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Abstract

This paper proposes a novel image compression frame-

work, which consists of a CNN-based method and a ver-

satile video coding (VVC) based method. The CNN-based

method uses the auto-encoder to learn the quantized latent

representation of the image and joints the autoregressive

and hierarchical priors to exploit the probabilistic struc-

ture. We also design a post-processing network for VVC to

further improve the quality of compressed images. We find

that CNN-based method and VVC-based method are com-

plementary to each other in terms of MS-SSIM and PSNR.

Thus, we combine the two methods together to obtained bet-

ter coding performance. Furthermore, to select the best

compression parameter, an optimal coding mode selection

algorithm is introduced. Experimental results indicate that

the proposed image compression scheme can achieve signif-

icantly better rate-distortion (RD) performance than other

methods.

1. Introduction

The fast development of image capture and display de-

vices has brought a dramatic demand for high definition

(HD) and Ultra high definition (UHD) images. At present,

there are many image coding standards, such as JPEG 2000

[13] and BPG [6]. But these traditional standards rely heav-

ily on manual operations and are still not efficient enough to

compress images, which become the burden of image stor-

age and transmission. Moreover, the streaming of digital

media is expected to reach 80% of Internet traffic by 2020

[7]. Therefore, lossy image compression is becoming more

and more important in saving transmission bandwidth and

hardware storage.

Recently, lossy image compression based on depth neu-

ral network (DNN) has attracted significant attention. Com-

pared with JPEG 2000, some of them have competitive

or even higher coding performance, which shows that

DNN-based image compression has great potential. These

work can be broadly categorized into two types accord-

ing to the network architecture: recursive neural network

(RNN) [17, 19, 9] and convolutional neural network (CNN)

[15, 2, 4, 5, 10, 8, 11, 18, 12, 2, 16]. The RNN-based

method provides a variable rate, but the iterative mode is

very complex, and both the encoding and decoding pro-

cesses are iterative. As a result, both in training and applica-

tion, the requirements of hardware storage and performance

are extremely high.

On the contrary, the CNN-based method compresses the

image effectively. The transform in traditional coding al-

gorithm is based on a linear orthogonal transform. How-

ever, the research shows that there are still many high-

dimensional correlation redundancies in the nature image

after the linear transform, which can be significantly re-

duced by using a nonlinear transform. Fortunately, CNN-

based method can map pixels to a more compressible po-

tential space than the linear transform used in traditional

image codecs by learning nonlinear functions. This non-

linear transform coding method is similar to auto-encoder

composed of an encoder and a decoder. The encoder con-

verts the pixels to a reduced-dimensional latent space, while

the decoder maps the latents back to the pixels. Some stan-

dard CNN modules such as res-block are applied to create

an auto-encoder in [16]. Agustsson et al. [3] proposes to use

the vector quantization to replace the scalar quantization in

[16]. Ballé et al. [4] firstly designs the generalized divi-

sive normalization (GDN) and its inverse (IGDN) to obtain

the local joint statistics of images. All of these CNN-based

approaches optimize the model by minimizing the trade-off

between rate and distortion between the original and recon-

structed images.

The proposed image compression framework is based

on the work of Minnen et al. [11], which studies autore-

gressive, hierarchical and combinatorial priors as alterna-

tives, and weighs their costs and benefits in the context of

image compression. According to the quality requirement

of challenge (PSNR ≥ 40dB, MS-SSIM ≥ 0.993), an op-

timal mode selection algorithm combining the traditional

coding method (versatile video coding, VVC)[1] and the

CNN-based coding method is designed. Usually, VVC has

better coding performance in terms of PSNR, while CNN-

based method has better coding performance in terms of
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MS-SSIM. The proposed algorithm makes full use of the

advantages of the two coding methods. Specifically, for the

transparent track of the challenge, a high bit rate model is

trained for CNN-based coding method. Meanwhile, a post-

processing network is trained for VVC, and the bit rate is

further reduced when the quality requirement is satisfied.

Finally, an optimal mode selection algorithm is introduced

to select the best compression parameter for each image.

As a result, when the quality requirements of both PSNR

and MS-SSIM are satisfied at the same time, the bit rate of

the proposed algorithm is lower than that of using the two

methods alone.

2. Framework of the Proposed Image Com-

pression Method

This section will give a detailed description of the pro-

posed image compression framework. The following sub-

sections briefly describe the key elements of the design.

