
A Compression Objective and a Cycle Loss for Neural Image Compression

Caglar Aytekin, Francesco Cricri, Antti Hallapuro, Jani Lainema, Emre Aksu and Miska Hannuksela

Nokia Technologies

Hatanpaan Valtatie 30, Tampere, Finland

caglar.aytekin@nokia.com

Abstract

In this manuscript we propose two objective terms for

neural image compression: a compression objective and a

cycle loss. These terms are applied on the encoder out-

put of an autoencoder and are used in combination with

reconstruction losses. The compression objective encour-

ages sparsity and low entropy in the activations. The cy-

cle loss term represents the distortion between encoder out-

puts computed from the original image and from the recon-

structed image (code-domain distortion). We train different

autoencoders by using the compression objective in com-

bination with different losses: a) MSE, b) MSE and MS-

SSIM, c) MSE, MS-SSIM and cycle loss. We observe that

images encoded by these differently-trained autoencoders

fall into different points of the perception-distortion curve

(while having similar bit-rates). In particular, MSE-only

training favors low image-domain distortion, whereas cy-

cle loss training favors high perceptual quality.

1. Introduction

Traditional image compression methods are mostly

based on transform-coding such as BPG [16] and JPEG

[17]. With the recent advances in deep learning, neural

networks have been applied to image compression with

promising results.

Neural image compression can be applied in a hybrid

system comprising a traditional codec and a neural net-

work used either within the traditional codec (e.g. replacing

some traditional filters as in [12]) or after it (e.g. a post-

processing filter) [8], [7].

Another approach is to design an image codec solely

based on neural networks – this is commonly referred to as

end-to-end learned approach. Recently end-to-end learned

approaches have shown considerable success [4], [5], [15],

[18], [19]. The main research topics in this field include dis-

tortion/perception loss functions [19], activation binariza-

tion/quantization [4], [18], rate loss functions [5], [15], spa-

tial/channel importance learning [14].

In this paper, we describe a method for the end-to-end

learned approach, and we address two of the research topics

above, namely rate and perception loss functions. First, we

propose a rate loss based on a sparsity metric, that we refer

to as compression objective. This loss helps obtaining very

sparse codes which are highly compressible. Second, we

propose a perception loss which does not require any addi-

tional neural network (thus avoiding significant increase in

memory and computational complexity at training stage).

We refer to this perception loss as cycle loss.

We used the image codecs presented in this paper to

participate to the 2019 Challenge on Learned Image Com-

pression. In particular, our submission names were NT-

Codec2019C, NTCodec2019CM, and NTCodec2019CC.

2. Related Work

In [15] a rate loss is introduced which penalizes spatial

deviations in the code, thus helping to achieve low bit-rates

when a context adaptive entropy coder is used. In [4], a sim-

ilar loss was introduced for one-dimensional data, as the en-

coder’s output is 1-D. In [5] a differentiable approximation

of entropy was used as a rate loss. Our proposed compres-

sion term helps obtaining very sparse codes which directly

reduce entropy and may indirectly increase the chance of

low spatial variance.

This paper proposes a loss term which encourages com-

pressibility of the encoder’s output by achieving sparsity.

In [2], we proposed to use part of the term proposed in this

paper, but applied on neural network’s weights. In [3], we

proposed a development of the compressibility term, again

for compressing neural network’s weights.

Regarding losses for achieving high perceptual visual

quality, one approach is to use metrics other than mean-

squared error (MSE). For example, in [19], metrics such

as multi-scale structural similarity (MS-SSIM) and peak

signal-to-noise ratio human visual system (PSNR-HVS)

were optimized in order to improve visual quality. Another

approach is to use an additional neural network to compute

a perceptual quality metric. In [15], [1], a generative adver-

sarial network (GAN) was used in order to obtain images
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with better visual quality. Another common strategy is to

use a network pre-trained on a classification task using a big

dataset, such as a VGG network on ImageNet. For exam-

ple, in [13] the authors combined an adversarial loss with

the MSE computed on the VGG features extracted from

ground-truth and predicted images, for the task of super-

resolution. In [20], the authors study different options for

obtaining perceptual metrics using deep neural networks,

and conclude that even networks pre-trained in unsuper-

vised or in self-supervised way provide similarly perform-

ing metrics as those provided by supervised networks such

as classifiers.

The approaches discussed above for measuring the vi-

sual quality have several drawbacks. MS-SSIM and PSNR-

HVS are hand-crafted metrics, and learning-based ap-

proaches require additional neural networks which increase

the computational and memory complexity of the training

stage. In this manuscript, we propose to use the encoder

part of our autoencoder structure as a high level-semantic

feature extractor and introduce a cycle loss where we min-

imize the MSE between original image’s semantic features

and reconstructed image’s semantic features. We realize

that this helps us to achieve visually pleasing images.

