - -

BGDH VGG-F 0.805 0.824 0.826 0.833 0.803 0.818 0.822 0.828 - - - -

PTS3H-DSH AlexNet
0.798 0.828 0.835 0.843 0.752 0.774 0.783 0.789 0.612 0.680 0.697 0.703

(+0.056) (+0.034) (+0.026) (+0.023) (+0.012) (+0.012) (+0.019) (+0.016) (+0.023) (+0.032) (+0.047) (+0.041)

PTS3H-DPSH AlexNet
0.789 0.799 0.801 0.805 0.803 0.827 0.831 0.842 0.397 0.542 0.618 0.634

(+0.038) (+0.028) (+0.025) (+0.027) (+0.004) (+0.006) (+0.003) (+0.009) (+0.018) (+0.014) (+0.027) (+0.026)

Supervised Hashing Baselines

DSH2 AlexNet 0.741 0.794 0.809 0.820 0.740 0.762 0.764 0.773 0.589 0.648 0.650 0.662

DPSH2 AlexNet 0.751 0.771 0.776 0.778 0.799 0.821 0.827 0.834 0.379 0.528 0.591 0.608

DSDH VGG-F 0.740 0.786 0.801 0.820 0.776 0.808 0.820 0.829 - - - -

DISH AlexNet 0.758 0.784 0.799 0.791 0.787 0.810 0.810 0.813 - - - -

HashNet3 AlexNet 0.6863 - 0.692 0.718 0.7333 - 0.755 0.762 0.502 0.622 0.661 0.682

DMDH3 AlexNet 0.7043 - 0.732 0.737 0.7513 - 0.781 0.789 0.513 0.612 0.673 0.692

MIHash AlexNet 0.738 0.775 0.791 0.816 0.773 0.820 0.831 0.843 0.569 0.661 0.685 0.694

1: Results not available. 2: Our own implementation on the three datasets and most results are better than previously reported. 3: Results of HashNet, DMDH are referenced

from DMDH [5]. 4: Results at 16 bits.

Table 1. Accuracy in terms of MAP for the semi-supervised and supervised hashing methods. The numbers in blankets are the relative gain

compared with the baselines. Unless specified, the results are directly drawn from the original papers.

pairs within a minibatch is 15. The image perturbation

strategy includes random resize, random cropping, random

horizontal flipping, etc. The training is done on a server

with two Intel(R) Xeon(R) E5-2683 v3@2.0GHz CPUs,

256GB RAM and a Geforce GTX TITAN Pascal with 12GB

memory. We train 60 epochs for CIFAR-10, 20 epochs for

Nuswide, and 240 epochs for ImageNet-100. We apply the

teacher network to generate hashcodes.

Similar with [26, 4], for each retrieval dataset, we re-

port the compared results in terms of mean average preci-

sion(MAP), precision at Hamming distance within 2, pre-

cision of top returned candidates. We calculate the MAP

value within the top 5000 returned neighbors for NusWide

and top 1000 for ImageNet-100, and report the MAP of all

retrieved samples on CIFAR-10. Groundtruths are defined

by whether two candidates are similar. We run each experi-

ment for 5 times and get the average result.

4.2. Results

We compare our PTS3H method with recent state-

of-the-art deep hashing methods including SSDH [28],

BGDH [27]. We do not take DSH-GANs [20] into con-

sideration as it utilizes the label of each data point. Results

on supervised hashing methods like DSH [15], DPSH [13],

DSDH [12], DISH [29], DMDH [5] and MIHash [2] are

also proposed for comparison. They follow similar set-

tings, and the network used is either VGG-F or AlexNet,

which share similar architectures. We report the result of

supervised hashing in table 1 to show that DSH and DPSH

are good supervised hashing algorithms, thus we regard

the DSH and DPSH loss as the baselines of PTS3H-DSH

and PTS3H-DPSH respectively. We also report the relative

gains of the PTS3H compared with the supervised baselines.

