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Daniel Pérez-Cabo

Gradiant - UVigo, Spain

dpcabo@gradiant.org
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Abstract

Face recognition has achieved unprecedented results,

surpassing human capabilities in certain scenarios. How-

ever, these automatic solutions are not ready for produc-

tion because they can be easily fooled by simple identity

impersonation attacks. And although much effort has been

devoted to develop face anti-spoofing models, their gen-

eralization capacity still remains a challenge in real sce-

narios. In this paper, we introduce a novel approach that

reformulates the Generalized Presentation Attack Detec-

tion (GPAD) problem from an anomaly detection perspec-

tive. Technically, a deep metric learning model is proposed,

where a triplet focal loss is used as a regularization for a

novel loss coined “metric-softmax”, which is in charge of

guiding the learning process towards more discriminative

feature representations in an embedding space. Finally, we

demonstrate the benefits of our deep anomaly detection ar-

chitecture, by introducing a few-shot a posteriori probabil-

ity estimation that does not need any classifier to be trained

on the learned features. We conduct extensive experiments

using the GRAD-GPAD framework that provides the largest

aggregated dataset for face GPAD. Results confirm that our

approach is able to outperform all the state-of-the-art meth-

ods by a considerable margin.

1. Introduction

Whether we like it or not, we are in the era of face recog-

nition automatic systems. These solutions are now begin-

ning to be used intensively in: border controls, on-boarding

processes, accesses to events, automatic login, or to unlock

our mobile devices. As an example of this last technology,

we have the Intelligent Scan1 that comes with Samsung mo-

1https://www.samsung.com/my/support/mobile-devices/

what-is-intelligent-scan-and-how-to-use-it/

biles, or the FaceID2 for iPhones. All these systems are

highly valued by consumers because of their usability and

its non-intrusive nature. However, there remains one major

challenge for all of them, Presentation Attacks (PA).
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Figure 1: We propose a deep metric learning approach, us-

ing a set of Siamese CNNs, in conjunction with the combi-

nation of a triplet focal loss and a novel “metric softmax”

loss. The latter accumulates the probability distribution of

each pair within the triplet. Our aim is to learn a feature

representation that allows us to detect impostor samples as

anomalies.

These commercial systems rely on specialized hardware

such as 3D/IR/thermal cameras entailing a far easier op-

tion to detect presentation attacks. Besides, this situation

restricts the use case to a few specialized devices, incre-

menting costs dramatically. For the sake of accessibility and

costs, we focus on the ubiquitous 2D-camera case, avail-

able in almost all mobile devices and easy to acquire and

integrate on different checkpoints.

2https://www.apple.com/lae/iphone-xs/face-id/



Although face recognition technologies achieve accu-

racy ratios above human performance in certain scenarios,

consumers should be aware that they also introduce two new

challenges that compromise their security: the Presentation

Attack Detection (PAD) and the generalization capability of

these solutions. With respect to the former, for example, a

face recognition system with an outstanding 99.9% of accu-

racy fails simply by presenting a page with your face printed

on it. These presentation attacks stand as a major threat for

identity impersonation where illegitimate users attempt to

gain access to a system using different strategies, e.g. video

replay, make-up. Note that it is really easy to obtain audio-

visual material from almost every potential user (e.g. Face-

book photos, videos on YouTube, etc.), which allows the

creation of tools to perform these PAs.

But the generalization problem is also relevant. In a nut-

shell, the scientific community has failed to provide an effi-

cient method to detect identity impersonation based on face

biometrics that is valid for real-world applications. Nor-

mally, the state-of-the-art models suffers a severe drop of

performance in realistic scenarios, because they exhibit a

sort of overfitting behaviour maximizing the results for just

the dataset they have been trained on.

In this paper we explicitly address these two challenges.

First, we introduce a deep metric learning based approach

to deal with the PAD problem. As it is shown in Fig. 1, our

solution is trained to learn a feature representation that guar-

antees a reasonable separability between genuine and im-

postor samples. Then, the generalization problem is tackled

from an anomaly detection approach, where we expect to

detect the attacks as if they were out-of-distributions sam-

ples that naturally exhibit a higher distance in the embed-

ding space with respect to the real samples in the dataset.

