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Abstract

Anti-spoofing attack detection is critical to guarantee the

security of face-based authentication and facial analysis

systems. Recently, a multi-modal face anti-spoofing dataset,

CASIA-SURF, has been released with the goal of boosting

research in this important topic. CASIA-SURF is the largest

public data set for facial anti-spoofing attack detection in

terms of both, diversity and modalities: it comprises 1, 000
subjects and 21, 000 video samples. We organized a chal-

lenge around this novel resource to boost research in the

subject. The Chalearn LAP multi-modal face anti-spoofing

attack detection challenge attracted more than 300 teams

for the development phase with a total of 13 teams qualify-

ing for the final round. This paper presents an overview of

the challenge, including its design, evaluation protocol and

a summary of results. We analyze the top ranked solution-

s and draw conclusions derived from the competition. In

addition we outline future work directions.

1. Introduction

As an important branch of biometric recognition, face

recognition (FR) is being increasingly used in our daily

life for tasks such as phone unlocking, access authentica-

tion and control, and face-payment [5, 34]. Because of its

wide applicability and usage, FR systems can be an attrac-

tive target for identity attacks. For instance, unauthorized

people trying to get authenticated via face presentation at-

tacks (PAs), such as a printed face photograph (print attack),

displaying videos on digital devices (replay attack), or 3D

masks attack. These PAs make face recognition system-

s vulnerable, even if they achieve near-perfect recognition

performance [1]. Therefore, face presentation attack detec-

tion (PAD), commonly called face anti-spoofing, is a critical

step to ensure that FR systems are safe against face attacks.
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Ranking Team Name Affiliation

1 VisionLabs VisionLabs

2 ReadSense ReadSense

3 Feather Intel

4 Hahahaha Megvii

5 MAC-adv-group Xiamen University

6 ZKBH Biomhope

7 VisionMiracle VisonMarcle

8 GradiantResearch Gradiant

9 Vipl-bpoic ICT, CAS

10 Massyhnu Hunan University

11 AI4all BUPT

12 Guillaume Idiap Research Institute

invited team Vivi Baidu

Table 1. Team and affiliations name are listed in the final ranking

of this challenge.

State-of-the-art face PAD algorithms [17, 15] have

achieved high recognition rates in the intra-testing (i.e.,

training and testing with the same dataset). However, they

generally show low performance when a cross-testing (i.e.,

training and testing data come from different datasets) sce-

nario is considered. Therefore, face PAD remains a chal-

lenging problem, mainly due to lack of generalization capa-

bilities of existing methods. This is largerly due to the fact

that current face anti-spoofing databases have not enough

subjects (≤ 170), or lack from fruitful samples (≤ 6, 000
video clips) [25] compared with image classification [8] or

face recognition databases [34], which severely limits the

type of methods that can be used to approach the PAD prob-

lem (e.g. deep learning models). Another missing feature

in existing datasets (e.g., [9, 5]) is the availability of multi-

modal information. This sort of extended information may

be very helpful for developing more robust anti-spoofing

methods. The above mentioned problems seriously hinder

novel technology developments in the field.
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Figure 1. A processed Attack 5 sample, more shown in [25]

In order to deal with previous drawbacks, a large-scale

multi-modal face anti-spoofing dataset, called CASIA-

SURF [25], has been collected. The data set consists of

1, 000 different subjects and 21, 000 video clips with 3
modalities (RGB, Depth, IR). Based on this dataset, we or-

ganized the Chalearn LAP multi-modal face anti-spoofing

attack detection challenge collocated with CVPR2019. The

goal of this competition was to boost research progress on

the PAD, in a scenario where plenty of data and differen-

t modalities are available. The challenge was run in the

Codalab1 platform. More than 300 academic research and

industrial institutions worldwide participated in this chal-

lenge, and finally thirteen teams entered at the final stage.

A summary with the names and affiliations of teams that

entered the final stage are shown in Table 1. Interestingly,

compared with the previous challenges [4, 6, 2], the ma-

jority of the final participants (ten out of thirteen) of this

competition come from the industrial community, which in-

dicates the increased importance of the topic for daily life

applications.

