
Extended End-to-End optimized Image Compression Method based on a

Context-Adaptive Entropy Model

Jooyoung Lee∗, Seunghyun Cho, Se-Yoon Jeong, Hyoungjin Kwon,

Hyunsuk Ko, Hui Yong Kim & Jin Soo Choi

Broadcasting and Media Research Laboratory

Electronics and Telecommunications Research Institute

Daejeon, Korea

leejy1003@etri.re.kr

Abstract

In this paper, we propose an extended compression

method using a context-adaptive entropy model. Based on

the Lee et al. [11]’s approach, we extend the network struc-

ture so that compression and quality enhancement methods

are jointly optimized. In terms of contexts for estimating

distributions, we additionally use offset information. By

exploiting the extended structure and the additional con-

texts, we obtain substantially improved compression per-

formance, in terms of multi-scale structural similarity (MS-

SSIM) index, compared to the model without the extensions.

1. Introduction

Recently, artificial neural networks (ANNs) based im-

age compression methods have been studied in various

ways. Some approaches have been proposed for enhanc-

ing each tool of conventional compression codecs, and

other approaches have been studied for post-processing

of the reconstructed such as artifact reduction or super-

resolution methods. Meanwhile, end-to-end image com-

pression approaches [15, 8, 4, 14, 5, 11, 13] have been

proposed based on strong optimization capabilities of neu-

ral networks. These approaches can be divided into two

classes, distinguished based upon whether entropy models

are used or not. Toderici et al. [15] introduced a novel

ANN-based image compression method using a small num-

ber of latent binary representations, and Johnston et al. [8]

improved the compression performance by enhancing the

model operation methods. On the other hand, Other ap-

proaches [4, 14, 5, 11, 13] view the image compression

problem as entropy minimization. They use entropy models
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to approximate expected data rates, and the rates are used

in the objective functions so that the trained model gen-

erates latent variables having as low entropy as possible.

Ballé et al. (2017) [4] and Theis et al. [14] introduced the

first entropy minimization approaches and leaded many re-

searchers to study more efficient entropy models. Ballé et

al. (2018) [5] enhanced entropy models by adopting hier-

archical networks for estimating scales of hidden represen-

tations, whereas the former two approaches train fixed en-

tropy models. Minnen et al. [13] and Lee et al. [11] assume

entropy-coding and decoding process of latent variables are

conducted in a sequential manner (e.g. a raster scanning

order), so they utilize known neighborhood components of

hidden variables as additional contexts for estimating distri-

butions of latent variables. Both approaches enhanced the

compression performance of ANN-based image compres-

sion, and obtained the results better than BPG [6], a HEVC

(ISO/IEC 23008-2, ITU-T H.265) [7] based image com-

pression method. In this paper, we propose a extended com-

pression method based on Lee et al. [11]’s approach, and

demonstrate substantially improved compression results in

terms of multi-scale structural similarity (MS-SSIM) index.
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Figure 1. Overall structure of the proposed method.
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Figure 2. Structure of the extended analysis and synthesis transform networks.

2. Proposed model

We basically follow Lee et al. [11]’s model, so our

method conceptually has the same entropy model. In our

model, as in Lee et al. [11]’s model, input x is trans-

formed into y, and some spatial correlations of y are fur-

ther transformed into ẑ. Four fundamental parametric trans-

form functions, an analysis transform ga(x;φg), a synthesis

transform gs(ŷ; θg), an analysis transform ha(ŷ;φh), and a

synthesis transform hs(ẑ; θh) are used, likewise. However,

we extend the compression model in terms of both network

structure and contexts as represented in Figure 1. The ex-

tended parts in the compression structures are highlighted

with blue color.

2.1. Network structure extension

Lee et al. [11]’s approach has the same structures of ga
and gs as in Ballé et al. (2018) [4]’s approach, which ar-

ranges convolutional layers and non-linear layers in an alter-

nate order. Based on this structure, we change two structural

parts of the transform networks. First of all, we connect

each non-linear layer (GDN [3]) in ga and gs to a designated

network, and all the results from the designated networks

are aggregated by 1x1 convolution. Note that normalization

and denormalization steps are omitted in Figure 2 for sim-

ple illustration. Although total number of layers are higher

than that of Lee et al. [11]’s model, we minimize increase in

complexity by using smaller number of filters at each layer:

We set N to 64.

In addition to the sub-networks designated for each scale

of transforms, we also append a quality enhancement part at

the end of the gs synthesis network, inspired by ANN-based

quality enhancement methods [9, 12]. We built this quality

enhancement part using residual building blocks, and we

incorporate hierarchical skip connections at three different

levels of the structure. Consequently, our synthesis model

can be viewed as a synthesis transform function jointly op-

timized with a quality enhancement method. A, B, and C in

Figure 2, highlighted with blue font, represent intermediate

images, generated residuals, and the final reconstructions,

respectively. Some samples of the three types of images are

shown in Figure 3.

As described above, our gs network consists of two

parts, synthesis part and enhancement part. One advan-

tage of this structure is that it allows us to adopt various

new quality enhancement structures, regardless of synthe-

sis method. However, although the enhancement part is re-

placeable from a structural viewpoint, joint optimization is

inevitable at the moment.