The generalization capability of our solution and its

state-of-the-art competitors is thoroughly evaluated using

the recent GRAD-GPAD framework [11]. We use the ag-

gregated dataset provided in GRAD-GPAD, which com-

prises more than 10 different datasets for face anti-spoofing.

This aspect results fundamental, because it allows us to

deploy extensive inter-dataset experiments, to address the

Generalized Presentation Attack Detection problem.

As a summary, in this paper we make the following con-

tributions:

1. We introduce a novel anomaly detection strategy based

on deep metric learning for face anti-spoofing using

just still images.

2. Our model leverages the use a triplet focal loss as a

regularizer of a novel “metric softmax” loss, to ensure

that the learned features allow for a reasonable separa-

bility between real and attacks samples in an embed-

ding space.

3. A thorough experimental evaluation on GRAD-GPAD

shows that our anomaly detection based approach out-

performs the state-of-the-art models.

4. Finally, we propose a novel few-shot a posteriori prob-

ability estimation that avoids the necessity of training

any classifier for decision making.

The remainder of this paper is organized as follows. Sec-

tion 2 reviews the main progress and challenges on the prob-

lem of generalization for anti-spoofing systems. We intro-

duce our anomaly detection deep model in Section 3. Sec-

tions 4 and 5 provide the experimental evaluation and the

conclusions, respectively.

2. Related Work

Face-PAD approaches can be categorized regarding the

following standpoints: i) from the required user interac-

tion as active [19] or passive [20, 33] methods; ii) from the

hardware used for data acquisition as rgb-only [14, 25, 33],

rgb-infrared-depth [3, 37] or additional sensors [30] ap-

proaches; iii) from the input data type as video-based [1, 28]

or single-frame [33] approaches; iv) and, finally, depend-

ing on the feature type, from classical hand-crafted fea-

tures [5, 33] to the newer ones based on automatic learned

deep features [18, 20]. These deep models are precisely the

responsible for a considerable increase in accuracy for face-

PAD, defining the new state of the art.

However, recent studies reveal that the current ap-

proaches are not able to correctly generalize [21] using fair

comparisons. Actually, the main difficulty for the inclu-

sion of anti-spoofing systems in realistic environments is the

Generalized Presentation Attack Detection (GPAD) prob-

lem. Some works [11, 12, 25] propose new evaluation pro-

tocols, datasets and methods to address the GPAD.

Overall, generalization has been addressed from dif-

ferent perspectives: i) applying domain adaptation tech-

niques [21]; ii) learning generalized deep features [20, 21];

or even iii) using generative models [18]. All these methods

are able to slightly mitigate the drop of performance when

testing on new unseen scenarios, but they are still far from

being suitable for real scenarios.

Traditional methods for face anti-spoofing use a two-

class classifier to distinguish between real samples and at-

tacks. Recently, some works suggest that formulating the

problem of anti-spoofing as an anomaly detection approach

could improve their generalization capacity [2, 25]. In [2],

the authors assume that real-accesses share the same nature,

in contrast to spoofing attempts that can be very diverse and

unpredictable. They present a study to determine the influ-

ence of using only genuine data for training and compare it

with traditional two-class classifiers. From the experimental

results the paper concludes that: i) anomaly detection based

systems are comparable to two classes based systems; and

ii) neither of the two approaches perform well enough in the



evaluated datasets (CASIA-FASD [39], Replay-Attack [8]

and MSU-MFSD [33]). On the other hand, the authors

of [25] propose a more challenging experiment based on an

aggregated dataset that comprises Replay-Attack, Replay-

Mobile [10] and MSU-MFSD. They propose a GMM-based

anomaly classifier which outperforms the best solutions re-

ported in [2].