To sum up, the contributions of this paper are summa-

rized as follows: (1) We describe the design of the Chalearn

LAP multi-modal face anti-spoofing attack detection chal-

lenge. (2) We organized this challenge around the CASIA-

SURF datsaset, proving the suitability of such resource for

boosting research in the topic. (3) We report and analyze

the solutions developed by participants. (4) We point out

critical points on the face anti-spoofing detection task by

comparing essential differences between a real face and a

fake one from multiple aspects, discussing future lines of

research in the field.

2. Challenge Overview

In this section we review the organized challenge, in-

cluding a brief introduction of the CASIA-SURF dataset,

the evaluation metric, and the challenge protocol.

CASIA-SURF. The CASIA-SURF dataset is, to the best of

our knowledge, the largest existing one in terms of subjects

and videos [25]. Each sample of the dataset is associated

to three modalities captured with an Intel RealSense SR300

1https://competitions.codalab.org/competitions/

20853

camera. Each sample comprises 1 live video clip, and 6
fake video clips under different attacks (one attack way per

fake video clip, shown in 1). A total of 1, 000 subjects and

21, 000 videos were captured for building this dataset.

We relied on this dataset for the organization of the

ChaLearn Face Anti-spoofing Attack Detection Challenge.

Accordingly, the CASIA-SURF data set was processed as

follows. (1) The dataset was split in three partitions: train-

ing, validation and testing sets, with 300, 100 and 600 sub-

jects, respectively. This partitioning corresponds to 6,300

(2,100 per modality), 2,100 (700 per modality), 12,600

(4,200 per modality) videos for the corresponding partition-

s. (2) For each video, we retained 1 out every 10 frames to

reduce its size. This subsmapling strategy results in: 148K,

48K, 295K frames for training, validation and testing sub-

sets, respectively. (3) The background except face areas

from original videos was removed to increase the difficulty

of the task.

Evaluation. In this challenge, we selected the recently s-

tandardized ISO/IEC 30107-32 metrics: Attack Presenta-

tion Classification Error Rate (APCER), Normal Presenta-

tion Classification Error Rate (NPCER) and Average Classi-

fication Error Rate (ACER) as the evaluation metrics, these

are defined as follows:

APCER = FP/ (FP + TN) (1)

NPCER = FN/ (FN + TP ) (2)

ACER = (APCER+NPCER) /2 (3)

where TP, FP, TN and FN corresponds to true positive,

false positive, true negative and false negative, respective-

ly. APCER and BPECER are used to measure the error rate

of fake or live samples, respectively. Inspired by face recog-

nition, the Receiver Operating Characteristic (ROC) curve

is introduced for large-scale face Anti-spoofing detection in

CASIA-SURF dataset, which can be used to select a suit-

able threshold to trade off the false positive rate (FPR) and

true positive rate (TPR) according to the requirements of

real applications. Finally, The value TPR@FPR=10−4 was

the leading evaluation measure for this challenge. APCER,

NPCER and ACER measures were used as additional eval-

uation criteria.

Challenge protocol. The challenge was run in the CodaL-

abplatform, and comprised two stages as follows:

Development Phase: (Started: Dec. 22, 2018 - Ended:

in March 6, 2019). During this phase participants had ac-

cess to labeled training data and unlabeled validation sam-

ples. Participants could use training data to develop their

models, and they could submit predictions on the valida-

tion partition. Training data was made available with sam-

ples labeled with the genuine and 3 forms of attack (4,5,6).

2https://www.iso.org/obp/ui/iso
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Whereas samples in the validation partition were associat-

ed to genuine and 3 different attacks (1,2,3). For the latter

dataset, labels were not made available to participants. In-

stead, participants could submit predictions on the valida-

tion partition and receive immediate feedback via the leader

board. The main reason for including different attack type-

s in the training and validation dataset was to increase the

difficulty of FAD challenge.

Final phase: (Started: March 6, 2019 - Ended: March

10, 2019). During this phase, labels for the validation sub-

set were made available to participants, so that they can

have more labeled data for training their models. The unla-

beled testing set was also released, participants had to make

predictions for the testing partition and upload their solu-

tions to the challenge platform. The considered test set was

formed by examples labeled with the genuine label and 3 at-

tack types (1,2,3). Participants had the opportunity to make

3 submissions for the final phase, this was done with the

goal of assessing stability of their methods. Note that the

CodaLab platform defaults to the result of the last submis-

sion.

The final ranking of participants was obtained from the

performance of submissions in the testing sets. To be eli-

gible for prizes, winners had to publicly release their code

under a license of their choice and provide a fact sheet de-

scribing their solution.

