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Abstract

In this paper, we describe our submission to the work-

shop and challenge on learned image compression (CLIC)

hosted at CVPR 2019. Lossy compressed images usually

suffer from unpleasant artifacts, especially when the bit-

rate is low. In order to improve the image quality with-

out spending extra bit-rate, decoder side quality enhance-

ment becomes necessary. Most approaches focus on spa-

tial information exploration and the quality enhancement

is usually only performed on the luminance component,

which leads to the neglect of inter-channel correlation. In

addition, since compressed images mainly lose the high-

frequency components, high-frequency and low-frequency

components show different characteristics. Motivated by

the characteristics of compressed images, a wavelet trans-

form based 3-stage CNN is proposed in this paper. With

the RGB image as input, the proposed network exploits

the latent inter-channel correlations and enhances the low-

frequency and high-frequency sub-band separately. Both

objective and subjective evaluations show the noticeable

quality improvements compared to Better Portable Graph-

ics (BPG) and previous approaches.

1. Introduction

Most of the modern lossy image and video codecs (e.g.

JPEG, WebP, BPG[1], H.264, HEVC) are block based. The

compressed images and videos often suffer from visible dis-

tortion (e.g. block and ringing artifacts) for areas with rich

texture and sharp edges, especially when the bit-rate is rel-

atively low. For some image and video codecs, there are

built-in filters in the decoder to mitigate this problem. In

HEVC, in-loop filtering is adopted, including a deblocking

filter (DBF) and sample adaptive offset (SAO), to alleviate

the block and ringing artifacts, respectively. However, the

results are still not satisfactory when the bit-rate is low.

A number of approaches have been proposed to re-

duce these artifacts. Conventional approaches design fil-

ters based on image priors (low-rank, non-local similarity,

sparsity). But most of these priors are hand-crafted and not

optimal in some cases.

With the success of convolutional neural networks

(CNN) in image processing, CNN based algorithms have

also been proposed. In [5], a compression artifact reduction

CNN (ARCNN) is proposed, which achieves significant im-

provement compared to conventional approaches. In [7],

a reconstruction network is proposed, which solves both

super-resolution and enhancement problems at the same

time. In [11], a decoder-side HEVC quality enhancement

using a scalable CNN is proposed, which enhances the

quality of Intra-frames and Inter-frames with different sub-

networks. In [12], a residual learning based denoising net-

work is proposed, which can also be adopted to solve mul-

tiple image restoration problems like deblocking or super-

resolution when trained with corresponding data.

However, most of these approaches exploit only spatial

information, they are typically applied on the luminance

component only, and the inter-channel correlation is not ex-

ploited. In image and video compression, the YUV color

format (YUV420, YUV444) is usually adopted, based on

the assumption that the human visual system is not so sen-

sitive to color differences compared to brightness changes.

When the decoded RGB images are obtained, usually the

G channel has the best quality, R and B have lower quality.

In [4], it has been shown that for both Peak Signal-to-Noise

Ratio (PSNR) and Multi-Scale Structural Similarity (MS-

SSIM), the G channel of compressed images shows higher

quality than the other two channels, even when the bit-rate

is low. The R, G and B channels captured with a single sen-

sor have very strong inter-channel correlations [3], which

means the reconstruction of one channel can benefit from

the samples of the other two channels. Based on this ob-

servation, we reconstruct the RGB channels instead of the

luminance channel only.

Most compression algorithms achieve high compression

ratios by discarding high-frequency components, while at
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the same time preserving the low-frequency components.

Therefore, the major loss of the compressed image should

be the high-frequency component, the low-frequency part

should be similar as the original image.

In order to prove this, a simple test is performed with

BPG image compression and the kodak dataset. The 24

images of the kodak dataset are compressed with the BPG

codec with a quantization parameter (qp) of 40, using the

YUV444 format. Then, the Haar wavelet transform is

adopted to perform frequency decomposition for both the

original images and the compressed images. Four sub-

bands LL, HL, LH, HH are obtained. Pearson correlation

coefficient is adopted to evaluate the similarity of the coef-

ficients of different sub-bands between the original images

and the BPG compressed images. The mean values and the

variance of the correlation coefficients for each sub-band

are shown in Tab. 1.

Table 1. Correlation coefficients of different sub-bands between

original image and compressed BPG image

Correlation LL HL LH HH

mean 0.9901 0.7983 0.8311 0.5412

variance 0.000045 0.0055 0.0028 0.0119

From Tab. 1, it can be seen that the LL sub-band is highly

correlated, which means that the image codec maintains the

low-frequency part well. The correlation of the HH sub-

band is much lower than for the other three, which means

that high-frequency information in the compressed images

is lost. The results here are in accordance with the afore-

mentioned analysis. Existing approaches are usually per-

formed on the original pixel values. Some approaches op-

erate in the frequency domain [10, 2, 6], however, they just

perform the enhancement jointly for all sub-bands and do

not discriminate between different frequency components.