In this paper, we reformulate the anomaly detection

scheme using a deep metric learning model for face-PAD

that highly reduces the problem of generalization. Exper-

iments are performed over the largest aggregated publicly

available dataset, the GRAD-GPAD framework [11]. This

framework allows us to reinforce the assumption that real

access data shares the same nature, provided that the num-

ber of identities is large and the capture conditions and de-

vices are diverse enough; that is, the genuine class is well

represented by data. Additionally, the highly representative

embeddings obtained using the proposed metric learning

approach permits outperforming prior works, distinguish-

ing genuine amongst an open-set class of attacks in the most

challenging dataset so far.

3. Deep Anomaly Detection for Face GPAD

3.1. Review on Metric Learning

Many works rely on a softmax loss function to sepa-

rate samples from different classes in deep learning models.

However, class compactness is not explicitly considered and

samples from different classes might easily overlap in the

feature space. Instead, metric learning based losses are de-

signed to address these issues, by promoting inter-class sep-

arability and reducing intra-class variance. Note that sev-

eral metric learning approached have been applied to multi-

ple tasks such as face recognition [26], object retrieval [17]

or person re-identification [38], obtaining outstanding gen-

eralization performance. In this section we introduce the

mathematical notation and our formulation for the problem

of deep anomaly detection for face GPAD, from a metric

learning perspective.

Let fθ(xi) be the feature vector in the embedding space

of a data point xi 2 R
N , where the mapping function

fθ : RN ! R
D is a differentiable deep neural network of

parameters θ, and let Di,j be the squared l2-norm between

two feature vectors defined by Di,j = kfθ(xi)� fθ(xj)k
2
2.

Usually, fθ(xi) is normalized to have unit length for train-

ing stability. In a deep metric learning based approach, the

objective is to learn a deep model that generates a feature

representation fθ(xi) to guarantee that samples from the

same class are closer in the embedding space, than sam-

ples from different categories. For doing so, different loss

functions can be found in the literature.

For instance, the center loss proposed in [34] concen-

trates samples around their class centers in the embedding

space (see Eq. 1). It is used in conjunction with the softmax

loss to increase intra-class compactness, however the latter

does not guarantee a correct inter-class separation.

Lc(θ) =
1

2

b
X

i=1

kfθ(xi)� cyik22, (1)

where b is the number of input tuples in a batch and cyi is

the class center corresponding to the ground truth label yi

of sample xi.

The contrastive loss [9] (see Eq. 2) forces all images be-

longing to the same class to be close, while samples from

different classes should be separated by a margin m. It uses

tuples of two images as different image pairs {p, q}: i) pos-

itive, if both belong to the same class and ii) negative, oth-

erwise. However, one needs to fix a constant margin m for

the negative pairs, separating all negative examples by the

same margin regardless their visual appearance:

Lct(θ) =

bX

i=1

ypi,qiDpi,qi + (1− ypi,qi)max (0,m−Dpi,qi)
2
,

(2)

where ypi,qi = 1 for the positive pair and ypi,qi = 0 for the

negative.

Following the same idea, the authors of the triplet

loss [32] extend the contrastive loss to consider positive and

negative pairs simultaneously by using a tuple of three im-

ages: i) anchor, ii) positive and iii) negative. The goal of

the triplet loss in Eq. 3 is to reduce the intra-class vari-

ance defined by the anchor-positive pair, while simultane-

ously increase the inter-class separation by maximizing the

euclidean distance between the anchor-negative pair. De-

spite avoiding a constant margin for the negative pair and

obtaining highly discriminative features, it suffers from the

complexity of the triplet selection procedure. Neverthe-

less, it has been successfully addressed in many recent ap-

proaches [15, 31, 35].

Lt(θ) =

b
X

i=1

max (0, Dai,pi
�Dai,ni

) +m), (3)

where {ai, pi, ni} sub-indexes are the anchor, the positive

and the negative samples for each triplet within the batch,

respectively.

Prior works successfully applied the triplet loss (or any

of its variants) using a large number of classes, e.g. face

recognition models use thousands of identities, for instance

in VGG2 Face data set [7] there are more than 9000 differ-

ent identities. Such a diversity of classes encourages em-

beddings to generalize when the number of samples is large

enough. In this paper, we show that a triplet loss based

model, following an anomaly detection perspective, can ac-

tually outperform existing methods for face GPAD.



