
Compressing Weight-updates for Image Artifacts Removal Neural Networks

Yat Hong LAM, Alireza Zare, Caglar Aytekin, Francesco Cricri,

Jani Lainema, Emre Aksu, Miska Hannuksela

Nokia Technologies

Hatanpaan Valtatie 30, Tampere, Finland

yat.lam@nokia.com

Abstract

In this paper, we present a novel approach for fine-tuning

a decoder-side neural network in the context of image com-

pression, such that the weight-updates are better compress-

ible. At encoder side, we fine-tune a pre-trained artifact

removal network on target data by using a compression ob-

jective applied on the weight-update. In particular, the com-

pression objective encourages weight-updates which are

sparse and closer to quantized values. This way, the final

weight-update can be compressed more efficiently by prun-

ing and quantization, and can be included into the encoded

bitstream together with the image bitstream of a traditional

codec. We show that this approach achieves reconstruction

quality which is on-par or slightly superior to a traditional

codec, at comparable bitrates. To our knowledge, this is

the first attempt to combine image compression and neural

network’s weight update compression.

1. Introduction

There are two major directions in image compression:

lossless compression (e.g., PNG) and lossy compression

(e.g., JPEG). In order to achieve a high compression ratio

and smaller file size, lossy compression is widely applied

in different areas including image storage and transmission.

Lossy compression methods usually introduce compression

artifacts into the decoded image, which greatly affect the

perceptual quality of the image. Some of the common com-

pression artifacts are blocking and quantization artifacts.

To alleviate the severeness of the problem, specific filters

can be used to remove the artifacts. Convolutional neural

networks (CNNs) have been used recently either within the

traditional codec (e.g. replacing some traditional filters as in

[8]) or after it (e.g. a post-processing filter) [5], [3]. In [11],

the authors propose AR-CNN which aims to suppress com-

pression artifacts, Their network structure includes a skip

connection to bypass the network’s layers.

In this paper, we present a novel approach for using a

post-processing neural network at decoder-side for artifacts

removal, in the context of image compression. We first pre-

train the neural network filter on a training dataset. At en-

coding time, we first encode and decode the target image

using a traditional codec. Then, the pre-trained model is

fine-tuned using the original and decoded target image, by

using an additional loss term which encourages the weight-

update to be sparse and close to quantized values. The final

weight-update is compressed by pruning and quantization,

and included into the encoded bitstream.

The work presented in this paper was used to partici-

pate to the 2019 Challenge on Learned Image Compres-

sion (CLIC). In particular, our submission names were NT-

Codec2019vJ2 and NTCodec2019F4.

2. Related Works

Adaptive loop filtering (ALF) is a technique which was

explored for HEVC video compression standard [4], where

a decoder-side filter is adapted to the input content by in-

cluding into the encoded bitstream all the filter coefficients.

Instead, in our case, the filter is a neural network and we

adapt it by including only a weight-update into the encoded

bitstream. In [10], the authors propose a method for jointly

fine-tuning and compressing a pre-trained neural network

in order to adapt the network to a more specialized do-

main than the pre-training domain, in order to avoid over-

fitting due to over-parametrization. The authors compress

the whole network, whereas we compress only the weight-

update, which is more likely to require a low bitrate. In

addition, they obtain a compressed network which is differ-

ent from the original pre-trained network. Thus, the fine-

tuned weights cannot be used to update a predefined net-

work structure. For the same reason, it is impossible to reset

the model to the pre-trained weights without storing a copy

of the pre-trained network.

This paper proposes a loss term which encourages com-

pressibility of the weight-update by achieving sparsity and

more quantizable values. In [1] and [2], the methodology of

compressive loss term was developed and applied to com-

4321

press neural networks’ weights. We make use of a similar

approach but apply it on the weight-update of neural net-

works.

3. Methodology

Our proposed solution consists of using a traditional

codec in combination with a post-processing neural network

which is applied on the full-resolution decoded image. We

chose the test model of Versatile Video Coding (VVC) stan-

dard as the traditional codec, which is currently under de-

velopment [7].

The neural network filter is pre-trained in an offline

phase. The training images are first encoded and decoded

using the VVC test model, the decoded images, which are

affected by compression artifacts, are used as the input to

the neural network, whereas the original uncompressed im-

ages are used as the ground-truth. The neural network is

trained to remove the artifacts and reconstruct images with

better visual quality. As we aim to optimize the peak signal-

to-noise ratio (PSNR) of the filtered images, we use the

mean squared error (MSE) as the training loss, defined as

Lmse(I, Î) =
1

N

∑N

i (I(i)− Î(i))2, where I and Î are the

original and the reconstructed image, respectively. The pre-

trained weights then become part of the decoder system.

