
Description of Challenge Proposal by NCTU: An Autoencoder-based Image

Compressor with Principle Component Analysis and Soft-Bit Rate Estimation

Chih-Peng Chang1 David Alexandre2 Wen-Hsiao Peng1,3 Hsueh-Ming Hang2,3

cpchang.cs08g@nctu.edu.tw davidalexandre.eed05g@nctu.edu.tw wpeng@cs.nctu.edu.tw hmhang@nctu.edu.tw

1Computer Science Dept., 2Electronics Engineering Dept.,
3Pervasive AI Research (PAIR) Labs, National Chiao Tung University, Taiwan

Abstract

This paper describes the technology proposal by NCTU

for learning-based image compression. The selected tech-

nologies include an autoencoder that incorporates (1) a

principal component analysis (PCA) layer for energy com-

paction, (2) a uniform, scalar quantizer for lossy compres-

sion, (3) a context-adaptive bitplane coder for entropy cod-

ing, and (4) a soft-bit-based rate estimator. The PCA layer

includes 1×1 eigen kernels derived from the sample covari-

ance of co-located feature samples across channels. The

bitplane coder compresses PCA-transformed feature sam-

ples based on their quantized, fixed-point representations,

of which the soft bits provide a differentiable approxima-

tion for context-adaptive rate estimation. The training of

our compression system proceeds in two alternating phases:

one for updating the rate estimator and the other for fine

tuning the autoencoder regularized by the rate estimator.

The proposed method outperforms BPG in terms of both

PSNR and MS-SSIM. Several bug fixes have been made

since the submission of our decoder. This paper presents

the up-to-date results.

1. Introduction

Learning-based image compression has recently at-

tracted lots of attention due to the renaissance of deep learn-

ing. Unlike the traditional methods, the learning-based

schemes can be adapted to any differentiable objective,

opening up many optimization possibilities.

Most learning-based methods [1, 3, 4, 6, 8, 9, 10, 11]

rely on training an autoencoder end-to-end with the aim of

striking a good balance between distortion and rate losses.

Two challenges arise. First, the quantization process for

lossy feature map compression causes zero gradients during

the back-propagation process. Second, the rate loss is often

painful to estimate accurately, as it is highly coupled with

entropy coding, the operation of which is not differentiable.

Several prior arts are proposed to address these issues.

Li et al. [6] overcome the zero gradients by a straight-

through mechanism, which simply considers the quantizer

to be an identity function during the back-propagation pro-

cess. Mentzer et al. [8] introduce a non-uniform soft quan-

tizer with a smooth mapping function as a surrogate of the

hard quantizer. Ballé et al. [3, 4] and Theis et al. [11] adopt

an additive noise model for the quantizer.

The rate estimation is even more challenging. Theis et

al. [11] estimate the rate from the upper-bound of non-

differentiable number of bits. For better estimation, Ballé

et al. [3, 4] and Minnen et al. [9] compute the differential

entropy of the quantizer output based on the additive noise

model. To bind the rate estimation tightly to the actual en-

tropy coding, Mentzer et al. [8] use the context probability

model implemented by PixelRNN [12] to compute the self-

information of each coding symbol. Their scheme is, how-

ever, complicated due to the use of PixelRNN [12] and the

non-binary arithmetic coding.

In this paper, we propose a learned image compression

system. It has the striking feature of combining effective

coding tools from modern image codecs (e.g. PCA, uni-

form quantization, binary bitplane coding with on-the-fly

probability updating, and simple context models) with the

strong suit of deep learning (e.g. non-linear autoencoder).

Moreover, we introduce the notion of soft bits to represent

quantization indices of feature samples so that the rate loss

can be estimated accurately in a context-adaptive, differen-

tiable manner. Experimental results show that our method

outperforms BPG in terms of PSNR and MS-SSIM.

This work is an extension of our previous work[2], we

introduce PCA into the original framework.