3.2. Triplet Focal Loss for Anomaly Detection for
Face GPAD

We address the face GPAD problem from a metric learn-

ing approach with a Triplet focal loss. Technically, we pro-

pose to use a modified version of the triplet loss described

in [29] that incorporates focal attention, see Eq. 4. The

triplet focal loss automatically up-weights hard examples

by mapping the euclidean distance to an exponential kernel,

penalizing them much more than the easy ones.

Ltf(θ) =
b

X

i=1

max

✓

0, e

⇣

Dai,pi
σ

⌘

� e

⇣

Dai,ni
σ

⌘

+m

◆

, (4)

where σ is the hyper-parameter that controls the strength of

the exponential kernel.

The triplets generation scheme is a critical step that

highly impacts the final performance. Traditional methods

run their sample strategy over the training set in an off-line

fashion, and they do not adapt once the learning process

starts. Alternatively, we use an approach for triplets selec-

tion based on a semi-hard batch negative mining process,

where triplets examples are updated during the training pro-

cess in each mini-batch, avoiding models to collapse.

The goal of the implemented semi-hard batch negative

mining (based on [26]) is to choose a negative sample that

is fairly hard within a batch but not necessarily the hardest

nor the easiest one. For each training step, we select a large

set of samples of each class using the current weights of the

network. Next, we compute the distances between all pos-

itive pairs within this population, i.e. Da,p, and, for each

positive pair, we compute the distance between the corre-

sponding anchor f(xa) and all possible negative samples

f(xn). Finally, we randomly pick a negative sample that

satisfies the following margin criteria, Da,p � Da,n < m,

to build the final tuples that are used for training at each

step, in the so called mini-batch. This mining strategy has

two important benefits: 1) we ensure that all the samples

included in a training step are relevant for the learning pro-

cess; and 2) we improve training convergence thanks to the

random selection over the negative samples.

In real face anti-spoofing, attackers are constantly engi-

neering new ways to cheat PAD systems with new attacks,

materials, devices, etc. Thus, a classification-like approach

is prone to over-fitting to the seen classes and will not gener-

alize well. On the contrary, we follow an anomaly detection

based strategy. First, we do not consider the identity of the

users as different classes. We define two categories in an

anomaly detection setting: 1) the closed-set, referring to the

classes that can be correctly modeled during training; and 2)

the open-set, referring to all the classes that cannot be fully

modeled by the training set. In face GPAD, genuine samples

belong to the closed-set category, while impostors belong

to the open-set class, motivated by the scarcity or even the

lack of training samples to model certain types of attacks.

To achieve this, we fix during training the anchor-positive

pair to always belong to the genuine class (i.e. the closed-set

category) while selecting negative samples from any type of

attack (i.e. the open-set category) regardless their identity.

3.3. Triplet Loss Regularization for a Metric-
Softmax

Recent work [17] demonstrates that the triplet loss, act-

ing as a regularizer of the softmax function, achieves more

discriminative and robust embeddings. In our deep anomaly

detection based model, we do not focus on the classifica-

tion task, but instead we aim at obtaining highly represen-

tative embeddings to distinguish genuine samples amongst

an open-set class of attacks. We thus propose to add the

triplet focal loss as a regularizer of a novel softmax func-

tion adapted to metric learning, see Eq. 5. The proposed

softmax formulation, coined as metric-softmax (Lmetric soft

in Eq. 6), accumulates the probability distribution of each

pair within a triplet to be highly separated in an euclidean

space. We thus prevent from guiding the learning process

towards a binary classification and thus avoiding the well

known generalization issues.

Lanomaly = Lmetric soft + λ Ltf, (5)

Lmetric soft = �
b

X

i=1

log
eDai,pi

eDai,pi + eDai,ni

, (6)

where λ is the hyper-parameter to control the trade-off be-

tween the triplet focal loss and the softmax loss.