3. Description of solutions

The face anti-spoofing problem has been studied for

decades. Some previous work [20, 29] attempted to detect

evidence of liveness in samples (i.e., eye-blinking). Oth-

er works were based on contextual information [21, 16]

(i.e., attack material and screen moir). As deep learning

has proven to be very effective in many computer vision

problems, CNN-based methods are also present now in the

face PAD community [10, 17, 15]. They treat face PAD as a

binary classification problem, achieving remarkable perfor-

mance in intra-testing evaluation.

For the organized challenge, no team used traditional

methods for FAD, such as detecting physiological signs of

life, like eye blinking, facial expression changes and mouth

movements. Instead, all submitted face PAD solutions re-

lied on model-based feature extractors, such as ResNet [12],

VGG16 [26], etc. In the rest of this section we describe the

methods based on the ranking order (except Baseline and

Vivi) on the testing data set developed by the participants

that made it to the final stage; a summary is provided in

Table 2.

Baseline. Before the challenge, we built a strong baseline

for approaching the task, our goal was to have a method

of competitive performance for this datast. A detailed de-

scription of the baseline in provided in [25]. In short, we

considered the face anti-spoofing problem as a binary clas-

sification task (fake v.s real) and conducted the experiments

based on the ResNet-18 [12] classification network. In or-

der to make full use of the characteristics between differ-

ent modalities, inspired by [13], we proposed the squeeze

and excitation fusion method that uses the “Squeeze-and-

Excitation” branch to enhance the representational ability

of the different modalities’ feature by explicitly modelling

the interdependencies among different convolutional chan-

nels.

VisionLabs. This method used a modified network archi-

tecture as in [25]. As shown in Figure 2, the RGB, Depth

and IR inputs were processed by separate streams followed

by concatenation and fully-connected layers. Unlike [25],

they used aggregation blocks (AGG res2, AGG res3, AG-

G res4) to aggregate outputs from multiple layers of the

network. Then, they pre-train network weights on four d-

ifferent tasks for face and gender recognition, and fine-tune

these networks separately on the training set of the CASIA-

SURF. It is worth noting that they split the training set in-

to three folds according to different attacks present in the

training subset to increase robustness to unknown attack-

s. Finally, the outputs of three networks were combined by

averaging to produce results on the final validation and test

sets.

ReadSense. This team relied on local features. They used a

shallow SEresnext [13] to classify the multi-modal face im-

ages based on image patches in variant scale. To further im-

prove the performance, a multi-stream fusion network with

three-modal images was utilized. The fusion network was

trained from scratch with RGB, Depth and IR data at the

same time. Moreover, data augmentation was applied and

modalities were randomly dropped during training. For op-

timization, they followed a cyclic cosine annealing learning

rate schedule[14] which yielded better performance.

Feather. The main idea of this team’s solution was to pro-

cess multi-modal images sequentially in a cascaded net-

work, as shown in Figure 3. Participants considered that

depth information plays a key role between live and spoof

faces based on the fact that live faces have face-like depth,

e.g., the nose is closer to the camera than the cheek in

frontal-view faces, while faces in print or replay attacks

have flat or planar depth, e.g., all pixels on the image of

a paper have the same depth to the camera. Furthermore,

IR data was adopted in at end of network which measures

the amount of heat radiated from a face which can provides

strong error correction for reducing FP (false positive) sam-

ples greatly. Therefore, the process is divided into the fol-

lowing two stages: Stage 1: Four ensemble networks with

depth modal as input respectively and output the scores of

classification by voting. Stage 2: A MobileLiteNet fol-

lowed by stage 1 which takes the IR modal as input to judge

the fake samples further. The basic networks of these two

phases are Fishnet [27] and MobileNetv2 [24] respectively.
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Figure 2. Provided by VisionLabs team. Deep layer aggregation architecture of VisionLabs.

Figure 3. Provided by Feather team. The network structure of

Feather team, in which the FeatherNet and MobileLiteNet are

modified by Fishnet [27] and MobileNetv2 [24] respectively.

Hahahaha. Their base model is a Resnext [33] which was

pre-trained with the ImageNet dataset [8]. Then, they fine-

tune the network on aligned images with face landmark and

use data augmentation to strengthen the generalization abil-

ity.