2. Proposed Method

This section details the framework of our image com-

pression system, including the overall architecture, the op-

eration of each component, and the modeling of compres-

sion rate and distortion for end-to-end training. Notation-

wise, we use a bold letter (e.g. x) to refer collectively to a

4321

BitstreamCABIC CABIDQ IQPCA IPCAEncoder θe Decoder θdx x̂

SB conv. Rate Est. θr LR(x)

LD(x, x̂)

Soft Q

f z q q ẑ f̂

q̂

Figure 1. The overall architecture of the proposed image compression system.

high-dimensional tensor and a Roman letter (e.g. x) to de-

note its element in some order.

2.1. Overall Architecture

Fig. 1 illustrates our proposed framework. There are two

data paths shown, one for operating the model in test mode

(that is, for putting it into use in practice) and the other for

its training (i.e. training mode).

The data path in test mode, as indicated by the solid ar-

row lines, begins with encoding an image x ∈ R
W×H×3

of size W × H in 4:4:4 RGB format through a convolu-

tional encoder E(x; θe) into a compact set of feature maps

f ∈ R
W/8×H/8×C . Subsequently, the co-located feature

samples in f are convolved with 1× 1 kernels derived from

Principle Component Analysis (PCA) (Section 2.2) to ar-

rive at de-correlated and energy-compacted feature maps

z ∈ R
W/8×H/8×C . For lossy compression, the magnitude

|z| of each PCA-transformed feature sample z is uniformly

quantized by a b-bit scalar quantizer Q, leading to a fixed-

point binary representation q = ⌊|z|/2−b⌋, where 2−b is

the quantization step size. That is, the quantization (output)

index q is the first b significant bits of |z| in its binary rep-

resentation (e.g. q = 1100 for |z| = 0.81, b = 4). Note that

the sign of z is signaled separately. Like most image com-

pression systems, either learning-based or conventional, the

quantization indices q are compacted further by lossless

arithmetic coding. Specifically, we arrange q as bitplanes

and perform context-adaptive bitplane encoding/decoding

(CABIC/CABID) (Section 2.4). To reconstruct the input x

approximately, the feature sample is first recovered via in-

verse quantization (IQ) ẑ = q/2b×sign(z), followed by the

inverse PCA and the convolutional decoding x̂ = D(f̂ ; θd).
Currently, our encoder and decoder comes from the ones

proposed in [8]; the parameters θe, θd are however learned

by our framework, which aims to strike a good trade-off be-

tween rate LR(q) and distortion LD(x, x̂) by minimizing

the following objective function with respect to θe, θd:

λ× LR(q) + LD(x, x̂), (1)

where LD(x, x̂) is defined to be a sum of mean squared

errors between the RGB components of x and x̂.

The data path in training mode, as outlined by the

dashed arrow lines, is designed for end-to-end model train-

ing. Training a learning-based compression system is often

faced with two issues: (1) the quantization effect, which

describes a stair-like mapping from the input (e.g. z) to

the output (e.g. ẑ), gives rise to zero gradients almost ev-

erywhere, and (2) the rate cost needed to achieve a rate-

distortion optimized design is painful to estimate accurately.

To address these issues, we model the quantizer with a

differentiable function formed by a superposition of sig-

moid functions whenever applicable. As an example, we in-

troduce the notion of soft bits q̃ as an alternative to the hard

bit representation of the quantization indices q. Instead of

rendering q into ”1”,”1”,”0”,”0” for |z| = 0.81, b = 4 as

was done previously, we express these binary hard bits as

real-valued soft bits, e.g. ”0.91”, ”0.95”, ”0.1”, ”0.07”, by

the soft bit conversion (SB Conv.) module (Section 2.3). In

doing so, each of these soft bits is formulated as a differen-

tiable function of z. They can thus be utilized together with

a differentiable rate estimator, implemented by a learnable

neural network with parameter θr in Fig. 1, to give an ac-

curate estimate of the coding cost (Section 2.5). The same

principle of soft quantization is also applied to the mapping

from z to ẑ (see Soft Q in Fig. 1) for a differentiable ap-

proximation of the quantizer.