The concept of cycle loss for training neural networks

was introduced in [21] in the context of GANs. However,

the authors were using an additional generator network to

map back from output to input domain. Instead, we map

back to only the code domain, and we already have the map-

ping function – it is the encoder network. A similar idea

was explored also in [11], in the context of disentangling

factors of variation using variational autoencoders. How-

ever, in that work the backward cycle is applied in order

to map two different reconstructed images (obtained from a

combination of same sampled unspecified latent embedding

and different specified latent variables) to similar unspeci-

fied latent embeddings. In our case instead, the backward

cycle is applied in order to map a reconstructed image back

to the code from which it was generated.

3. Proposed Method

The proposed image compression framework is based on

neural autoencoders trained with a compression objective

together with a task loss.

3.1. Compression Objective

The compression objective is based on a term that en-

courages sparsity and another term that encourages small

non-zero values. The loss is defined as follows.

Lcomp(x) =
|x|

||x||
+ α

||x||2

|x|
(1)

The first part of the compression loss in Eq. 1,
|x|
||x|| , is

adopted from the work [10] and is a measure of the spar-

sity in a signal. We call this sparsity term of the com-

pression objective. The sparsity term is independent of

the values of non-zeros in the signal. For example a vec-

tor [0, 0, 500, 500] and [0, 0, 0.1, 0.1] would have exactly

the same sparsity value and large values are not penalized.

However, it is usually a good practice to have reasonably

small values in machine learning literature to avoid explod-

ing gradients and also to act as a regularization. Because of

this, we add another factor to the compression loss which

favors small non-zero values in a signal – this is the second

part:
||x||2

|x| . The weight α in Eq. 1, acts as a regularizer

between the sparsity term and the squeezing term.

3.2. Task Loss

We have investigated three different task losses for train-

ing neural autoencoders. The first task loss we have used is

the mean squared error that is defined as follows.

Lmse(I, Î) =
1

N

N∑

i

(I(i)− Î(i))2 (2)

In Eq. 2, I and Î are the original and the reconstructed

image, respectively. Although the MSE is a direct indicator

of the per-pixel distortion measure, it has been observed in

the literature ([20]) that lower distortion does not necessar-

ily mean better perceptual quality. Therefore other metrics

should be used in order to increase perceptual quality of the

reconstructed image. One of these metrics is structural sim-

ilarity measure (SSIM) defined as follows.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3)

SSIM in Eq. 3 is calculated on blocks, µx and σx stand

for mean and standard deviation of block x and c1 and c2 are

variables to stabilize low value denominator. A multi-scale

version of SSIM (MS-SSIM) is widely used and computed

over multiple scales. Since MS-SSIM is a quality measure

(in range [0, 1]), we use it as a loss in the following way:

Lms−ssim(x, y) =
1−msssim(x, y)

2
(4)

Other perceptual losses are based on learned networks,

such as the VGG-loss or adversarial losses, which however

require additional neural networks. We propose a percep-

tual loss which does not incur in additional networks. We

use the encoder part (E) of the autoencoder as feature ex-

traction. In order to obtain the features, we freeze the en-

coder part (Ef ) and calculate the features for the original

and the reconstructed image and minimize the MSE be-

tween these features as illustrated in Fig. 1. We refer to

this as the cycle loss and is formulated as follows.
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Figure 1. Cycle Loss for Perceptual Quality.

Lcycle(I, Î) = Lmse(Ef (I), Ef (Î)) (5)

In particular, following the common parlance in the con-

text of cycle losses, our cycle loss ensures the so-called

backward cycle consistency (c → Î → ĉ), whereas the

forward cycle consistency is ensured by the MSE on the

image domain (I → c → Î).

We train three different autoencoders by using the com-

pression objective in combination with the following losses:

a) MSE, b) MSE and MS-SSIM, and c) MSE and MS-SSIM

and cycle loss.

3.3. Neural Network Architecture

We use a neural autoencoder for image compression.

The encoder consists of three blocks where each block con-

sists of a strided convolution layer followed by a residual

block as illustrated in Fig. 2. Finally there is a 1x1 con-

volutional layer followed by a sigmoid to map the values

between 0 and 1. The compression loss is applied to the

output of this sigmoid activation in order to drive most of

the activations close to zero.

Figure 2. Encoder Structure.

The decoder consists of three blocks where each block

consists of an up-sampling deconvolution layer followed by

a residual block as illustrated in Fig. 3. Finally there is a 1x1

convolutional layer followed by a sigmoid. Note that the

input to the CNN is also normalized to have values between

0 and 1.

Each residual block consists of 3 sub-blocks consisting

of a leaky ReLU activation and a convolutional layer. Con-

volutional layers are 1x1, 3x3 and 1x1 respectively, follow-

ing the approach of [9]. Filter numbers of each convolu-

tional layer are one fourth, same and one-fourth of the input

channel number to the residual block. We do not use any

batch-normalization layers.

Figure 3. Decoder Structure.

3.4. Activation Binarization

In order to make the most out of the compression, we

binarize the output of the encoder. Note that the output of

the encoder is in the interval [0, 1] already. For the forward

pass, we use simple rounding operation and for the back-

ward pass we use the straight-through estimator [14].

3.5. Post­Training Encoder Optimization

After the training, post-training encoder optimization is

utilized where the encoder is optimized for each test im-

age by simply fine-tuning the pre-trained autoencoder while

keeping the decoder frozen.