In comparison, we design a scheme which adopts different

models to deal with different frequency components. Since

the Discrete Wavelet Transform (DWT) is widely used in

image processing, we adopt the DWT as the frequency de-

composition approach in our work.

Based on these observations, the inter-channel correla-

tions and the frequency components characteristics, in this

paper, we propose a wavelet transform based 3-stage CNN

approach to enhance the compressed color image quality.

First, since the R/G/B channels have high correlations, we

adopt the RGB image as the input of the network instead of

using only the luminance Y. The network exploits the latent

inter-channel correlations and the reconstruction of samples

from one channel benefits from the samples of other chan-

nels. Second, due to the frequency components characteris-

tics, we design the network structure to make it perform en-

hancement for different frequency components separately,

which allows the network to better adapt to the characteris-

tics of the compressed image.

The major contributions of this work can be summarized

as follows: First, RGB images are fed to the network to ex-

ploit the latent inter-channel correlation. Second, a wavelet

transform based 3-stage structure is proposed where the

low-frequency sub-band and high-frequency sub-band are

enhanced separately. Third, the proposed scheme is a pure

post-processing approach and hence compatible with any

existing image and video codecs, which makes the approach

applicable in practice.

2. Proposed scheme

In image and video compression, YUV is the most com-

monly used format. The U and V chrominance components

are usually compressed more aggressively than Y because

of the characteristics of the human visual system. This leads

to the aforementioned characteristics of compressed images

when transformed back to RGB domain. The R, G, and

B channels exhibit strong inter-channel correlation, which

means that the samples from other channels can be used to

enhance the quality of the current channel.

The compressed images usually lose more high-

frequency components while maintaining most of the low-

frequency components. Dealing with the low-frequency and

high-frequency components with different models is an in-

tuitive approach to mitigate this kind of difference. Based

on these characteristics, we propose the wavelet transform

based 3-stage CNN structure shown in Fig. 1 for com-

pressed color image quality enhancement.

First, the compressed image is decoded with a standard

image codec. The obtained RGB images are then trans-

formed into the wavelet domain. For easy implementation

and computational complexity consideration, we adopt the

simple Haar wavelet. After the Haar wavelet transform, the

image is reshaped to a 12-channel image as shown in Fig. 2,

this 12-channel image is the input of the first stage network.

After getting the output of the first stage, in the second

stage, two parallel networks are designed, which enhance

the LL component and the other three high-frequency com-

ponents separately. In the third stage, the enhanced low-

frequency components and the high-frequency components

are concatenated and fed to the third stage network to per-

form the final refinement. Finally, the enhanced RGB im-

ages are obtained with reshaping and inverse wavelet trans-

form.

Fig. 3 shows the detailed structure of the network unit for

each stage. In the first layer, 64 filters of size 3× 3× d are

used to generate feature maps, the last convolutional layer

adopts d filters of size 3×3×64 to generate the correspond-

ing output. For the hidden layers, 64 filters of size 3×3×64
are adopted. The number of the layers in each unit K is set

to 10 and d is set to 12, 3 and 9, 12 in the three stages, re-

spectively. Stride is set to 1, and zero-padding of size 1 is

used to ensure that each feature map has the same size as



Figure 1. Structure of the proposed wavelet transform based 3-stage CNN scheme

Figure 2. Color image 2D wavelet transform and reshaping to 12-

channel images

the input. A shortcut connection is used for each stage to

boost the training process, which is similar as the residual

learning structure used in [8] and [12].

Figure 3. Structure of Network Unit

Consider the training dataset (Xi,Yi)
N
i=1

, where Xi is

the i-th decoded compressed image, Yi is the correspond-

ing ground-truth RGB image, and N is the number of im-

ages in the training data. During training, a loss function

is defined to optimize the parameters of the networks. The

mean squared error (MSE) function is used as the loss func-

tion which is defined as follows.

L(ω1, ω21, ω22, ω3) =

=
1

N

N
∑

i=1

(‖F(Xi;ω1, ω21, ω22, ω3)−Oi‖
2)
) (1)

where ωj represents the corresponding network parameters

of the j-th stage. F(Xi;ω1, ω21, ω22, ω3) is the i-th output

of the 3-stage network. In order to ensure the generaliz-

ability of the trained model, a regularization term is also

adopted in the loss function during training. The overall

loss is defined in Eq. 2. The regularization coefficient λ is

set to 0.0005.

Lall(ω1, ω21, ω22, ω3) = L+
1

2
λ
∑

j

(‖ωj‖
2) (2)

3. Experiments and results

The provided training dataset is adopted in our experi-

ments as training data. In this dataset, there are 1633 high-

resolution natural images of various scenes shot by mobile

devices and professional cameras.