2.1. Problem modeling

Image compression is primarily characterized in terms of

bit rate and perceived distortion of the reconstructed image.

The main task of this work is to convey the sequence of

images with minimum possible bit rate while maintaining

a specific perceived distortion level. For this problem, the

fundamental issue is to obtain the best trade-off between the

rate and perceived distortion. The process used to achieve

this objective is commonly known as rate-distortion opti-

mization (RDO), which can be expressed by minimizing

the bit rate R with the perceived distortion D subjected to a

constraint Dc. Thus, the problem of the transparent track of

the challenge can be expressed as follows:

min{R} subject to D ≤ Dc (1)

This is a typical constrained optimization problem which

is usually solved by Lagrangian optimization and dynamic

programming. In practical applications, the computational

complexity of dynamic programming is often too high,

which is only used when direct Lagrangian optimization

is difficult. Thus, this paper adopts the Lagrangian opti-

mization technique to convert the constrained optimization

problem to an unconstrained optimization problem, which

can be expressed as:

min{J} where J = R+ λmseDmse + λmsssimDmsssim

(2)

where J is called the rate-distortion (RD) cost and the rate

R is measured in the number of bits per pixel. Since this

task needs to meet the quality requirements of PSNR and

MS-SSIM at the same time, we consider two perceived dis-

tortion in this work. Dmse represents the mean squared er-
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Figure 1. The framework of the proposed image compression

method.

ror. Dmsssim is used to define the measure of perceived dis-

tortion of MS-SSIM and can be calculated by Dmsssim =
1−MSSSIM . λmse and λmsssim are the Lagrange mul-

tiplier which controls the trade-off between bit rate and dis-

tortion. λmse and λmsssim are adapted for each image by

taking the properties of the input images into consideration.

In order to achieve optimal RD performance, it is very

important to carefully choose λmse, λmsssim and the best

coding mode. For each image, we define two types of cod-

ing modes: CNN-based coding mode and VVC-based cod-

ing mode. Within the framework, we firstly learn multiple

models for CNN-based method. These models have differ-

ent bit rates and will be used for optimal mode selection.

Similarly, for VVC-based method, we also train multiple

models with different bit rates. Finally, all of these cod-

ing results are combined as different coding modes. The

switching between the traditional and CNN is done per im-

age. The training process will keep adjusting Lagrange mul-

tiplier until the quality just meets the requirements via op-

timizing Eq.(2), and then the best bit allocation for each

image is obtained. Based on the above analysis, the frame-

work of the proposed image compression method is shown

in Fig. 1.

2.2. CNN­based coding mode

In order to get the CNN-based coding mode, we design

an end-to-end trainable image compression algorithm for

transparent coding. Following the work of Minnen et al.

[11], a high-level overview of the proposed image compres-

sion model is shown in Fig. 2, which consists of two sub-

networks. Different from previous work, we increase the

number of filter channels for the high bit rate coding and

adopt the range code for the entropy coding.

The first sub-network is the core auto-encoder, which

learns the quantized potential representation of the image.

The encoder and decoder blocks in the first sub-network

are composed of convolutions and GDN/IGDN. Within this

module, the input is recursively analyzed by linear filters to

extract the primary features which include the most basic in-

formation of the input. The primary features are normalized

to form the first scale representation, which can be used for

reconstruction with basic quality. Inspired by Ballé’s work
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Figure 2. Overview of the proposed CNN-based image compres-

sion model.

et al. [4, 5], GDN/IGDN is a special form of joint local

gain control and is used as nonlinear normalization. Com-

pared with the point-wise nonlinearity following by “batch

normalization”, GDN/IGDN has higher efficiency in repre-

senting the local probability structure of photographic im-

ages and provides higher nonlinearity and spatial adaptabil-

ity.

In order to allow optimization by stochastic gradient de-

scent, the quantization approximations studied include the

gradient of the replacement quantizer [16] and the substitu-

tion of additive uniform noise for the quantizer itself in the

course of training [4]. According to the experiment, we find

that the latter approximation method with uniform additive

noise achieves higher RD performance than the alternative

quantization gradient method. Therefore, the following ap-

proximate methods are used in this paper:

F̂ ≈ F + µ, µ ∼ U(0, 1) (3)

where µ is a uniform noise with zero distribution centre and

the same width as the quantization bin, F̂ is the representa-

tion out of the forward transform.