The metric learning model proposed obtains a discrimi-

native embedding for every input image. However, we need

to provide a posterior probability of whether the image be-

longs to a genuine sample or to an impersonation attempt.

In the experiments, we simply propose to train an SVM

classifier with a Radial Basis Function to learn the bound-

aries between both classes in the feature space.

3.4. Few-shot a Posteriori Probability Estimation

Often, the inherent dynamic nature of spoofing attacks

and the difficulty to access data requires to adapt rapidly

to new environments where few samples are available. To

deal with this problem, we propose a few-shot a posteriori

estimation procedure, that does not need any classifier to

train on the learned features for decision making in metric

learning.

Technically, we proceed to compute the probability of

being genuine (see Eq. 7) as the accumulated posterior

probability of the input sample (xt) given two reference sets

in the target domain, corresponding to the genuine class G
and the attacks H, respectively.

P (xt | {G,H}) =

M
X

i=1

eDt,gi

eDt,gi + eDt,hi

, (7)



where M is the total number of pairs in both reference sets

for every attack and for each dataset involved, t sub-index

refers to the test image and {gi, hi} sub-indexes refer to

each of the reference samples in the genuine and attack sets,

respectively. In order to satisfy the few-shot constraints we

choose M to be small in our experiments.

4. Experimental Results

In this section we present the experiments where our

novel approach is compared against three state-of-the-art

methods from the literature. The approach in [25] computes

hand-crafted features based on quality evidences. They ob-

tain a 139-length feature vector from the concatenation of

the quality measurements proposed in [14] and [33]. For

the second method, we choose [4], which consists in com-

puting a color-based feature vector of high dimensionality

(19998-length) by concatenating texture features based on

Local Binary Patterns (LBPs) in two different color spaces

(i.e. YCbCr and HSV). Finally, the third method is the one

proposed in [23], which introduces a two-branch deep neu-

ral network that incorporates pixel-wise auxiliary supervi-

sion constrained by the depth reconstruction for all genuine

samples (attacks are forced to belong to a plane) and the es-

timation of a remote PhotoPlethysmoGraphy (rPPG) signal

to add temporal information. Despite being the state of the

art for face anti-spoofing, this model requires to pre-process

genuine samples in order to compute the depth estimation

and the corresponding rPPG signal, that impacts in the us-

ability and bounds the performance to the methods for depth

reconstruction and rPPG estimation. The code for the first

two algorithms is based on the reproducible material pro-

vided by the authors3 4. Results for [23] are obtained using

our own re-implementation of their approach.

4.1. GRAD-GPAD Framework

Regardless almost every paper comes with its own re-

duced dataset [21, 23, 24, 37], there is no agreed upon a

PAD benchmark, and as a consequence, the generalization

properties of the models are not properly evaluated. During

a brief inspection of the capture settings of available face

PAD datasets, one can easily observe that there is no uni-

fied criteria in the goals of each of them, leading to a mani-

fest built-in bias. This specificity in the domain covered by

most of the datasets can be observed in different scenarios:

i) some of them focus on a single type of attacks (e.g. masks

- 3DMAD [13], HKBU [22], CSMAD [3]); ii) others focus

on the study of different image sources (depth/NIR/thermal)

such as CASIA-SURF [37] or CSMAD; iii) others attempt

to simulate a certain scenario like a mobile device setting,

where the user hold the device (e.g. Replay-Mobile [10],

3https://github.com/zboulkenafet/Face-anti-

spoofing-based-on-color-texture-analysis
4https://gitlab.idiap.ch/bob/bob.pad.face/

OULU-NPU [6]), or a webcam setting, where the user is

placed in front of a fixed camera (e.g. Replay-Attack [8],

SiW [23]), or even a stand-up scenario where users are

recorded further from the camera (e.g. UVAD [27]).

