
VimicroABCnet: An Image Coder Combining A Better Color Space Conversion

Algorithm and A Post Enhancing Network

Ming Li∗2, Changsheng Xia∗2, Jianhua Hu∗2, Zhangming Huang∗2, Yundong Zhang1,

Dekai Chen2, Jinwen Zan1, Guoxin Li1, Jing Nie2

1Vimicro AI Chip Technology Corporation
The National Key Laboratory of Digital Multimedia Chip Technology

Room607,6/F, Shining Tower, No.35 Xueyuan Road, Haidian District, Beijing 100191 China
2Guangdong Vimicro Microelectronics Corporation

Building 16,Hengqin Financial District, Hengqin New Area, Zhuhai City, Guangdong Province, P.R.C
li.ming@zxelec.com

Abstract

The framework of combining a better color space con-

version (ABC) algorithm,and a post enhancing network for

image coding, called VimicroABCnet[1] , is described in

this paper. The ABC algorithm employs the principle com-

ponent analysis[9] method, to find a new primary base

axis offering the highest variance for each individual im-

age. The RGB values of each pixel are pre-processed

by a 64x64 template filtering. The pixels are then con-

verted by the proposed ABC algorithm, before being en-

coded by an open source coder[2]. During decoding, the

least square method (LSM) has been introduced to esti-

mate the optimal inverse conversion, instead of using a ma-

trix inversion directly. Another feature of the VimicroABC-

net is the enhancing network, which adopts the architec-

ture of a classic ResNet[3], and post-processes the decoded

RGB image after ABC. Experiments on the CLIC2019 valid

dataset have shown significant RGB-PSNR boost of 0.26db

or 7.4% bits save@0.145bpp, and 1.2db/22.5%@1.0bpp,

making use of the ABC algorithm; and a RGB-PSNR boost

of 0.30db@0.15bpp, making use of the enhancing network,

respectively. Combining both techniques, an improvement

of 0.56db or 12% bits save@0.15bpp; and a decrease in

the compressed file size of about 17.8% are achieved in the

transparent track. It is noted that each of the two techniques

contributes equally. Methods to speed up the decoder model

are also discussed.

1. Introduction

In this paper, we combine the Vimicro’s novel ABC

method with a post enhancing CNN network to improve the

backbone H266 image codec’s RGB-PSNR performance.

∗These authors share first-authorship

The ABC(A Better Color Space Conversion For Image

Compression[1]) method not only significantly reduce the

codec’s BD-rate, but also keeping the decoder’s efficiency

as a traditional decoder. The post enhancing network has

been documented in many previously work[5],[6],[7], and

proved to be very useful to improve the PSNR of a ready

decoded image.

The ABC method is to find a new primary new base axis

to form a new RGB to YCbCr conversion matrix as eq.1, we

define Tenc as the matrix and Offsetenc as the offset vector

in this eq. The original picture is of RGB 3-dimension. We

assume each channel’s entropy is proportional to their vari-

ances. To find a new axis that present the most entropy,

the PCA is natural choice since it’s simple and effective.

Data samples are pixels’ RGB minus corresponding aver-

ages. The PCA also produce the second/third base axes as

well, which can be used as directions of base axes for Cb/Cr

directly.





Y

Cb

Cr



 =





x1 x2 x3

y1 y2 y3

z1 z2 z3









R

G

B



+





Y offset

Cb offset

Cr offset



 (1)

In this paper, we replace the 16x16 grid’s average sam-

ple scheme with a common 64x64 convolution kernel. Each

pixel’s RGB value is subtracted by the average of its 64x64

neighbours and used as the samples of PCA[9]. This new

scheme improve the performance about 0.013db@0.15bpp.

ABC later use the least square method to estimate a new

YCbCr to RGB conversion matrix and offsets to further im-

prove the performance.

We also use a classic ResNet architecture as the post en-

hancing network. ResNet is very fast to converge when

training. We test this architecture with different depths and

widths. The result shows there is a limit for this type of post

network, which is with even more parameters the resulting

performance boost is still kept under a boundary.

1



2. Details of our approach

2.1. Brief description of Vimicro’s ABC method

Since the detailed description for ABC is documented

in [1] and it’s only a part of our implementation of Vmi-

croABCnet, we only picture a rough framework here.

2.1.1 Find the primary axis using PCA

The primary axis in the new space should produce the most

variance, and the converted data is as the input to Y channel

pipeline. PCA data samples are as eq.2:

Rsample = each pixel′R− average R

Gsample = each pixel′G− average G

Bsample = each pixel′B − average B

(2)

Dimension of the sample set is [h*w, 3], h and w

is height and width of the image. The normalization is

dropped here because it would make R/G/B’s average vari-

ance equal to 1. In this paper, we replace the original 16x16

grid’s average method with a common 64x64 convolutional

filter, the center of the filter is 1-1/64*64, the other coeffi-

cients of the filter is -1/64*64. This filter actually subtract

the center pixel(R/G/B respectively) by its 64x64 neighbors.