In the online stage, i.e., during the encoding process, we

further fine-tune our network at encoder side on one or more

VVC-decoded images, as shown in Fig. 1. Thus, the net-

work is optimized for the current test images. This fine-

tuning process is performed by using an additional training

loss which encourages weight-updates which are sparse and

close to quantized values. The obtained weight-update is

then compressed and included into the bitstream, together

with the encoded images bitstream.

At decoder side, the weight-update is first decompressed

and then applied to the pre-trained neural network. The up-

dated network is applied on the VVC-decoded image for

removing compression artifacts. The network’s weights are

then reset to their original pre-trained values, in order to be

ready to be updated again for a new set of images.

There are mainly two novel aspects in this work. In-

stead of including the whole fine-tuned neural network into

the bitstream, only the weight-update of the network is in-

cluded. To further reduce the bitrate, the weight-update

is made more compressible during training and is subse-

quently compressed by pruning and non-uniform quantiza-

tion.

3.1. Network Structure

The network structure is inspired by the U-net [9], which

consists of a contracting path and an expansive path. The

contracting path is formed by blocks consisting of a strided

convolution layer, a batch normalization layer and a leaky

rectified linear unit (ReLU). The number of feature filter

is doubled at each block. Similarly the expansive path is

formed by blocks consisting of a transpose convolutional

layer, batch normalization layer and leaky ReLU activation.

There are lateral skip connections between the input of each

block in the contracting path and the output of each corre-

sponding block in the expansive part. A lateral skip con-

nection is merged to the output of an expansive block by

concatenation.

We selected a fully-convolutional network because it re-

quires less parameters, which allows for using less data dur-

ing training and fine-tuning, and it also reduces the size of

the weight-update. In addition, this structure allows for han-

dling input images of varying resolution.

3.2. Fine­tuning with Weight­update Compression

In the more common approach of having a pre-trained

post-processing

network, the model is not adaptive to the content and it

needs to generalize to many types of content. To address

this limitation, one approach is to fine-tune or adapt the net-

work on the test data. However, in the context of networks

used at decoder-side, including all the weights into the bit-

stream requires a too high bitrate. This can be mitigated by

either using a small model, or by encoding a small weight-

update for a bigger network. This paper proposes a solu-

tion for the latter approach, which has the advantage that

for some test images the encoder may decide not to send

any weight-update and the decoder can use the pre-trained

network for filtering.

Fine-tuning can be done for each single test image, or

for multiple test images. In the first case we need to include

into the bitstream one weight-update per image. This ap-

proach can bring a higher gain in visual quality, due to the

homogeneity of the data, but it is also more challenging to

obtain a sufficiently small weight-update. In the latter case

we need to include a single weight-update for multiple im-

ages, and the quality improvement depends on the similarity

among the images. We chose the latter approach.

The weight-update at each training iteration t is com-

monly defined as ∆w = −ρ∇wL(wt), where ρ is the learn-

ing rate, ∇ is the gradient operator, and L is the loss func-

tion. During fine-tuning, we are interested in the weight-

update with respect to the pre-trained network, thus we de-

fine the accumulated weight-update at fine-tuning iteration t

as ∆wacc = wt−w0, where w0 are the pre-trained weights.

Our goal is to compress this accumulated weight-update. To

this end, during fine-tuning we use a combination of recon-

struction loss and of weight-update compression objective.

The latter term aims to increase the compressibility of the

resultant weight-update, and is defined as follows:

Lcomp(∆wacc) =
|∆wacc|

||∆wacc||
+ α

||∆wacc||
2

|∆wacc|
(1)

4322

Figure 1. Overview of the encoder-decoder structure. The traditional path is shown in blue blocks and our proposed method is shown in

yellow blocks.

The first term in Eq. 1 is introduced in [6] as a measure

of the sparsity in a signal, and may also be referred

to as the sparsity term. It was also used in [1] for com-

pressing a whole neural network. Minimizing this first term

results in reducing the number of non-zero values in the

signal. The second term is added to favour smaller abso-

lute values for the non-zero weight-updates to regulate the

training and avoid exploding gradients. This second term

was introduced in [2] in the context of compressing a whole

neural network. α is a regularizer between the two terms.

