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Abstract

In this paper, a learning-based image compression

method that employs wavelet decomposition as a prepro-

cessing step is presented. The proposed convolutional au-

toencoder is trained end-to-end to yield a target bitrate

smaller than 0.15 bits per pixel across the full CLIC2019

test set. Objective results show that the proposed model

is able to outperform legacy JPEG compression, as well

as a similar convolutional autoencoder that excludes the

proposed preprocessing. The presented architecture shows

that wavelet decomposition is beneficial in adjusting the fre-

quency characteristics of the compressed image and helps

increase the performance of learning-based image com-

pression models.

1. Introduction

Machine learning models have demonstrated efficient

solutions to many image processing problems such as ob-

ject classification and image enhancement. Recent learning-

based image compression models have reached and even

surpassed the performance of transform-based state-of-the-

art image codecs such as JPEG [1], JPEG 2000 [2] and

HEVC intra [3]. Instead of using hand-crafted features,

learning-based methods rely on a latent representation of

the input image through training of similar contents. The

latent representation can then be quantized and entropy

coded. The compression can become reversible, when the

parameters of a decoder are also learned and an end-to-end

training of the entire codec is achieved. Models operating

at various conditions can be used to regulate bitrate, either

directly, or indirectly by making use of a loss function.

Recent learning-based compression methods consist of

convolutional neural networks (CNN), recurrent neural net-

works (RNN) and general adversarial networks (GAN)

to construct a latent representation of the image. In

[4], authors have used RNN and CNN architectures to

implement fully-connected, LSTM-based and convolu-

tional/deconvolutional residual autoencoders. The residual

at each iteration can be further encoded to reach higher bi-

trates and better quality. The models were tested on thumb-

nail images and then extended to standard resolution im-

ages in [5]. Although residual autoencoders are flexible in

terms of rate, they have significant computational complex-

ity. GANs were introduced for image compression in [6]

where a multiscale adversarial model was trained. Selected

regions of images were fully synthesized [7] to achieve

good subjective image quality at very low bitrates.

Convolutional autoencoders (CAEs) have been used in

[8, 9, 10, 11]. In [9], residual blocks and leaky rectifi-

cations were preferred and upsampling was performed us-

ing sub-pixel convolutions. Leaky rectifications were also

used in [10], and an additional dimensional reduction was

performed using principal component analysis. General-

ized divisive normalization (GDN) is introduced in [12] and

used as the nonlinearity between convolutional layers in [8]

and [11]. GDN is a parametric nonlinear transformation

that is well-suited for Gaussianizing data from natural im-

ages. When followed by uniform scalar quantization, GDN

builds a parametric form of vector quantization of the latent

representation on the input image vector space. A hyper-

prior capturing spatial dependencies is introduced in [11]

and used in the entropy model for further reduction in rate.

This approach is different from the previous methods where

rate was estimated using the factorized entropy of the quan-

tized code.

In this paper, a convolutional autoencoder is proposed

with a preprocessing step involving a 3-scale wavelet de-

composition of all input channels (WCAE). A latent rep-

resentation of the image is obtained during training using

convolutional layers and GDN nonlinearities, and is quan-

tized and entropy coded. WCAE is trained end-to-end, us-

ing mean squared error (MSE) in the loss function. The per-

formance of the proposed method is tested on the CLIC2019

1



validation and test sets, and compared to the performance of

JPEG and JPEG 2000, as well as a similar neural network

that does not use wavelet decomposition.

The proposed method and network architecture are de-

scribed in details in the next section, followed by the results

and the conclusion in the third and fourth sections, respec-

tively.

2. Proposed Method

The proposed architecture is depicted in Figure 1 with

the analysis and synthesis blocks details in Figure 2. The

input color image X is separated into non-overlapping

patches of dimensions N × M . Before the analysis stage

of the convolutional autoencoder, each color channel of an

RGB input image patch is first normalized to have [−1, 1]
range and then undergoes a 3-scale 2D wavelet transform,

where Daubechies-1 wavelets are used. 2D wavelet decom-

position is known to be effective in various image process-

ing tasks, compression in particular. When compressing an

image using convolutional neural networks, although image

features are expected to be learned by the network without

ideally any preprocessing, using wavelet decomposition has

two distinct benefits. First, the image is separated into its

high frequency and low frequency components at different

scales, allowing more control over the visual characteristics

of the compressed image by giving more or less emphasis

on particular frequency components. Second, introducing a

wavelet decomposition as a preprocessing step is expected

to help the network converge faster.

Figure 1: Proposed convolutional autoencoder architecture.