To sum up, our framework has three networks to be

learned end-to-end: the encoder, the decoder, and the rate

estimator. Among these, only the encoder and the decoder

will actually operate in test mode, while the rate estimator is

activated for training only. In addition, the PCA kernels are

learned in a separate training step and remain fixed during

the end-to-end training for the three networks (Section 3).

2.2. Principal Component Analysis (PCA)

We apply PCA to feature maps f for the sake of achiev-

ing energy compaction and decorrelating co-located feature

samples across channels. Both properties are desirable to

enable efficient bit allocation among transformed feature

maps. In our system, PCA (and similarly its inverse) is im-

plemented by a convolutional layer with 1 × 1 kernels de-

rived from the eigenvectors of the sample covariance matrix

of co-located feature samples, i.e. {fi,j,k}
C
k=1

where (i, j)
and k are their spatial coordinates and channel indices, re-

spectively. The computation of the sample covariance ma-

trix is performed in a separate training step, in which the au-

toencoder is optimized based on minimizing solely the dis-

tortion LD(x, x̂). Moreover, mean removal (respectively,

mean addition) is done for each feature map before the PCA

0 0.25 0.5 0.75 1

0

0.5

1

|z|

q 0
(|
z
|)

Hard Soft

0 0.25 0.5 0.75 1

0

0.5

1

|z|

q 1
(|
z
|)

Hard Soft

Figure 2. Soft bit versus hard bit mappings.

(respectively, after the IPCA). With enough precision, the

PCA and IPCA perform an identity transformation.

2.3. Soft Bit Conversion

The soft bit conversion plays a central role in enabling

our compression system end-to-end trainable. It is to con-

vert the binary, hard-bit representation of the quantization

index q of a PCA-transformed feature sample z into a dif-

ferentiable function of z, namely the soft-bit representation.

In the previous example, the binary fixed-point representa-

tion of q for a feature sample |z| = 0.81 is ”1100” when

|z| is quantized uniformly with a step size of 2−4. We ob-

serve that each of these hard bits q0 = 1, q1 = 1, q2 = 0,

q3 = 0 is in fact a function of |z|. For instance, the first bit

q0 equals to 1 when |z| is in the interval [0.5, 1) and 0 when

in the interval of [0, 0.5). The mappings for the first two

bits q0, q1 are visualized in Fig. 2 (see the hard-bit curves).

Apparently, due to their rectangular waveforms, the deriva-

tive with respect to |z| is zero almost everywhere, making

the training with back-propagation impossible.

To circumvent this difficulty, we approximate these hard-

bit mappings by a superposition of sigmoid functions (see

the soft-bit curves in Fig. 2). This is motivated by the

fact that any rectangular waveform can be expressed as a

superposition of step functions, which in turn can be ap-

proximated by sigmoid functions with a adequately chosen

hyper-parameter α:

u(s) :=

{

1 if s ≥ 0
0 if s < 0

≈ σα(s) :=
1

1 + e−αs
. (2)

As an example, it is seen that:

q1(|z|) ≈ q̃1(|z|)

:= σα(|z| − 0.25)− σα(|z| − 0.5)

+ σα(|z| − 0.75)− σα(|z| − 1). (3)

Likewise, in training mode, the mapping from z to ẑ

(Soft Q in Fig. 1) follows the same modeling approach.

2.4. Context­adaptive Bitplane Coding (CABIC)

For entropy coding, we organize q into bitplanes. A bit-

plane is formed collectively by the same binary digits of

quantization indices. For example, the most significant bit-

plane consists of all the q0 of feature samples. Bits are then

X

A B C

D E

F

Figure 3. Illustration of context template for context-adaptive bit-

plane coding. X denotes the location of a coding sample.

ctx

q̃i

Probability
Regressor

θr

p(qi|ctx)

-
p(q̃i|ctx)

Figure 4. Training of our probability regressor.

coded starting from the most significant bitplane to the least

significant one, with different feature maps processed in the

same manner yet separately.

To encode bitplanes, we adopt context-adaptive binary

arithmetic coding. Inspired by JPEG2000, we classify ev-

ery bit into a significant bit or a refinement bit. Using Fig.