2.2. Context extension

Lee et al. [11]’s approach exploits two different types

of contexts, bit-consuming contexts and bit-free contexts.

For bit-consuming contexts, they use additional side infor-

mation based on hierarchical priors, similar to Ballé et al.

(2018) [5]’s approach, and they utilize the known neigh-

borhood components of hidden variables as bit-free con-

texts. We basically follow the same framework, but we

utilize one more additional bit-free context, positional in-

formation of the current spatial point of the latent variable

ŷi. The MS-SSIM metric has a characteristic that as posi-

tions of image components are close to borders of images,

fidelity of those components contribute less to the final MS-

SSIM value, compared to those in the middle of the im-

ages. Therefore, reconstructed images from the image com-



pression approaches optimized for MS-SSIM tend to have

higher-fidelity in the middle area than the area close to bor-

ders. Considering hidden representations preserve spatially

corresponding relationship with input space more or less,

we can intuitively expect that the distributions of the hidden

representations vary according to their coordinates. How-

ever, because the contexts utilized in Lee et al. [11]’s ap-

proach are subset of results coming from convolutional lay-

ers that have a translation-invariant characteristic, the esti-

mator f cannot reflect the characteristic of ŷi’s distribution

varying according to its position. Therefore, we provide the

distribution estimator f with a position of a current repre-

sentation. More specifically, we utilize offsets from four

spatial borders of ŷ as position information. The offsets

of current representation ŷi is transformed into the form of

one-hot vector, and then concatenated to the results of the

convolutional layers in the estimator f , as shown in Fig-

ure 4.

3. Experiments

3.1. Experimental environments

We trained all the models using MS-SSIM based distor-

tion term. We trained the model using 51,141 256×256

patches extracted from CLIC [2] 2019 trainset images. We

Figure 3. Examples of synthesized images, generated residual im-

ages, and enhanced images.
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Figure 4. Structure of the extended distribution estimator f

Figure 5. Experimental results over CLIC test set.

used eight patches per batch, and 1M iterations of train-

ing steps were conducted using ADAM optimizer[10]. Ini-

tial learning rate was set to 1 × 10−4, and then reduced in

half every 25,000 steps for the last 200,000 steps. For each

trained model, we measured the average bit per pixel (BPP)

and average MS-SSIM over the CLIC 2019 challenge test-

set that consists of 330 images, and compared the results

with Lee et al. [11]’s approach and BPG 4:2:0 [6].

3.2. Experimental results

Figure 5 demonstrates experimental results of the pro-

posed model, Lee et al. [11]’s approach and BPG [6]. the

proposed model outperforms both of the other approaches.

In terms of MS-SSIM BD-rate, we obtained 19.38% and

60.40% of compression gains over Lee et al. [11]’s ap-

proach and BPG 4:2:0, respectively. However, note that

we measured the results of Lee et al. [11]’s approach us-

ing their publicly distributed general models [1], whereas

our method can be viewed as a specialized model for the

CLIC challenge. In other words, some level of compression

gains of our model, more or less, may come from the ded-

icated environments or fine tuning processes, such as use

of CLIC trainset or padding optimization. Therefore, to



Image set Average MS-SSIM

CLIC validation set 0.975208

CLIC test set 0.972710

Table 1. Average MS-SSIM results within 0.15 bpp.

reach a generalized conclusion, further experiments, includ-

ing oblation studies, are required on the same experimental

environments.

In addition, we also measured maximized average MS-

SSIM values over CLIC validation set and test set, respec-

tively. To maximize the average MS-SSIM values, we used

30 trained models, and chose the best model in terms of

quality to rate. Table 1 shows the optimized average MS-

SSIM values over CLIC validation set and test set images,

given the constraint that compression is to less than 0.15

bpp across the full image set.

4. Conclusion

In this paper, we extended image compression models

based on Lee et al. [11]’s work in two different aspects,

network structure and utilized contexts. We used desig-

nated networks for each hidden layers of transform func-

tions, ga and gs, and in addition, we extended the synthesis

transform gs by incorporation skip-connection utilizing lay-

ers, which are inspired by the quality enhancement studies.

To the best of our knowledge, our model is the first joint

optimization model including compression and quality en-

hancement functions together, and thereby we obtained the

superior results as shown in the experimental results. How-

ever, as mentioned, the challenge-dedicated environments

contribute to the obtained compression gains more or less.

Therefore, as a future work, we will provide an ablation

study on various components proposed in this paper, and

MSE-optimized version of our model will also be studied

further.

Acknowledgments

This work was supported by Institute for Information and

communications Technology Promotion(IITP) grant funded

by the Korea government(MSIP) 2017-0-00072, Develop-

ment of Audio/Video Coding and Light Field Media Fun-

damental Technologies for Ultra Realistic Tera-media.

References

[1] Repository of the paper ”context-adaptive entropy model

for end-to-end optimized image compression”, 2018.

https://github.com/JooyoungLeeETRI/CA_

Entropy_Model. 3

[2] Workshop and challenge on learned image compression,

2019. https://www.compression.cc/. 3
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