For our experiments, we propose to use the recently

published GRAD-GPAD framework [11] that mitigates the

aforementioned limitations. GRAD-GPAD is the largest ag-

gregated dataset that unifies more than 10 datasets with a

common categorization in two levels, to represent four key

aspects in anti-spoofing: attacks, lightning, capture devices

and resolution. It allows not only a fair evaluation of the

generalization properties, but also a better representativity

of the face-PAD problem thanks to the increased volume of

data. For the sake of the extension of the paper we focus on

the evaluation based on the instruments used to perform at-

tacks (i.e. PAI - Presentation Attack Instruments) using the

categorization in Table 1 (i.e. the Grandtest protocol).

Category Types Sub-type Criteria

Presentation

Attack

Instrument

print

low dpi ≤ 600pix

medium 600 < dpi ≤ 1000pix

high dpi > 1000pix

replay

low res ≤ 480pix

medium 480 < res < 1080pix

high res ≥ 1080pix

mask

paper paper masks

rigid non-flexible, plaster

silicone silicone masks

Table 1: Two-tier common PAI categorization in GRAD-

GPAD.

We conduct all the experiments using the GRAD-GPAD

framework, where we add the UVAD dataset [27] to fur-

ther increase the total number of samples in more than 10k

images. In Fig. 2 we show the population statistics of the

whole GRAD-GPAD dataset (left figure) and the training

split of the Grandtest protocol (right figure).

4.2. Experimental Setup

Network Architecture We use as our backbone architec-

ture a modified version of the ResNet-50 [16]. We stack

both RGB and HSV color spaces in the input volume, and

feature dimension is fixed to 512. We use Stochastic Gra-

dient Descent with Momentum optimizer. We start train-

ing with a learning rate of 0.01 using a maximum of 100

epochs. Batch size is fixed to be 12 triplets, i.e. 36 images

per batch. As suggested in the original works, σ and m

values in Eq. 4 are set to 0.3 and 0.2, respectively.

Pre-processing Since our approach follows a frame-

based procedure, instead of using the full videos we only

pick the central frame of each video. We use as inputs of

the network the cropped faces detected using the method

proposed in [36].



Figure 2: Population statistics for the whole dataset provided in GRAD-GPAD (left) and the training samples statistics for

the Grandtest protocol (right).

Metrics To compare our method with prior works we

use the metrics that have been recently standardized in the

ISO/IEC 30107-35: i.e. False Acceptance Rate (FAR), False

Rejection Rate (FRR), Half Total Error Rate (HTER =
FAR+FRR

2
), Attack Presentation Classification Error Rate

(APCER), Bonafide Presentation Classification Error Rate

(BPCER) and Average Classification Error Rate (ACER).

We would like to highlight the importance of the ACER

metric because it entails the most challenging scenario,

where performance is computed for every attack indepen-

dently, but it only considers the results for the worst sce-

nario. Thus it penalizes approaches performing well on cer-

tain types of attacks. HTER reflects the overall performance

of the algorithm in a balanced setting where FAR is equal

to FRR, i.e. for Equal Error Rate (EER).

Protocols We evaluate our method on two settings within

the GRAD-GPAD framework: 1) intra-dataset; and 2) inter-

dataset. For the intra-dataset setting we use the Grandtest

protocol and for the inter-dataset evaluation we use the

leave-one-dataset-out protocols, provided by the frame-

work: the Cross-Dataset-Test-On-CASIA-FASD and the

Cross-Dataset-Test-On-ReplayAttack. In these protocols,

one of the datasets (CASIA-FASD and Replay-Attack, re-

spectively) is excluded during training. Results are pro-

vided by evaluating the models in the excluded dataset (Test

split).

4.3. Ablation study

The scientific contribution of our work is twofold. First,

we introduce a reformulation of the face PAD problem from

a deep anomaly detection perspective using metric learn-

ing. Second, we propose to use a triplet focal loss as a

regularization for a novel softmax loss function adapted to

5https://www.iso.org/standard/67381.html

metric learning, coined as “metric-softmax”. To show the

influence of each of these contributions, we conduct the

following experiments. We start from a classification-like

triplet loss based model, i.e. without the anomaly detec-

tion approach. This first approach is named as Baseline

in Table 2, where tuples for the triplets are selected ran-

domly from the set of classes (genuine + 9 different attacks

in GRAD-GPAD). We then incrementally incorporate our

contributions. Model 1 includes the anomaly approach us-

ing the triplet loss. In Model 2 we included the focal at-

tention into the triplet loss formulation. And finally, Ours

represents the whole pipeline of our system, where the pro-

posed metric-softmax term is added. The results reported in

Table 2 show the influence of each contribution in the final

performance.