3 for illustration, for coding a significant bit of the quanti-

zation index at X , we refer to the binary significant status

of the surrounding indices at B, D, E and F . This yields

a total of 16 context patterns (or ctx values for short), each

corresponding to a binary probability model that is updated

on-the-fly. The context model for sign bits follows the same

design but with reference to the signs of surrounding fea-

ture samples. For coding a refinement bit, the ctx value is

computed based on the bit values of quantization indices

at B,D,E, F in the previous bitplane along with those of

A,B,C,D in the current bitplane. Since refinement bits are

less predictable, we reduce the number of their ctx values to

9 only.

Note that we adopt a traditional hand-crafted design for

arithmetic coding because (1) it allows simple adaptation of

the context probability model to learn local image statistics

and (2) it avoids the need to perform neural network infer-

ence at bit level, which introduces extra processing latency

in the highly sequential arithmetic decoding process.

2.5. Rate Estimator

To estimate the code length needed to represent an in-

put bit at training time, we refer to its self-information. The

self-information of a probabilistic event E is defined to be

the negative logarithm − log p(E) of its probability p(E). In

our case, the probability of a coding bit qi is maintained in a

context probability model, which keeps track of p(qi|ctx),
where ctx denotes its context pattern/value. It is however

noted that p(qi|ctx) is approximated by the relative fre-

quency of qi given the ctx, e.g. how many times the event

qi = 1 occurs given the present ctx, which is a statistics

quantity not differentiable with respective to qi.
To overcome this problem, we train a rate estimator that

includes a neural network as a probability regressor to fit

p(qi|ctx) collected from the training data, as illustrated in

Fig. 4. In particular, the probability regressor takes as input

the soft bits version q̃i of qi so that it generates non-zero gra-

dient of the estimated rate (computed to be − log p(q̃i|ctx))
with respect to the encoder parameter θe:

∇θe(− log p(q̃i|ctx)) = −
1

p(q̃i|ctx)

∂p(q̃i|ctx)

∂q̃i

dq̃i
df

∇θef.

(4)

It can be seen that if the hard bit mapping is used, the term

dq̃i/df would be replaced with dqi/df , which vanishes.

Eq. (4) gives us some important insights into how the

estimated rate cost of an input bit qi would influence the

update of the encoder parameter θe. Its contribution to the

change of θe in a gradient update step will be more signifi-

cant if qi is in its less probable state, i.e., p(q̃i|ctx) ≤ 0.5, or

if its conditional probability distribution p(q̃i|ctx) is more

biased, i.e., ∂p(q̃i|ctx)/∂q̃i is larger. The latter occurs when

p(q̃i = 1|ctx) ≫ p(q̃i = 0|ctx) or vice versa.

3. Training

The encoder, decoder, and rate estimator are trained in

two alternating phases, with the PCA layer pre-determined

following the approach in Section 2.2. In the first phase, we

collect the statistics of the context probabilities p(qi|ctx)
from the feature maps, and update the rate estimator θr
by minimizing the regression error between p(qi|ctx) and

p(q̃i|ctx). In the second phase, we incorporate the rate esti-

mator to give an estimate of the rate cost LR(q) and update

both the encoder and decoder by minimizing λ× LR(q) +
LD(x, x̂) with respect to their network parameters θe, θd.

During training, we set the batch size to 8 and the learning

rate to 1e−4.

Our model is trained on the COCO dataset[7]. They are

randomly cropped into 160x160 patches, and the horizontal

and vertical flipping is performed for data augmentation.

4. Experimental results

This section compares the rate-distortion performance of

the proposed method with the other codecs. The compari-

son is conducted on Kodak dataset [5] by compressing test

images at several rates with a varying number of feature

maps. For every test image, we first calculate the average

PSNR and MS-SSIM over its three color components. We

then present the average values over the entire dataset as a

single quality indicator. The distortion loss LD(x, x̂) is set

to mean squared error and negative MS-SSIM, respectively.

From Fig. 5, we see that in terms of PSNR, our method

performs slightly better than BPG while outperforming the

other baselines by a large margin. In terms of MS-SSIM, its

superiority over the competing methods is obvious.