MAC-adv-group. This solution used the Resnet-34 [12] as

base network. To overcome the influence of illumination

variation, they convert RGB image to HSV color space.

Then, they sent the features extracted from the network into

a fully-connected layer and a binary classification layer.

ZKBH. Analyzing the training, valid and test sets, partici-

pants assumed that the eye region is promising to get good

performance in FAD task based on an observation that the

eye region is the common attack area. After several trials,

the input of the final version they submitted adopted quarter

face containing the eye region. Different from prior works

that regard the face anti-spoofing problem as merely a bina-

ry (fake v.s real) classification problem, this team construct-

ed a regression model for differentiating the real face and

the attacks.

VisionMiracle. This solution was based on the modified

shufflenet-V2[18]. The feature-map was divided into two

branches after the third stage, and connected in the fourth

Figure 4. Provided by GradiantResearch team. General diagram

of the GradiantResearch team.

stage.

GradiantResearch. The fundamental idea behind this so-

lution was the reformulation of the face presentation at-

tack detection problem (face-PAD) following an anoma-

ly detection strategy using deep metric learning. The ap-

proach can be split in four stages (Figure 4): Stage 1:

using a pre-trained model for face recognition and apply

a classification-like metric learning approach in GRAD-

GPAD dataset [7] using only RGB images. Stage 2: they

fine-tune the model obtained in Stage 1 with the CASIA-

SURF dataset using metric learning for anomaly detection

(semi-hard batch negative mining with triplet focal loss)

adding Depth and IR images to the input volume. Once

the model converged, they trained an SVM classifier using

the features of the last fully connected layer (128D). Stage

3: they trained an SVM classifier using the normalized his-

togram of the depth image corresponding to the cheek re-

gion of the face (256D). Stage 4: they performed a simple

stacking ensemble of both models (Stage 2 and Stage 3) by

training a logistic regression model with the scores in the

training split.
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Team Name Method Model Pre-trained data Modality Pre-process
Additional

FAD dataset

Fusion

and Loss function

VisionLabs

Fine-tuning

Ensembling

Resnet-34 [12]

Resnet-50 [12]

Casia-WebFace [34]

AFAD-Lite [19]

MSCeleb1M [11]

Asian dataset [35]

RBG

Depth

IR

Resize No

Squeeze and

Excitation Fusion

Score fusion

SoftmaxWithLoss

ReadSense

Bag-of-local

feature

Ensembling

SEresnext [33] No

RBG

Depth

IR

Crop image

patches

Image

augmentation

No

Squeeze and

Excitation Fusion

Score fusion

SoftmaxWithLoss

Feather Ensembling

Fishnet [27]

MobileNetv2 [24]
No

Depth

IR

Resize

Image adjust

Private FAD

data

Score fusion

SoftmaxWithLoss

Hahahaha
Only using

depth images
Resnext [33] Imagenet [8] Depth

Data

augmentation

Aligned faces

No SoftmaxWithLoss

MAC-adv-group
Features

fusion
Resnet-34 No

RBG

Depth

IR

Transfer

color space
No

Features fusion

SoftmaxWithLoss

ZKBH

Using

regression

model
Resnet-18 No

RBG

Depth

IR

Crop image

Image

augmentation

No

Data fusion

Regression loss

VisionMiracle
Modified

shufflenet-V2
Shufflenet-V2 [18] No Depth

Image

augmentation
No SoftmaxWithLoss

Baseline [25]
Features

fusion
Resnet-18 No

RBG

Depth

IR

Resize

Image

augmentation

No SoftmaxWithLoss

GradiantResearch

Deep

metric

learning

Inception

resnet v1 [28]

VGGFace2 [3]

GRAD-GPAD [7]

RBG

Depth

IR

Crop image

Image

augmentation

No

Stacking

ensemble

Logistic

regression

Vipl-bpoic
Attention

mechanism [31]
ResNet-18 No

RBG

Depth

IR

Control

positive and

negative sample

ratio

No

Data fusion

Center loss [30]

SoftmaxWithLoss

Massyhnu Ensembling
9 Softmax

classifiers
No

RBG

Depth

IR

Resize

Transfer

color space

No

Color

information fusion

SoftmaxWithLoss

AI4all
Only using

depth images
Vgg16 [26] No Depth

Resize

Image

augmentation

No SoftmaxWithLoss

Guillaume
Multi-Channel

CNN
LightCNN [32] Yes

Depth

IR
Resize No

Data fusion

SoftmaxWithLoss

Vivi

A dense-

cross-modality-

attention model
Densenet [36] Yes

RBG

Depth

IR

Image

augmentation

Transfer

color space

Private FAD

data

Features fusion

Score fusion

SoftmaxWithLoss

Table 2. Summary of the methods for all participating teams.