The analysis block is separated into three channels for

each scale of the wavelet transform. The coarsest scale has

12 inputs, 4 from each of the 3 color channels. The second

and finest scales have 9 inputs each. Convolutional filters of

dimensions 3 × 3 are used at each layer and the number of

outputs is doubled once for all scales. The coarsest, second

and finest scale inputs are downsampled 2, 3 and 4 times,

respectively. Between the convolutional layers, GDN func-

tions provide a nonlinear mapping of the layer outputs. The

latent representation is formed by concatenating the 32 out-

puts of each scale, and has dimensions 32 × N×M
1024

. With

this representation, the 3×N ×M input is reduced approx-

imately by a factor of 100, in size.

The latent representation (code) then needs to be quan-

tized. Since quantization is a function with zero gradients

Figure 2: Architecture of the analysis (left) and synthe-

sis (right) blocks. The representation 3x3 conv, [C] de-

picts a convolutional layer with 3x3 kernels and C outputs.

GDN[C] is the generalized divisive normalization function

with C inputs. ↑ 2 and ↓ 2 refer to upsampling and down-

sampling by a factor of 2, respectively. The model has

256606 parameters in total.

almost everywhere, it is replaced by additive uniform noise

during training. This is a method preferred at the quan-

tization step of learning-based encoders [8, 10] assuming

unit bin size and uncorrelated quantization errors between

elements. The quantized values then need to be encoded,

where the resulting rate will be a component of the overall

loss function. Since the latent representation has been uni-

formly quantized, an effective entropy coding is expected to

reduce the rate optimally. However, the entropy coding also

needs to be fully differentiable. The lower bound of the rate,

on the other hand, is equal to the entropy of the quantized

code [13]. It is therefore sufficient to compute the entropy

of the quantized code and use it in the loss function as an

estimate of the rate portion.

Once the entropy is computed, the quantized code then

goes through a synthesis stage, where deconvolutional fil-

ters and upsampling operators are used in parallel with

the analysis stage. The quantized code is separated into

three equally dimensional components, which represent the

coarsest, second and finest scales of the decoded image at

the output of the synthesis transform. The three outputs are

then merged using an inverse wavelet transform and yield

the decoded image. The distortion between the original and

decoded image is used in the loss function. The overall loss

function of the WCAE is then:

J(θ, φ;X) = D(X, X̂) + λR (1)

where

D(X, X̂) =
∑

(X − X̂)2 (2)

R =
∑

i

ŷi log2 Pŷ(ŷi) (3)
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Figure 3: Visual examples from the validation and test image datasets (a) and the decoded images of codecs JPEG (b),

JPEG2000 (c), NoWCAE (d) and WCAE (e).

.
Above, X denotes the input image, X̂ is the decoded

image, D is the distortion and R is the entropy of the quan-

tized code ŷ which has the distribution Pŷ(ŷ). Here, the

distribution of ŷ is approximated to be Gaussian after the

use of multiple GDN nonlinearities and the discrete proba-

bility function of ŷ is computed as a Gaussian distribution

with mean µŷ and standard deviation σŷ .

After the network is fully trained, the latent representa-

tion is quantized by rounding to the nearest integer at test

time and entropy coding is performed by the range encoder

[9]. The range encoder expects a positive input, therefore

the minimum value of the quantized code is subtracted and

then passed to the decoder. In addition, the decoder also

needs to receive the input image dimensions, as each input

channel is padded with zeros to have dimensions that are

multiples of 32. Finally, the cumulative distribution func-

tion of the quantized code is also passed to the decoder. The

total size of the encoded bitstream is then equal to the sum

of these additional parameters sent to the decoder and the

output of the range encoder. In order to reach a total rate less

than 0.15 bits per pixel (bpp) on the CLIC2019 test dataset,

the parameter λ needs to be adjusted during training.

3. Results

For training the network, the mobile and professional

training datasets of CLIC2019 were used and each image

was divided into 256 × 256 non-overlapping patches. A

total of 16750 distinct patches were used during training.

With a selection of λ = 0.0025, the total rate of CLIC2019

validation set was fixed at 4514814 bytes, which is equal

to 0.148bpp on average. The network was trained itera-

tively using back propagation [14, 15] and the Adam [16]

optimizer with a batch size of 8 and learning rate of 10−4

for a total of 100 epochs, where the loss had converged to

a stable value. The model with the lowest validation er-

ror was selected for testing. The results of the proposed

method WCAE were compared to three different codecs,

of which two are JPEG and JPEG 2000. To analyze the

impact of performing wavelet decomposition in the pro-

posed method, a network with similar architecture was built

and trained without the wavelet decomposition. This net-

work is referred to as No Wavelet CAE (NoWCAE), and

the analysis and synthesis blocks have the same architec-

ture as that of the finest scale of WCAE. The results in terms

of PSNR(dB) and MSSSIM are given in Tables 1 and 2 on

the validation and test sets of CLIC2019, respectively. All

results have been averaged on the complete validation and

test databases, which contained 102 and 330 different im-

ages, respectively. None of the images in the validation and

test sets were used during training updates.