0 0.2 0.4 0.6 0.8
20

22

24

26

28

30

32

34

Avg. bpp

PSNR on Kodak

BPG

JPEG2000

JPEG

Ours

0 0.2 0.4 0.6 0.8

0.86

0.9

0.94

0.98

Avg. bpp

MS-SSIM on Kodak

BPG

JPEG2000

JPEG

Mentzer et al.[8]

Ours

Figure 5. Rate-distortion comparison on Kodak dataset.

0.06 bpp 0.12 bpp

Figure 6. Visualization of the quantized feature maps ẑ at different

rates. Each column displays the contents of the four bitplanes for

representing a feature map.

Fig. 6 shows the bit allocation among quantized feature

maps ẑ due to our soft-bit-based rate-distortion optimiza-

tion. Three observations can be made: (1) the dynamic

range of feature samples is adjusted automatically by the

encoder depending on the compression rate, as evidenced

by the presence of nearly all zero bitplanes at lower bpp’s;

(2) some feature maps are more important than the others

in the rate-distortion sense, as evidenced by the uneven bit

distribution across feature maps; and (3) the bit allocation is

spatially varying, as indicated by the uneven bit distribution

across different regions. These together produce a net effect

similar in spirit to the importance map mechanism [6].

5. Conclusion

This paper introduces a learned image compression sys-

tem with PCA and soft bits-based rate-distortion optimiza-

tion. PCA is found effective for de-correlating feature maps

and achieving energy compaction. The soft bits represen-

tation allows the rate estimation to be coupled tightly with

entropy coding, giving an accurate rate estimate. We also

show that learning-based compression methods can lever-

age well-designed coding tools from modern image codecs

for a more cost-effective compression solution.

6. Acknowledgement

This work is partially supported by the MOST, Taiwan

under Grant MOST 108-2634-F-009-007 through Pervasive

AI Research (PAIR) Labs, National Chiao Tung University,

Taiwan.

References

[1] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli,

R. Timofte, L. Benini, and L.V. Gool. Soft-to-hard

vector quantization for end-to-end learning compress-

ible representations. In Advances in Neural Informa-

tion Processing Systems, pages 1141–1151, 2017.

[2] David Alexandre, Chih-Peng Chang, Wen-Hsiao

Peng, and Hsueh-Ming Hang. Learned image com-

pression with soft bit-based rate-distortion optimiza-

tion. arXiv preprint arXiv:1905.00190, 2019.

[3] J. Ballé, V. Laparra, and E. P Simoncelli. End-to-

end optimized image compression. arXiv preprint

arXiv:1611.01704, 2016.

[4] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N.

Johnston. Variational image compression with a scale

hyperprior. arXiv preprint arXiv:1802.01436, 2018.

[5] Kodak PhotoCD dataset. http://r0k.us/

graphics/kodak/.

[6] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang. Learn-

ing convolutional networks for content-weighted im-

age compression. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition,

pages 3214–3223, 2018.

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, James

Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C Lawrence Zitnick. Microsoft coco: Common ob-

jects in context. In European conference on computer

vision, pages 740–755. Springer, 2014.

[8] Fabian Mentzer, Eirikur Agustsson, Michael Tschan-

nen, Radu Timofte, and Luc Van Gool. Conditional

probability models for deep image compression. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4394–4402,

2018.

[9] D. Minnen, J. Ballé, and G. D. Toderici. Joint au-

toregressive and hierarchical priors for learned image

compression. In Advances in Neural Information Pro-

cessing Systems, pages 10794–10803, 2018.

[10] O. Rippel and L. Bourdev. Real-time adaptive image

compression. In International Conference on Machine

Learning, pages 2922–2930, 2017.

[11] L. Theis, W. Shi, A. Cunningham, and F. Huszár.

Lossy image compression with compressive autoen-

coders. In International Conference on Learning Rep-

resentations, 2017.

[12] A. Van Oord, N.l Kalchbrenner, and K. Kavukcuoglu.

Pixel recurrent neural networks. In International

Conference on Machine Learning, pages 1747–1756,

2016.