Vipl-bpoic. This team focused on improving face anti-

spoofing generalization ability by proposing an end-to-end

trainable face anti-spoofing model with attention mechanis-

m. Due to the sample imbalance, they assign the weight of

1:3 according to the number of genuine and spoof faces in

Training set. Subsequently, they fuse the three modal im-

ages including RGB, Depth and IR into 5 channels as the

input of ResNet-18 [12] which integrated with the convo-

lutional block atttention module. The center loss [30] and

cross-entropy loss are adopted to constrain the learning pro-

cess in order to get more discriminative cues of FAD finally.

Massyhnu. This team paid attention to color information
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Val Test

NN1 NN1a NN2 NN3 NN4 TPR TPR

@FPR=10e-4 @FPR=10e-4

X 0.9943 -

X 0.9987 -

X 0.9870 -

X 0.9963 -

X 0.9933 -

X X 0.9963 -

X X X 0.9983 -

X X X 0.9997 -

X X X X 1.0000 -

X X X X 1.0000 0.9988

Table 4. Provided by VisionLabs team. The results on the valid and

test sets of the VisionLabs team, different NN modules represent

different pre-trained Resnet [12].

fusion and ensemble learning [23, 22].

AI4all. This team used VGG16 [26] as the backbone for

face PAD.

Guillaume. Their method consists in a Multi-Channel con-

volutional Neural Network (MC-CNN) taking a face images

of different modalities as input. Near-infrared and depth im-

ages only have been used in their approach. The architec-

ture of the proposed MC-CNN is based on the second ver-

sion of the LightCNN [32] containing 29 layers. Also, the

pretrained LightCNN model is used as a starting point for

their training procedure. The training consists in the fine-

tuning of the low-level convolutional layers of the network

in each modalities, and in learning the final fully connected

layers.

Vivi. A dense-cross-modality-attention model was trained

by using the Depth, RGB and IR dataset. In this net-

work, a dense connected structure was used in every single

modality and the cross-modality attention mechanism was

designed to transfer information from different modalities.

After the cross-modality backbone was designed, they used

the paddle-auto-ml 3 tool to search for the hyperparameters

of the network such as channel numbers and kernel sizes.

In addition, they collected a large amount of data in three

modalities same with CASIA-SURF.

4. Challenge Results

In this section, we present the results obtained by the

thirteen teams that qualified to the final phase. Then, the

effectiveness of proposed algorithms are analyzed. Finally,

we point out some limitations of the algorithms proposed

by participating teams.

4.1. Challenge Results Report

In order to evaluate the performance of solutions, we

adopted the following metrics: APCER, NPCER, ACER

3http://www.paddlepaddle.org/paddle/ModelAutoDL

Figure 5. ROC curves of final stage teams on test set.

and TPR in the case of FPR=10−2, 10−3, 10−4 respec-

tively, and the scores retained 6 decimal places for all re-

sults. The scores and ROC curves of participating teams

on the testing partitions are shown in Table 3 and Figure 5

respectively. Please note that although we report perfor-

mance for a variety of evaluation measures, the leading met-

ric was TPR@FPR=10−4. It can be observed that the best

result (VisionLabs) achieves TPR=99.9885%, 99.9541%,

99.8739% @FPR=10−2, 10−3, 10−4, respectively, and the

TP = 17430, FN = 28, FP = 1, TN = 40251 respectively on

the test data set. In fact, different application scenarios have

different requirements for each indicator, such as in higher

security access control, the FP is required to be as small as

possible. While, a small FN value is more important in the

case of troubleshoot suspects. Overall, the results of the first

eight teams are better than the baseline method [25] when

FPR = 10−4 on test data set.