Note that for this ablation study, we use the development

split of the Grandtest protocol of GRAD-GPAD, and the

performance is shown in terms: FAR, FRR and Average

Error Rate (AER). Besides, performance is computed us-

ing the accumulated metric-softmax distribution described

in Eq. 7 with M = 3 and by randomly choosing samples

from the training set.

Algorithm AER FAR FRR ∆AER

Baseline 17.02 % 10.72 % 23.33 % -

Model 1 12.46 % 24.43 % 0.49 % 26.8 %

Model 2 9.80 % 14.87 % 4.74 % 42.42 %

Ours 5.07 % 6.38 % 3.77 % 70.21 %

Table 2: Performance evaluation in the development set of

GRAD-GPAD for the different models involved in the abla-

tion study. We also show the relative improvement ∆AER

with respect to the baseline.

We show in Table 2 that, when we incorporate the focal

attention into the triplet, i.e. Model 2, we achieve a rela-

tive improvement of 42.42% in terms of AER. This aspect



Figure 3: True Positive Rate confusion matrices for the baseline (left) and our approach (right).

reveals the importance of a mining strategy in the learning

process. Finally, the introduction of the proposed metric-

softmax term, achieves a remarkable relative improvement

of 70.21% of AER.

Furthermore, we show in Fig. 3 the True Positive Rate

(TPR) confusion matrices for the Baseline (left) and our

approach (right). We assess that, with the anomaly detec-

tion approach, we are able to highly differentiate genuine

from impostor samples, regardless the classification of the

attack instrument. Note that the baseline obtains poor per-

formance for genuine samples classification, despite classi-

fying correctly the different attacks, which highly penalizes

its global performance.

4.4. Intra-Dataset Evaluation

In order to fairly compare our approach with the state-of-

the-art methods, we train an SVM-RBF classifier for each

of them using their corresponding features. Additionally,

for the Auxiliary model [23], we report the results just us-

ing the L2-Norm from the depth map (Auxiliary∗), as it is

proposed by the authors in their original work. For all the

experiments, we use M = 3 in Eq. 7 for the few-shot a

posteriori probability estimation (Ours†) experiment. Note

that, both the original method proposed in [23] (Auxiliary∗)

and our approach with a posteriori estimation, do not need

to use any classifier with the learned features.

Results in Table 3 demonstrate that both our novel ap-

proaches outperform the state-of-art methods, even using

the most challenging metric (ACER). These results high-

light that the learned feature space has a high discrimination

capability and that our model performs the best.

4.5. Inter-Dataset Evaluation

In order to assess the generalization capabilities, we per-

form two cross-dataset evaluations where a whole dataset is

Algorithm HTER ACER APCER BPCER

Quality [25] 23.21 % 36.96 % 50.51 % 23.42 %

Color [4] 7.87 % 19.21 % 28.57 % 9.84 %

Auxiliary [23] 5.92 % 37.89 % 66.67 % 8.55 %

Auxiliary∗ 6.52 % 31.81 % 53.33 % 10.44 %

Ours 5.41 % 10.14 % 14.29 % 5.99 %

Ours† 5.45 % 10.42 % 14.28 % 6.55%

Table 3: Intra-dataset results on the Grandtest protocol.

excluded from the training step. In the first experiment, we

leave out CASIA-FASD [39] for the test set. In the second

one, ReplayAttack [8] is excluded during learning. In both

experiments, none of the samples from the test dataset are

used neither in the training set nor in the development set.