The 64x64 size is determined on fact that most max CTU’s

size in the H266 codec is of 64x64(although 128x128 is

permitted but it’s rare in practices). The new convolution

method increases the RGB-PSNR about 0.013dB for CLIC

valid dataset @ 0.15bpp.

Figure 1: Accelerating the convolution by subtracting old

column and adding the new column

The 64x64 convolution is very time consuming. We

exploit the fact that the convolution is processed pixel by

pixel, and the change of average of the 64x64 area is only

affected by the old and new column of the filter , Fig.1, the

average neighbours of the new pixel is calculated by sub-

tracting the old column and plusing the new one. The ac-

celeration decrease the 64x64 operations for each pixel to

64x2.

2.1.2 Optimization of the reverse conversion

In decoding, we optimize the Tdec and Offsetdec , we

rewrite a equivalent formula as eq.3





R

G

B



 = Tdec ·





Y

Cb

Cr



+Offsetdec (3)

Optimizing the Tdec and Offsetdec is to minimize the

mean square error between eq.3’s resulting RGB and the

uncompressed RGB. Each row of Tdec and Offsetdec are es-

timated within one LSM process. The Tdec should be very

closed to T−1

enc, but is more optimal, we can see the improve-

ment in the experiment section of [1].

2.1.3 Architecture of encoder

We use the standard H266 encoder as our baseline codec,

wrapping it up with the ABC and post enhancing network.

As in Fig.2, the original RGB image is firstly feeded into

the PCA-based module to estimate the Tenc and Offsetenc,

which are used as the coefficients for the later RGB to

YCbCr conversion. Cb/Cr are scaled up and down with nor-

mal bi-cubic interpolation. The reconstructed YCbCr 444

data is used with the original images’ RGB to estimated the

Tdec and Offsetdec. The Tenc and Offsetenc are output to-

gether with the H266 bitstream. Overhead of our method is

minor, totally 12 float coefficients. For a typical 2M picture,

the overhead is only 12*32/2000000 = 0.000192bpp.

Figure 2: Architecture of our encoder

2.2. Decoder and Post enhancing network

2.2.1 Architecture of decoder

The decoder of our method is showed as 3, the YCbCr 420

is the output of the H266 decoder, and upsampled to 444

format. By using the Tdec and Offsetdec comes together

with the main bitstream, the reconstructed RGB image is

converted from the YCbCr 444 data.

2



Figure 3: Architecture of our decoder

2.2.2 Post enhancing network

We later use a classic ResNet architecture as the post en-

hancing network. ResNet is very fast to converge when

training. We test different architecture with different depths

and widths. The result shows that there is a limit for this

type of post network, which is with even more parame-

ters the resulting performance boost is still be kept under

a boundary. The architecture of the post net is borrowed

from [4], as shown in Fig.4.

The input for the network is the RGB reconstructed im-

age from the H266 decoder(with ABC). The output of the

network is the final enhanced RGB image. The main archi-

tecture is a ResNet, two 3x3 linear CNN is at the entry and

exit of the network, with a begin-end skip route adding into

the final node. The middle body of the network is stacks of

sub-network of ResNet, the number of stack is d, and the

width of each sub-network is k. All the non-linear parts is

done with leakyRelu inside this sub-network. The original

network in [4] is of d=6 and k=64. We further increase these

with d=11 and k=80 and later d=11 and k=160. Depth of 11

is chosen so the perception field of a final output pixel is

about 70x70, which is close the normal max CTU size of

64x64 as mentioned in early section. We can see the perfor-

mance and size of these models in the later sections.

Figure 4: Architecture of post network

2.2.3 Training the network

The train dataset includes the CLIC2018 train and

CLIC2018 test set, which is of about 1900+ images. All

images are cropped into 64x64/224x224 as sample patches

without overlapping. There are totally 960k/88k patches at

all. We use Adam optimizer to train the model, with the

initial learning rate of 4e-4. Larger lr would cause NaN

problem in training in our experience.

For the lowrate track, all input images are firstly encoded

by H266 plus ABC, using QP36 which is the closest QP that

produce 0.15bpp compression rate for the valid dataset. The

reconstructed patches and the corresponding original ones

are used as input and output of our network. Patches’ size

is of 64x64. The loss function is the mean square error dis-

tance of the output RGB patches and corresponding original

patches.

For the transparent track, all input images are firstly en-

coded by H266 plus ABC, using QP20 which is the clos-

est QP that produce 40dB and 0.993 MSSIM for the valid

dataset. Patches’ size is of 224x224 which is bigger than

the lowrate track case, because the minimal input for Ten-

sorflow for MSSIM operation is 176x176. The loss func-

tion is 1- MSSIM of the output RGB patches and corre-

sponding original patches. Only MSSIM loss is used be-

cause the traditional image encoder like H266 always em-

phasize the PSNR rather than MSSIM performance, so the

encoded images always have PSNR margin over 40dB when

the MSSIM meets the 0.993 requirement.