4.2. Challenge Results Analysis

As shown in Table 3, the results of the top three teams

on test data set are clearly superior to other teams, reveal-

ing that ensemble learning has an exceptional advantage in

deep learning compared to single model solutions under the

same conditions, such as in Table 4 and Table 2. Simulta-

neously, analyzing the stability of the results of all partici-

pating teams’ submission from the ROC curve 5, the three

teams are significantly better than other teams on testing

set (e.g., TPR@FPR=10−4 values of these three teams are

relatively close and superior to other teams). The team of

ReadSense applies the image patch as input to emphasize

the importance of local features in FAD task. The result

of FN = 1 shows that the local feature can effectively pre-

vent the model from misclassifying the real face into an at-

tack one, shown in the blue box of Figure 6. Similarly, Vivi

and Vipl-bpoic introduce the attention mechanism into FAD

6



Team Name FP FN APCER(%) NPCER(%) ACER(%)
TPR(%)

data set
@FPR=10e-2 @FPR=10e-3 @FPR=10e-4

VisionLabs 3 27 0.0074 0.1546 0.0810 99.9885 99.9541 99.8739

test

ReadSense 77 1 0.1912 0.0057 0.0985 100.0000 99.9427 99.8052

Feather 48 53 0.1192 0.1392 0.1292 99.9541 99.8396 98.1441

Hahahaha 55 214 0.1366 1.2257 0.6812 99.6849 98.5909 93.1550

MAC-adv-group 825 30 2.0495 0.1718 1.1107 99.5131 97.2505 89.5579

ZKBH 396 35 0.9838 0.2004 0.5921 99.7995 96.8094 87.6618

VisionMiracle 119 83 0.2956 0.4754 0.3855 99.9484 98.3274 87.2094

GradiantResearch 787 250 1.9551 1.4320 1.6873 97.0045 77.4302 63.5493

Baseline 1542 177 3.8308 1.0138 2.4223 96.7464 81.8321 56.8381

Vipl-bpoic 1580 985 3.9252 5.6421 4.7836 82.9877 55.1495 39.5520

Massyhnu 219 621 0.5440 3.5571 2.0505 98.0009 72.1961 29.2990

AI4all 273 100 0.6782 0.5728 0.6255 99.6334 79.7571 25.0601

Guillaume 5252 1869 13.0477 10.7056 11.8767 15.9530 1.5953 0.1595

Vivi∗ 7 15 0.0173 0.0859 0.0516 99.9828 99.9484 99.8282

Table 3. Results and rankings of the final stage teams, the best indicators are bold. Note that the results on the test set are tested by the

model we trained according to the code submitted by the participating teams.(∗ indicates Vivi is affiliated with the sponsor and does not

participate in the final ranking).

Figure 6. Mistaken samples of the top three teams on the Testing

data set, including FP and FN. Note that the models were trained

by us.

task. Since different modalities have different advantages:

the RGB data have rich details, the Depth data is sensitive to

the distance between the image plane and the corresponding

face, and the IR data measures the amount of heat radiated

from a face. Based on this characteristic, Feather uses a cas-

caded architecture with two subnetworks to study CASIA-

SURF with two modalities, in which Depth and IR data are

learnt subsequently by each network. Some teams consid-

er face landmark (e.g., Hahahaha) into FAD task, and other

teams (e.g., MAC-adv-group, Massyhnu) focus on the col-

or space conversion. In stead of binary classification model,

ZKBH constructs a regression model to supervise the model

to learn effective cues. GradiantResearch reformulates the

face-PAD as an anomaly detection using deep metric learn-

ing.

Although these methods have their own advantages,

there are still some shortcomings in the code reproduction

stage of the challenge. As described before, CASIA-SURF

is characterized by multi-modal data (i.e., RGB, Depth and

IR) and the main research point is how to fuse the comple-

mentary information between these three modalities. How-

ever, many teams apply ensemble learning that is a way of

Naive Halfway Fusion [25] in fact, which cannot make full

use of the characteristics between different modalities. In

addition, most of the ensemble methods use greedy manner

for model fusion, including constantly increase the model

if the performance does not decrease on the valid set in Ta-

ble 4, which inevitably brings additional time consumption

and instability. In order to demonstrate the shortcomings

of the algorithm visually, we randomly selected 6 misclas-

sified samples for each of the top three teams on the test

set, of which the FP and FN are 3 respectively, as shown

in Figure 6. Notably, the fake sample in the red box was si-

multaneously misclassified into real face by the three teams,

where the clues were visually seen in the eye portion of the

color modality. From the misclassification samples of the

VisionLabs team, face pose is the main factor leading to FN

samples (marked by a yellow box). As for the FP samples

of ReadSense, the main clues are concentrated in the eye

region (shown in the purple box). However, image patch-

es applied by this team as the input of network, which is

easy to cause misclassification if the image block does not

contain an eye region. Only Depth and IR modal data sets

were used by Feather team, resulting in misclassified sam-

ples that can be recognized by the human eyes easily. As
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shown in green box, obvious clues which attached on the