The BPG codec is used to generate the compressed train-

ing images. The qp is set to 39 to meet the bit-rate con-

straint, jctvc option is enabled to achieve the best compres-

sion results, the level is set to 9, and bit-depth is set to 12 to

achieve more accurate internal calculation. YUV444 format

and color space YCgCo are adopted because they slightly

improve the image quality compared to the default settings.

The patch size is set to 160× 160, and the patches are non-

overlapping. The mini-batch size is set to 64. The weights

of the networks are initialized according to [8] and the

Adam solver is used to optimize the parameters. The start-

ing learning rate is 0.001, and divided by 5 every 5 epochs.

There are 45 epochs in total. Other hyper-parameters are

using the default settings from [9].

First, two example images from the test dataset are de-

picted in Fig. 4 to show the visual quality of the proposed

method. Usually the texture-rich and sharp edge area are the

challenging cases. We zoom in some parts of these images

to show the details. It can be seen that for BPG compres-

sion, block artifacts, false-color pixels and shadows can be



(a) Ground Truth (PSNR / SSIM) (b) BPG (32.61dB / 0.9474)

(c) CLIC18 (33.23dB / 0.9502) (d) Proposed (33.35dB / 0.9520)

(e) Ground Truth (PSNR / SSIM) (f) BPG (30.50dB / 0.9494)

(g) CLIC18 (30.93dB / 0.9516) (h) Proposed (31.17dB / 0.9541)

Figure 4. Visual Quality Comparison (Best seen on a computer

monitor. 8d978b17742f8a06d429a3ab82fa9068e8a1989f.png and

196690d0d3c97d21bfa659891f07e925c67d8b20.png from the test

dataset)

observed along the edges of the objects. With the proposed

method, these artifacts can be well eliminated and the vi-

sual quality is improved. Not only the image quality is im-

proved, due to performing the convolution in the wavelet

domain, the spatial resolution is just a quarter compared to

the original resolution with the same amount of parameters,

the proposed method is 3 times faster than the CLIC18 [4]

approach. We also notice that the groundtruth images are

not always perfect, some of them suffer from slight noise or

other issues, because these images are captured with mobile

and professional cameras and processed with conventional

image processing pipelines in the cameras.

The average PSNR, composite PSNR (CPSNR) and MS-

SSIM are adopted to evaluate the objective quality of the

proposed approaches. A weighted PSNR is also adopted

in this challenge, which computes a single Mean Squared

Error (MSE) value by averaging across all RGB channels

of all pixels of the whole dataset. From that value a PSNR

value is calculated, which is marked as the WPSNR in the

table. The results are listed in Table 2. They are all under

the constraint 0.15bpp which is required by the challenge.

Table 2. PSNR (in dB) and MS-SSIM results for the proposed

wavelet transform based 3-stage approach on the validation dataset

Evaluation BPG C18-2 C18-3 Proposed

PSNR-R 31.22 31.85 31.94 32.02

PSNR-G 32.25 32.75 32.81 32.66

PSNR-B 30.98 31.78 31.90 32.53

CPSNR 31.43 32.08 32.17 32.37

WPSNR 30.85 31.48 31.57 31.72

MS-SSIM 0.948 0.954 0.955 0.957

From the results, it can be seen that the proposed method

leads to an extra 0.2dB PSNR and 0.002 MS-SSIM im-

provement on the validation datasets in comparison to the

two approaches (C18-2, C18-3) proposed in CLIC2018 [4].

In terms of the PSNR of each color component, the G chan-

nel is slightly lower, but obvious improvements for B chan-

nel can be observed. Compared to the original BPG codec

with default parameter settings and the same bit constraint,

our proposed method can achieve about 0.9dB PSNR im-

provement and 0.009 MS-SSIM improvement, especially

for B channel, there is about 1.5dB PSNR improvement.

This approach is proposed for the CLIC2019 challenge.

The BPG decoder is implemented by python binding with

the shared objects libbpg.so compiled from BPG source

code. The enhancement network is implemented with Ten-

sorflow. For encoding, we use the standard BPG encoder

compiled from the source code to encode all the images to

the compressed format. Because there’s an overall bit-rate

constraint of 0.15bpp, we set the qp of most of the images

to 39 and some to 38 to make the most of the bit budget.

Regarding the running time, for the validation dataset, the

proposed approach takes less than 2000s to decode all 102

images with a single CPU, which is faster than the 7000s

for C18-3 proposed in CLIC2018 [4].

4. Conclusion

This paper presents a wavelet transform based 3-stage

CNN for decoder side color image enhancement. The ex-

perimental results on both validation and test datasets show

that the proposed scheme leads to noticeable quality and

speed improvements compared to the previous approaches.

Also, the proposed method is a post-processing approach,

which makes it compatible with any existing image codec.

As a part of the future work, we will investigate other

wavelet bases and the potential gains applying the proposed

scheme to video codecs.
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