The total loss function in the training is defined as a

weighted sum of MSE and the compression objective:

Ltotal = Lmse + γLcomp (2)

where γ is a dimensionless parameter to adjust the impact

of the compression objective.

3.3. Post­training Compression

Our hypothesis is that not all values in the weight-update

are going to have significant effect on the resultant image

quality, and that it is possible to preserve most of the im-

provement by discarding some of the weight-update infor-

mation.

The accumulated weight-update ∆wacc is pruned by set-

ting values which are smaller than a threshold to zero, thus

increasing its sparsity. The remaining non-zero values are

non-uniformly quantized by k-means clustering. The com-

pressed weight-update ∆wc is then represented as follows:

a flattened binary mask which indicates the zeros and non-

zeros in ∆wc, a tensor to store k-means labels of the non-

zero elements in ∆wc and a dictionary which maps the k-

means labels to the corresponding value of cluster centroids.

These are all compressed into a single file by Numpy npz

algorithm.

The network is updated simply as wrec = w0 + ∆wc,

where wrec are the reconstructed weights. The recon-

structed image Î is obtained by filtering the VVC-decoded

image with the updated network.

4. Experimental Results

4.1. Implementation Details

We participated to the low-rate compression track of the

CLIC competition, where the aim is to preserve the best im-

age quality with the limit of 0.15 bits-per-pixel (bpp). Al-

though different image quality metrics are considered in the

competition, we focus on PSNR as our image quality met-

ric. The CLIC dataset was used for training and testing.

The training split contains 1632 images, whereas the test

split contains 330 images.

4.1.1 Image Encoding

The encoding was performed using the VVC Test Model

VTM-4.0 with All Intra (AI) configuration. The Test Model

requires images in an uncompressed raw format. Therefore,

the source images in Portable Network Graphics (PNG) for-

mat were converted to YUV 4:2:0 color sampling at 8 bits

per sample. The decoding operation is then followed by

converting the decoded images back to RGB. The quanti-

zation parameter (QP) was chosen on a per-image basis to

keep the bitrate of each image close to 0.12 bpp for NT-

Codec2019F4 and 0.14 bpp for NTCodec2019vJ2. These

values allow for a margin that we use for including also a

weight-update into the bitstream, whose bitrate needs to be

at most 0.03 bpp and 0.01 bpp, respectively.

4.1.2 Neural Network Pre-training and Fine-tuning

The contracting part of our network has 3 blocks, in which

convolutional layers have stride 2, kernel-size 3x3, and

numbers of channels 128, 256, 512. The expansive part has

3 blocks, in which the transpose convolutional layers have

stride 2, kernel-size 3x3, and numbers of channels 256, 128,

3. Training and fine-tuning are performed using Adam op-

timizer, and learning-rate 0.001 for NTCodec2019F4 and

0.0005 for NTCodec2019vJ2. To obtain further improve-

ment in image quality, we empirically found that it is bet-

4323

Figure 2. Two sample patches from CLIC test dataset which show the improvement brought by our proposed finetuning (NTCodec2019vJ2)

ter to fine-tune the network in two phases. Initially, only

MSE loss is used. After the MSE has dropped to a certain

level, the compression objective is added to obtain a more

compressible weight-update. The compression objective in

Eq. 2 is weighted by γ = m Lmse

Lcomp

, where m is an empiri-

cally chosen hyper-parameter. No gradients are allowed to

flow through γ. The hyper-parameter α in Eq. 1 is cho-

sen such that α
||∆wacc||

2

|∆wacc|
= 1

3

|∆wacc|
||∆wacc||

. The post-training

compression is done offline with different threshold values

τ and number of k-means clusters, k. The best weight-

update is selected based on two criteria: fulfilling the bpp

margin requirement (0.03 for NTCodec2019F4 and 0.01 for

NTCodec2019vJ2), and resulting into best possible PSNR.

The best compression parameters for NTCodec2019F4 and

NTCodec2019vJ2 were {τ = 0.00001, k = 64} and {τ =
0.005, k = 4}, respectively.