nose and eyes region in the color modal data sets are dis-

carded by their algorithm. Overall analysis, the three teams

have better recognition performance than Attack 1, 3, 5 for

Attack 2, 4, 6 (performing a bending operation on the corre-

sponding former) [25]. It shows that the bending operation

used by simulating the depth information of the real face

is easily detected by the algorithms. Last but notable, from

the FP samples of the three teams, the misclassified samples

are mainly caused by Attack 1, indicating that the sample

with some regions are cut from the printed face can bring

the depth information of the real face, but introducing more

cues which can prove itself is fake one.

5. Open Issues and Opportunities

5.1. Critical Issues and Breakthrough Point

Face PAD remains a challenging problem due to lack

of generalization and far from meeting the requirements of

practical applications, mainly in the following aspects:

Intra-testing. Results vary greatly across different test-

ing set scales, such as the performance gap between the

same team on validation and test set (except the top three

teams) listed in Table 3.

Inter-testing. Existing PAD algorithms rely heavily on

the data used in training phase, and is easily affected by dif-

ferent attack types, acquisition devices and spoofing medi-

ums presented in other datasets.

An important reason for the poor generalization abili-

ty is also used by most of the participating teams in this

challenge (see Table 2). It is a CNN with softmax loss

might discover arbitrary cues, such as spot or screen bezel

of the spoof medium, that are not the faithful spoof pattern-

s. When these cues disappear during testing, these models

will fail to distinguish fake v.s real faces and result in poor

generalization [17].

Therefore, the supervision should be designed from the

essential differences between live and spoof faces, such as

the rPPG signals (i.e., heart pulse signal) which can reflect

human physiological signs. From the perspective of image

imaging, the depth information of face image has essential

differences between real and fake face due to the real face

is taken from one shot, while the fake one belongs to sec-

ond imaging from a print or replay attack which has flat or

planar depth. From the perspective of light reflection, the

imaging light of real and fake face image comes from dif-

fuse and specular reflection respectively, which may result

a difference in the noise distribution between the real and

fake images. Finally, from the perspective of multi-frame,

information between video frames of a live sample is dif-

ferent from a fake video clip, especially in the face of static

images or print attacks.

5.2. Future Work and Opportunities

In order to take full advantage of this multi-modal

dataset, as future work, we plan to define a series of cross-

modal testing protocols that are different from this chal-

lenge, e.g., training on RGB images, and testing on Depth

or IR modal data sets. The original intention of cross-modal

protocol design is to guide the model to learn the relevant

information between different modalities for the same cate-

gory, e.g., real or fake. Further, we will focus on improving

the generalization ability of face PAD algorithms by design-

ing supervision information that mentioned in section 5.1.

In addition, as the attack techniques are constantly up-

graded, some new types of PA have emerged, e.g. 3D masks

or custom-made silicone masks, which are more realistic in

terms of texture and depth information than traditional 2D

PAs, such as photos or video-replay attacks. In fact, a sub-

stantial portion of 2D PAD methods are rendered inopera-

tive when 3D facial masks are introduced for attacks [1].

Therefore, we plan to collect a 3D masks dataset including

head-mounted mask and face silicone models to push the

research for countering 3D face mask attack.

6. Conclusion

We organized the Chalearn LAP multi-modal face anti-

spoofing attack detection challenge based on the CASIA-

SURF dataset and running on the CodaLab platform. Three

hundred teams registered for the competition and thirteen

teams made it to the final stage. Among the latter, teams

were formed by ten companies and three academic insti-

tutes/universities. We described the associated dataset, and

the challenge protocol including evaluation metrics. We re-

viewed in detail the proposed solutions and reported the re-

sults from both development and final phases. We analyzed

the results of the challenge, pointing out the critical issues

in FAD task and presenting the shortcomings of the existing

algorithms. Future lines of research in the field have been

also discussed.
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