The second sub-network is responsible for learning the

quantized probability model for entropy coding. It com-

bines the context model and an autoregressive model with

hyper-networks, which learns to represent information used

to correct context-based predictions. The data from these

two sources is combined with entropy parameter network to

generate the mean and scale parameters of the conditional

Gaussian entropy model.

2.3. VVC­based mode

As stated above, the CNN-based and VVC-based com-

pression methods are complementary to each other in terms

of PSNR and MS-SSIM, and better coding performance can

be achieved by mixing the two methods. In this paper, we

adopt the VVC encoder [1] to obtain the VVC-based mode.

However, the reconstructed images of VVC encoder still

contain compression artifacts, such as blocking artifacts,
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Figure 3. The architecture of the proposed post-processing net-

work.

ringing effects, blurring, etc.. It is desired to study on im-

proving the visual quality of the decoded image. Thus, we

designed a residual-learning CNN as post-processing tech-

niques to further improve the quality of the compressed

images in VVC. The architecture of the proposed post-

processing network is illustrated in Fig. 3. The proposed

method is based on residual blocks, which is widely used in

de-noising[20], super-resolution[14] etc.. We totally adopt

10 residual blocks, which makes a good trade-off between

performance and computational complexity.

3. Experimental Results

In this section, we firstly introduce the experi-

ment configurations and the training details. Then we

present the coding performance of the proposed method

(CNN+VVC+POST), which is compared with four meth-

ods, i.e., the VVC-based method without the post-

processing (VVC) [1], the individual performance of the

CNN-based method (CNN) and VVC-based method with

post-processing (VVC+POST), and the joint performance

of the CNN-based method and the VVC-based method

without the post-processing (CNN+VVC).

All experiments use a training dataset of 1500 high qual-

ity natural images which are downloaded from flickr.com.

Each mini-batch used four 256 × 256 patches randomly

cropped from these images. During the training, the mini-

batch size is 4 and an initial learning rate of 0.01 is adopted.

The network parameters are learned by minimizing the loss

function with stochastic gradient descent.

To verify the performance of the proposed image com-

pression method, we conduct an experiment for the val-

idation dataset. Table 1 demonstrates the coding perfor-

mance of different method for validation dataset. Among

these methods, the proposed whole algorithm has the low-

est bits when the quality requirement is satisfied. In other

words, the proposed method has the best coding perfor-

mance. Specifically, when the quality requirement is sat-

isfied, the consumed bits of the proposed method, VVC,

VVC+POST, CNN, CNN+VVC are 28378366, 31968164,

29945191, 32285753 and 30506672, respectively. In the



PSNR MS-SSIM bits bpp

VVC 40.6396 0.9930 31968164 1.0154

VVC+POST 40.5802 0.9930 29945191 0.9512

CNN 40.0238 0.9934 32285753 1.02553

CNN+VVC 40.0287 0.9934 30506672 0.9690

CNN+VVC+POST(Pikpik) 40.0000 0.9930 28378366 0.9055

Table 1. Evaluation results on CLIC 2019 validation dataset.

PSNR MS-SSIM bits bpp

CNN+VVC+POST(Pikpik) 40.0010 0.9930 107402743 1.0229

Table 2. Evaluation results on CLIC 2019 test dataset.

test stage, we have submitted one result named Pikpik for

compressing the images in the test dataset. Table 2 shows

the final result for test dataset. Generally, the performance

is improved by two main reasons. Firstly, our algorithm

combines the advantages of VVC-based and CNN-based

coding methods, which can achieve better coding perfor-

mance. Secondly, in order to further improve the compres-

sion efficiency of the VVC coding method, we propose a

post-processing module in VVC.

4. Conclusion

In this paper, a novel image compression framework

which combines the VVC-based method and CNN-based

method is proposed. In details, the CNN-based method

adopts the auto-encoder to learn the approximate invertible

mapping from pixels to quantized latent representations.

Meanwhile, the CNN-based method joints the autoregres-

sive and hierarchical priors to further improve compression

performance. The VVC-based method uses the VVC en-

coder with a post-processing module to encoding the im-

ages. Usually, CNN-based method has better coding per-

formance in terms of MS-SSIM, while VVC-based method

has better compression performance in terms of PSNR. We

find that in terms of compression performance, CNN-based

method and VVC-based method are complementary to each

other and can be combined to make better use of bit allo-

cations. Thus, an optimal mode selection algorithm is pre-

sented to select the best compression for each image. Exper-

imental results have demonstrated that the proposed overall

algorithm can significantly reduce the bits while keeping the

same video quality.
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