4.2. Results

The experimental results for NTCodec2019F4 and NT-

Codec2019vJ2 are shown in Table 1. Two different post-

processing filters are pre-trained by using images encoded

by VTM to 0.12 bpp (NTCodec2019F4) and 0.14 bpp (NT-

Codec2019vJ2). These two networks were fine-tuned in or-

der to get two weight-updates. For NTCodec2019F4, the

PSNR of VTM-decoded images is improved by the pre-

trained filter and by the fine-tuned network by 0.21 dB and

0.26 dB, respectively. For NTCodec2019vJ2, the PSNR of

VTM-decoded images is improved by the pre-trained filter

and by the fine-tuned network by 0.17 dB and 0.22 dB, re-

spectively. Two example patches are shown in Fig. 2.

Method PSNR bpp

VTM4 0.12 bpp 28.13 0.111

VTM4 0.12 bpp + Pretrained Filter 28.34 0.111

VTM4 0.12 bpp + Finetuned Filter 28.39 0.134

VTM4 0.14 bpp 28.80 0.1396

VTM4 0.14 bpp + Pretrained Filter 28.97 0.1396

VTM4 0.14 bpp + Finetuned Filter 29.03 0.14

VTM4 0.15 bpp 28.98 0.149
Table 1. Experimental results on CLIC test dataset

5. Conclusions

In this paper, we described the work we used for our par-

ticipation to the 2019 Challenge on Learned Image Com-

pression (CLIC). We presented a novel method where a

post-processing neural network, to be used on images de-

coded by a traditional codec, is first pre-trained in an offline

stage, and then fine-tuned at encoding stage. In particular,

we proposed to jointly fine-tune and compress the weight-

update by using a weight-update compression objective.

The compression objective encourages weight-updates to

be sparse and have values close to quantized values. We

experimented with different settings: one setting where the

weight-update can take up to 0.03 bpp, and one where the

weight-update can take up to 0.01 bpp. We used VTM as

our traditional codec. In the experiments, we showed that

in both settings we get competitive results with respect to

using only VTM, thus proving that the approach of moving

information from the encoded images bistream to a neural

network is a promising new direction.

4324

References

[1] Caglar Aytekin, Francesco Cricri, and Emre Aksu.

Compressibility loss for neural network weights. In

arXiv:1905.01044, 2019. 2, 3.2

[2] Caglar Aytekin, Francesco Cricri, Tinghuai Wang, and Emre

Aksu. Response to the call for proposals on neural net-

work compression: Training highly compressible neural net-

works. ISO/IEC JTC1/SC29/WG11 MPEG2019/m47379,

Mar. 2019. Input contribution to MPEG Neural Network

Representations. 2, 3.2

[3] Lukas Cavigelli, Pascal Hager, and Luca Benini. Cas-cnn:

A deep convolutional neural network for image compression

artifact suppression. In International Joint Conference on

Neural Networks (IJCNN), 2017. 1

[4] Ching-Yeh Chen, Chia-Yang Tsai, Yu-Wen Huang, Tomoo

Yamakage, In Suk Chong, Chih-Ming Fu, Takayuki Itoh,

Takashi Watanabe, Takeshi Chujoh, Marta Karczewicz, et al.

The adaptive loop filtering techniques in the hevc standard.

In Applications of Digital Image Processing XXXV, volume

8499, page 849913. International Society for Optics and

Photonics, 2012. 2

[5] Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou

Tang. Compression artifacts reduction by a deep convolu-

tional network. In International Conference on Computer

Vision (ICCV), 2015. 1

[6] O. P. Hoyer. Non-negative matrix factorization with sparse-

ness constraints. Journal of Machine Learning Research,

pages 1457–1469, 2004. 3.2

[7] S. Kim J. Chen, Y. Ye. Algorithm description for versatile

video coding and test model 4 (vtm 4). JVET-M1002, 2019.

3

[8] C. Jia, S. Wang, X. Zhang, S. Wang, J. Liu, S. Pu, and S.

Ma. Content-aware convolutional neural network for in-loop

filtering in high efficiency video coding. IEEE Transactions

on Image Processing, pages 1–1, 2019. 1

[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015. 3.1

[10] Frederick Tung, Srikanth Muralidharan, and Greg Mori.

Fine-pruning: Joint fine-tuning and compression of a convo-

lutional network with bayesian optimization. arXiv preprint

arXiv:1707.09102, 2017. 2

[11] Ke Yu, Chao Dong, Chen Change Loy, and Xiaoou Tang.

Deep convolution networks for compression artifacts reduc-

tion. arXiv preprint arXiv:1608.02778, 2016. 1

4325