3.6. Lossless Coding

After the post-training encoder optimization, the encoder

outputs are lossless-encoded by context adaptive binary en-

tropy codec (CABAC).

4. Experimental Results

4.1. Implementation Details

We trained the autoencoder on the CLIC training dataset.

In particular, we used 128x128 half-overlapping crops, on

which we applied random horizontal flipping as data aug-

mentation. The neural networks were trained with a combi-

nation of task loss and compression loss.

For MSE based training, we have used the following loss

function

L(x) = Lmse(I, Î) + γLcomp(c) (6)

where c is the encoder output and γ = 1e−04. This loss was

used for the CLIC submission NTCodec2019C. For MSE

and MS-SSIM based training, we have used the following

loss function.

L(x) = Lmse(I, Î) + λLms−ssim(I, Î) + γLcomp(c) (7)

where λ = 0.1 and γ = 2.5e−04. This loss was used for the

CLIC submission NTCodec2019CM. For MSE, MS-SSIM

and cycle based training, we have used the following loss

function.

L(x) = Lmse(I, Î) + λ1Lms−ssim(I, Î)+

λ2Lcycle(I, Î) + γLcomp(c)
(8)
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Figure 4. (a) Original Image, Reconstructed images by using neural networks that are trained with losses in Eq. 6 (b), Eq. 7 (c), Eq. 8 (d).

where λ1 = 0.1, λ2 = 0.01 and γ = 3e− 04. This loss was

used for the CLIC submission NTCodec2019CC.

The hyperparameters were empirically selected in order

to satisfy the 0.15 bpp (bits per pixel) and to obtain reason-

able performance at this bit rate.

For all the trainings we use Adam optimizer with learn-

ing rate 2e−04, we halve the learning rate every 10 epochs.

We stop halving the learning rate after epoch 50 and train

the neural networks for 200 epochs in total. Each epoch

consists of 900 iterations and we have used batch size

64. The training takes about 10 hours in a single GPU in

NVIDIA DGX-1 computing cluster. The autoencoder size

is 28 MB, where the decoder part is about 14 MB – this is

reasonably small for efficient inference.

4.2. Results

In Table 1, we share the results on the CLIC valida-

tion set (PSNR, MS-SSIM and bpp) for neural autoencoders

trained with the losses in Equations 6, 7 and 8.

Table 1. Performance of neural networks trained with losses in

Equations 6, 7 and 8 on CLIC validation set, corresponding to

submission names NTCodec2019C, NTCodec2019CM and NT-

Codec2019CC.
Loss PSNR MS-SSIM bpp

Eq. 6 27.90 0.915 0.145

Eq. 7 27.43 0.921 0.145

Eq. 8 26.98 0.921 0.148

It can be observed from Table 1 that at similar bit-rates

the network trained with only MSE loss obtains the best

PSNR, the network trained with MSE and MS-SSIM jointly

results into nearly half dB loss in PSNR while increas-

ing the MS-SSIM. When cycle loss is added to MSE and

MS-SSIM, although this results into a further reduction in

PSNR, MS-SSIM stays the same.

Next, we compare the visual quality of decoded images

by each method. In Fig. 4, we share an image that is en-

coded/decoded by different methods. We see clearly that

the image encoded/decoded with the neural network trained

by cycle loss (d) has better visual quality than others. Re-

ferring to the images in Fig. 4 b, c, d, the corresponding

PSNR values are 32.10 dB, 31.19 dB and 30.80 dB, respec-

tively, whereas the obtained bpp values are 0.093, 0.093 and

0.091, respectively. Clearly the network trained only with

MSE obtains better PSNR performance and as we introduce

more losses, PSNR is reduced. However, although the worst

PSNR comes from the model that is trained also with cycle

loss, we see a superior perceptual quality from this image.

This result is interesting, yet follows the previous find-

ings in the literature. For example in [6] it was discussed

that for non-invertible problems, a perception-distortion

curve is evident which defines a boundary between a re-

gion that is possible to obtain and a region that is impossible

to obtain. An impossible point is for example the perfect

reconstruction. This is clearly impossible to obtain if the

problem is non-invertible (i.e., if there is a loss of informa-

tion that cannot be recovered in any way). Therefore, the

points on the separating curve in [6] shows a trend where

the perceptual error is inversely proportional to distortion.

In our case this means that perceptual quality is inversely

proportional to PSNR.

Another observation from the above experiment is that

the model trained with MS-SSIM and MSE does not ob-

tain clearly observable higher perceptual quality compared

to the model that is only trained with MSE. Therefore, this

also leads to re-thinking the common belief that MS-SSIM

is more perception-friendly loss than MSE. At least it can

be deduced from the above experiments that MS-SSIM may

not be enough to obtain a good perceptual quality on its

own, whereas adding our cycle loss leads to clear percep-

tual improvements.

4.3. Conclusion

We propose a compression loss which helps obtaining

very sparse codes. As another contribution, we propose cy-

cle loss which helps achieving images with better perceptual

quality without introducing any additional neural network

than the autoencoder itself to calculate the perceptual loss.
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