Retrieval results of different methods are shown in Ta-

ble 1 and Figure 2. We re-implement the DSH and DPSH

algorithms, and most results are better than previously re-
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Figure 2. Precision at Hamming distance within 2 value and top-k

precision curve of different deep hashing methods. AlexNet/VGG-

F is used for pre-training in these algorithms.

ported. Note that the settings of Imagenet-100 are the same

as that in [4]. Under the same setting, the proposed PTS3H

algorithm performs much better than the baselines by about

1-5 % on MAP and precision at Hamming distance within

2 value, which conveys that the proposed semi-supervised

setting is able to capture more semantic information. More-

over, our semi-supervised algorithm achieves much better

retrieval performance at most bits if proper supervised base-

lines are selected (DSH for CIFAR-10,ImageNet-100 and



Method Dataset
MAP Precision

32 bits 48 bits 32 bits 48 bits

PTS3H-P

CIFAR-10

0.829 0.838 0.829 0.827

PTS3H-Q 0.817 0.826 0.821 0.814

PTS3H 0.835 0.843 0.832 0.829

PTS3H-P

Nuswide

0.777 0.787 0.763 0.727

PTS3H-Q 0.772 0.777 0.759 0.710

PTS3H 0.782 0.789 0.770 0.737

Table 2. Results of the variants of the proposed PTS3H algorithm

on CIFAR-10 and Nuswide dataset. PTS3H and PTS3H-S are both

proposed method but the codes are generated by the teacher and

the student respectively. AlexNet is used for pre-training. Preci-

sion denotes the precision at Hamming distance within 2 value.

DPSH for Nuswide), showing the effectiveness of the pro-

posed teacher-student architecture.

It should be noticed that the classification performance

of VGG-F is slightly better than AlexNet, thus the hash-

ing performance is expected not to decrease and may even

be better if replacing AlexNet with VGG-F. Moreover, the

proposed baselines are widely used but not the state-of-the-

art, thus it is expected to achieve better results if adopting

the state-of-the-art supervised hashing methods [5].

4.3. Ablation Study

In order to verify the effectiveness of our PTS3H method,

several variants are also considered. First we set γ = 0 to

show the effectiveness of the Rup, named PTS3H-P. Then

we remove Rup to show the effectiveness of Ruq , denote

PTS3H-Q. The hyper-parameters of the variants are deter-

mined with the validation set. Retrieval results are shown

in Table 2. The consistent similarity loss reaches about

70% performance gain as it produces consistent simialri-

ties for smooth data pairs. The quantized similarity loss

also achieves better performance as they model the pair-

wise similarities for perturbed inputs with global informa-

tion. It should be noticed that there are little performance

gain on MAP with the quantized similarity loss for Nuswide

dataset, as the distribution of similar pairs underlying the

dataset is a little complicated. Better results may achieved

if better similarity construction strategy is involved.

4.4. Sensitivity to Parameters

In this section, the influence on different setting of the

proposed PTS3H is evaluated. The code length is 48 and we

use DSH loss for evaluation. We do not report the influence

on η as it has been discussed in the original papers [15, 13].

Influence of ω Figure 3(a)(b) shows the performance on

different values of ω. It can be seen clearly that setting a

certain ω achieves better hashing performance. It means

that a proper consistent weight ω can arrive at better semi-

supervised training.

Influence of γ Figure 3(c)(d) shows the performance on

different values of γ. It should be noticed that a proper ω is

set for different γ. There are some improvement for a proper
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Figure 3. Comparative results of different hyper-parameters on

CIFAR-10 and Nuswide dataset. The code length is 48. We use

the DSH loss for training.

γ, especially the precision at Hamming distance within 2

value on Nuswide dataset. Similar as ω, a proper γ should

be set for better performance.

5. Conclusion and Future Work

In this paper, we propose a novel semi-supervised hash-

ing algorithm named PTS3H in which the pairwise super-

vision and abundant unlabeled data are provided. The

proposed PTS3H is a teacher-student network architecture

which is carefully designed for labeled and unlabeled pairs.

We propose the general consistent pairwise loss in which

the pairwise information generated by the teacher network

guides the training of the student. There are two types of

losses: consistent similarity loss models the locally pair-

wise information, and quantized similarity loss models the

information globally by quantizing the similarities between

samples. This procedure aims at generating similar retrieval

results for neighborhood queries. Experiment shows that

the proposed PTS3H achieves great improvement over the

baselines, and it is superior or comparable with the state-of-

the-art semi-supervised hashing algorithms.

It should be noticed that we use the popular pairwise loss

baselines and achieve good hashing results. As the pro-

posed PTS3H algorithm is a general framework for semi-

supervised hashing, it is expected to arrive at better re-

trieval performance by incorporating the state-of-the-art su-

pervised hashing algorithm with pairwise supervisions.
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