We use a special adaptive method for decreasing

the lr in training. The average MSE/MSSIM loss in

the current epoch are defined as a reference named

avgMSE/avgMSSIM loss, they are calculated at the

end of the training of each epoch. In the train-

ing for of lowrate/transparent track, if the current

avgMSE/avgMSSIM loss loss is larger than the last epoch,

the learning rate is multiplied by a const c, in our case

c=0.9∼0.92, or else keep unchanged. This strategy keep

the training converging fast at the beginning when the loss

keep dropping fast, and slow down when the loss rebounds.

Compared with the traditional predefined lr stepping or ex-

ponential decreasing method, our adaptive method signifi-

cantly accelerate the training.

3. Performance experiment

In the lowrate track experiment, we have the following

test groups and corresponding results. The test is done on

the CLIC valid data.

1. Normal H266 and normal BT.601 color space conver-

sion as baseline

2. H266 plus ABC conversion

3. H266 plus ABC plus post enhancing(d=11,k=160)

3



d=6,k=64 d=11,k=80 d=11,k=160

para num 450k 1.2M 5M

psnr@0.15bpp 32.38 32.44 32.46

Table 1: 0.15bpp RGB performance of network with differ-

ent size

size of files

H266,QP20 34.2M

H266+ABC 30.5M

H266+ABC+post net(k=80,d=11) 28.5M

H266+ABC+post net(k=160,d=11) 28.1M

Table 2: Transparent track performance table

We also test different post network’s performances as in

Table.1. It’s obvious the post network has its limit, even the

large model’s parameters boom to 5M than the moderate

1.2M model, the PSNR boost is tiny 0.02dB.

0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
bpp [bits / pixel]

31.0

31.5

32.0

32.5

33.0

PS
NR

 [d
B]

QP 34-38
baseline
ABC
ABC+PostNet

Figure 5: Comparison in lowrate track

Combine H266 codec and ABC and post enhancing net-

work, the performance on transparent track is also signifi-

cant improved as shown in Table.2

4. Speeding up

Three measures are used to speed up the model, later two

are our contributions:

1. The internal H266 decoder use AVX2 instructions to

speed up important modules.

2. We parallelized the CPU and GPU using a midway im-

age pool scheme on the server as illustrated in * in Ta-

ble.3. This help to utilize GPU from 33% to 66%

3. The post network can be disabled to speed up the

model even without GPU support. As row 3 compared

with row 4 in Table.3.

In our opinion, a qualified modern image decoder in

commercial must meet the following requirement:

Figure 6: Our solution for decoding with post net

psnr(dB)
decode time

ms(per image)

decoder

size

BPG 30.84 800 400k

H266+BT.601 31.87 900 900k

H266+ABC 32.16 900 900k

H266+ABC+post

net (k=80,d=11)
32.45 1650/3100∗ 5M

Table 3: RGB PSNR performance of different decoders, *

with/without parallelizing CPU/GPU

1. Its performance must significantly excel the existing

codec such as BPG,H266

2. Decoding speed must be fast, a normal 2M∼3M image

should be decoded within 1 second.

3. Must meet common available hardware such as low-

powered potable PC without GPU support.

4. Decoder’s size must be small for convenient download.

As to our knowledge, VimicroSpeed without post net-

work enabled is the only participant of CLIC2019 that

meets all this requirements. The relative statics is shown

in Table3

References

[1] Y.Zhang, M.Li ”A Better Color Space Conversion

Based on Learned Variances For Image Compression”,

regular paper submitted to CLIC2019

[2] H266 (https://de.wikipedia.org/wiki/h.266/), 2018. 4

[3] K.He ”Deep Residual Learning for Image Recogni-

tion”, arXiv:1512.03385

[4] Lei.Zhou ”Variational Autoencoder for Low Bit-rate

Image Compression”, challenge paper of CLIC 2018

[5] Jianhua.Hu ”Combine Traditional Compression

Method With Convolutional Neural Networks ”

challenge paper of CLIC 2018

4



[6] Kai Cui ”Decoder Side Image Quality Enhancement

exploiting Inter-channel Correlation in a 3-stage CNN:

Submission to CLIC 2018”

[7] C. Dong, Y. Deng ”Compression artifacts reduction by

a deep convolutional network” In Proceedings of the

IEEE International Conference on Computer Vision,

pages 576–584, 2015. 1

[8] International Telecommunication Union ”BT.601 : Stu-

dio encoding parameters of digital television for stan-

dard 4:3 and wide screen 16:9 aspect ratios”

[9] Jolliffe, I.T. ”Principal Component Analysis, second

edition (Springer).”,

5