JPEG JPEG 2000 NoWCAE WCAE

PSNR(dB) 30.27 33.29 23.82 25.61

MSSSIM 0.8208 0.9404 0.8983 0.8965

Rate (bpp) 0.147 0.149 0.206 0.143

Table 1: PSNR(dB) and MSSSIM on the validation set for

codecs JPEG, JPEG 2000, NoWCAE and WCAE.

The objective results indicate that although WCAE

was trained using MSE loss, MSSSIM values averaged



(a) (b) (c)

Figure 4: Section of an example image from the validation set (a), WCAE outputs at target bitrate 0.15bpp using 32 outputs

at all wavelet scales with PSNR = 31.12dB and MSSSIM = 0.9264 (b) and 64 outputs instead of 32 at the coarsest scale with

PSNR = 29.99dB and MSSSIM = 0.9093 (c).

over both validation and test sets are higher compared

to those of JPEG. Visual examples from validation and

test databases are presented in Figure 3, where WCAE

clearly has higher subjective quality compared to JPEG and

NoWCAE. WCAE also outperforms NoWCAE in terms

of PSNR, however the MSSSIM of NoWCAE is slightly

higher than WCAE in the validation database. It must be

taken into consideration here that NoWCAE has a higher

actual bitrate on both databases, which explains the higher

MSSSIM of NoWCAE on the validation set despite its

lower visual quality. Overall, distributions of images com-

pressed with WCAE are more faithful to the distributions

of their respective original images. Distinct color changes

in Figure 3 (d) with respect to Figure 3 (e) compared to the

originals in Figure 3 (a) highlight this advantage of using

wavelet transform as a preprocessing step in the proposed

network. WCAE has much less low frequency errors com-

pared to JPEG, however the high frequency artifacts are em-

inent compared to the artifacts in JPEG 2000 results.

JPEG JPEG 2000 NoWCAE WCAE

PSNR(dB) 30.05 32.83 22.25 23.85

MS-SSIM 0.8034 0.9335 0.8743 0.8817

Rate (bpp) 0.149 0.148 0.184 0.138

Table 2: PSNR(dB) and MSSSIM on the test set for codecs

JPEG, JPEG 2000, NoWCAE and WCAE.

WCAE introduces apparent high frequency artifacts and

is therefore unable to outperform JPEG 2000 at the targeted

rate 0.15bpp neither subjectively nor objectively. In the

analysis block, the number of outputs from each wavelet

scale is 32. It is possible to attenuate the high frequency arti-

facts by changing the contribution of outputs from coarse to

fine scales. When the outputs of the coarsest scale are dou-

bled to 64 at the fifth convolutional layer, the high frequency

artifacts become weaker, however the decoded images have

increased low frequency noise. This results in lower sub-

jective and objective quality averaged over the validation

and test images, depicted on the example in Figure 4. De-

spite the reduced quality, such changes demonstrate how the

use of wavelets can be beneficial in order to adjust the fre-

quency characteristics of the output image. Optimization of

the contribution from different scales to the latent represen-

tation can adjust the decoded images to have better subjec-

tive and objective quality. Optimization of the bit allocation

from these scales at the quantization step can increase the

quality even further.

4. Conclusion

A convolutional autoencoder involving a 3-scale 2D

wavelet decomposition is proposed. The model is trained

end-to-end, using mean squared error (MSE) in the loss

function. Objective results indicate that WCAE outper-

forms JPEG and NoWCAE, a similar method that excludes

the wavelet decomposition step, in terms of MSSSIM at

bitrates lower than 0.15bpp across the full CLIC2019 test

set. Visual results of the proposed method also indicate

better performance compared to JPEG and NoWCAE. Al-

though WCAE is not able to outperform its transform based

counterpart JPEG 2000, we show that the introduction of

wavelet decomposition as a preprocessing step improves the

performance of learning-based image compression. Future

work involves optimization of wavelet scales at the analy-

sis/synthesis and quantization stages of the WCAE.
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[15] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-

Robert Müller. Efficient backprop. In Neural networks:

Tricks of the trade, pages 9–48. Springer, 2012. 3

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 3