4.5.1 Test on CASIA-FASD

As it is shown in Fig. 4, the training set for this experi-

ment includes all types of attacks, however the domain is

different (i.e. different environments, lighting conditions,

capture devices, etc.). CASIA-FASD is one of the smallest

datasets for face anti-spoofing samples. Therefore, consid-

ering only its test set for the evaluation would highly pe-

nalize the performance in case of miss-classification. This

fact is reflected in Table 4, where performance significantly

drops in all methods, except for our approach, where we

are able to keep a reasonable good performance: from an

ACER of 10.14% (see Table 3) to 16.8%.

In Table 4 we show that HTER and ACER values for our

approach are almost the same. We argue that, despite the

domain shift introduced by this protocol, the learned em-

beddings during training are robust enough to generalize in

this setting. Instead, the other methods in the experiment

are highly penalized, showing that they tend to overfit on



Figure 4: Training samples statistics for the Cross-Dataset-

Test-On-CASIA-FASD protocol.

Algorithm HTER ACER APCER BPCER

Quality [25] 40.90 % 47.38 % 65.56 % 29.21 %

Color [4] 22.17 % 25.69 % 26.67 % 24.72 %

Auxiliary [23] 28.60 % 29.71 % 12.22 % 47.19 %

Auxiliary∗ 25.42 % 26.90 % 12.22 % 41.57 %

Ours 16.74 % 16.80 % 10.00 % 23.60 %

Ours† 17.56 % 18.48 % 10.00 % 26.97 %

Table 4: Inter-dataset results evaluated on CASIA-FASD.

the training set to a greater extent.

Besides, we show that our few-shot a posteriori estima-

tion pipeline (Ours†) achieves similar performance com-

pared to the SVM version in this Test on CASIA-FASD

setup. Thus, we assess that the learnt embedding space gen-

eralizes enough so that we can avoid using a classifier with

the feature vectors and estimate the a posteriori probability

by simply using M = 3. This classiffier-free model is also

able to outperform all state-of-the-art methods, including

Auxiliary∗ that neither requires a classifier.

4.5.2 Test on Replay-Attack

The motivation behind selecting to leave out the Replay-

Attack dataset is to show the impact in the performance of

face-PAD algorithms of unseen attacks belonging to a new

domain: this dataset contains all the samples for replay-low-

quality attacks (see Fig. 5). This entails a far more challeng-

ing scenario.

The results reported in Table 5 show a severe drop of per-

formance for all the methods, specially for ACER, where

all the approaches are highly penalized by the unseen attack

and achieves performance close to random choice. This fact

is due to the addition of a new attack that has never seen be-

fore in combination with a strong domain change, highly

impacting on APCER (i.e. the attack classification). Inter-

estingly, our proposal based on few-shot a posteriori esti-

mation keeps exactly the same performance compared with

Figure 5: Training samples statistics for the Cross-Dataset-

Test-On-ReplayAttack protocol.

Algorithm HTER ACER APCER BPCER

Quality [25] 37.35 % 47.02 % 42.14 % 51.90 %

Color [4] 34.51 % 43.35 % 51.25 % 35.44 %

Auxiliary [23] 35.62 % 45.62 % 68.75 % 22.50 %

Auxiliary∗ 37.87% 47.50 % 72.50 % 22.50 %

Ours 25.00 % 45.62 % 71.25 % 20.00 %

Ours† 25.25 % 45.62 % 71.25 % 20.00 %

Table 5: Inter-dataset results evaluated on Replay Attack.

our method with an SVM, again assessing that we can re-

place the classifier using a few samples. Besides, we obtain

the best overall performance HTER and the best BPCER

(ACER is close to random choice for all the methods).

5. Conclusions

In this work we introduce a novel approach that ad-

dresses the problem of generalization in face-PAD, follow-

ing an anomaly detection pipeline. We leverage deep met-

ric learning to propose a new “metric-softmax” loss that

applied in conjunction with the triplet focal loss drives to

more robust and generalized features representations to dis-

tinguish between original and attack samples. We also pro-

pose a new a posteriori probability estimation that prevents

us from the need of training any classifier for decision mak-

ing. With a thorough experimental evaluation in the chal-

lenging GRAD-GPAD framework we show that the pro-

posed solution outperforms prior works by a considerable

margin.
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