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Abstract

Variational autoencoder with the potential to address an

increasing need for flexible lossy image compression, has

recently be investigated as a promising direction for ad-

vancing the state-of-the-art. Based on this effective frame-

work, we present an end-to-end image compression method

with a multi-scale encoder, residual decoder, and separate

entropy model. The encoder uses a pyramidal resize mod-

ule and inception network to leverage the priors at different

resolution scales to improve the efficiency of the compressed

latents. The decoder utilizes a residual network to synthe-

size the images with more nonlinearity. The separate en-

tropy model is adopted to better predict the prior probabil-

ity model of the latent representation. The final experiment

results show that our approach yields a state-of-the-art im-

age compression system.

1. Introduction

Lossy image compression based on Convolutional Neu-

ral Networks (CNNs) has become an active area of research

in recent years. Many works have revealed great poten-

tials in learned image compression [8, 6, 4, 2]. Most of the

achievements are based on an autoencoder structure, which

consists of an encoder, mapping the input image pixels to

a latent code space by generating a compact representation,

and a decoder, an approximate inverse function that recon-

structs images close to input according to the latents.

The autoencoder based lossy image compression aims

at representing the images in as little bits as possible but

with as good quality as possible, which results in so called

rate-distortion trade-off. In order to keep good balance be-

tween the bitrate and distortion, people often use a two-fold

method. The first is to find a most approximate entropy
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model for the latent representation for optimizing the length

of bitstream. The second is to get a more effective latent

representation for reconstructing the image precisely.

Currently, one of the widely studied end-to-end image

compression frameworks is proposed by Ballé et al. [3].

They use a noise-based relaxation to replace the round

quantization function, which can apply to the gradient de-

scent methods. They also introduce a Gaussian Scale Mix-

ture (GSM) [9] model where the scale parameters are con-

ditioned on a hyperprior to model the latents’ probability.

Minnen et al. [5] improve the GSM-based entropy model

by generalizing the hierarchical GSM model to a Gaussian

mixture model and adding an autoregressive component. It

is the first learning-based method outperforming BPG on

both PSNR and MS-SSIM distortion metrics.

Our architecture is inspired by the successful work of [3]

and [5]. We extend the encoder with a pyramidal resizing

module and an inception function to sufficiently extract the

features of input image, and use a residual decoder to recon-

struct the input image accurately. We also model the prior

probability of the compressed representation precisely with

a separate context model and entropy parameter model.

2. Framework

The proposed framework is derived from the autoen-

coder architecture, as shown in Figure 1. It consists two

autoencoder networks. The first one compresses the in-

put image x into a latent representation y, and quantizes

it to a discretely valued vector ŷ. It is then coded to a

bitstream through an arithmetic encoder according to the

predicted probability. Then, the decompressed latents ŷ is

transformed back to get the reconstructed image x̃ using a

decoder transform. The second autoencoder is a hyperprior

network. It mainly focuses on capturing the spatial depen-

dencies in the latent representation to model the distribution

of latents accurately with the Context Model and Entropy

Parameter model jointly.
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Figure 1. Framework of image compression. Q: quantization, replaced with an additive uniform noise when training. AE: arithmetic

encoder. AD: arithmetic decoder.

2.1. Multi-scale Encoder

The Multi-scale Encoder consists of a pyramidal resize

model, as shown in Figure 2. It extracts the image feature

across 4 scales by resizing the input image to different sizes

with a bilinear interpolation. The resized images are then

aligned and merged to discover joint structure across differ-

ent scales through a convolution layer. Generally speaking,

when we use the convolutional neural network to extract

the coefficient maps from image, the global and coarse in-

formation is exploited from the deeper layers, whereas local

and fine information is presented from the shallower layers.

Therefore, we use a network of four layers to get the global

and high-level information from the original image, and em-

ploy a network of one layer to get the detailed features for

the other resized images.

Figure 2. Multi-scale Encoder. The dashed box indicates the pyra-

midal resize model. Conv: convolution layer. N×3×3/2: Number

of feature×kernel height×kernel width/sampling stride. While ↓
means downsampling and ↑ indicates upsampling. N is set to 192.

The inception network [7] is well known to exploit multi-

scale features by using different kernels. We adopt an in-

ception module for the original image. To better fit for our

network, we use the same channel number for different ker-

nels and concatenate them together. Then a 1x1 convolution

layer is used to decide which kernel is the most important

and get the fused output, as shown in Figure 3.

Figure 3. Inception network. GDN: generalized divisive normal-

ization [1].

2.2. Residual Decoder

Residual Decoder is designed as shown in Figure 4. A

two-layers residual network is added between the adjacent

convolution layers to increase the nonlinearity of the de-

coder, which benefits for enhancing the quality of recon-

structed image. Moreover, some multi-scale assistant in-

formation, generated by processing the hyperprior’s output

through a Pyramid Atrous model, is concatenated with the

quantized latent representation to get more features feeding

for the decoder network.

2.3. Entropy Model

The entropy model is used for learning a probabilistic

model over quantized latents used for entropy coding. We

use a conditional Gaussian Mixture Model (GMM) [5] in

this work. The parameter of GMM is generated by an En-

tropy Parameter model by processing the information from

the Context Model and the hyperprior network. With the

predicted parameters of µ and σ, the discrete representa-
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Figure 4. Residual Decoder. Deconv: upsampled convolution.

IGDN: inverse GDN [1]. M is set to 128.

tion’s probability is calculated with Equation 1.

p(ŷ|ẑ) =
∏

i

(N (µi, σ
2

i ) ∗ µ(−
1

2
,
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2
))(ŷi) (1)

For the hyper-latents ẑ, a non-parametric, fully factor-

ized density model is used as [3] to predict the probability of

side information. Then, the entropy of generated bitstream

containing the compressed latents Rŷ and hyper-latents Rẑ

can be defined as Equation 2.

R =
∑

(−log2(p(ŷ|ẑ))
︸ ︷︷ ︸

Rŷ

+
∑

−log2(p(ẑ))
︸ ︷︷ ︸

Rẑ

(2)

However, generating the parameters of µ and σ through

one single Context Model and Entropy Parameter model has

some limitations. There may be some correlation between

µ and σ, but the independence between them should not be

ignored. Therefore, in order to get a more accurate distri-

bution of the latents, we use a Context Model and Entropy

Parameter model for µ and σ respectively. Details about

the individual network layers are outlined in Table 1.

Context Model(µ&σ) Entropy Parameter(µ&σ)

Masked 128×3×3 Conv 384×1×1

Masked 128×3×3 Conv 192×1×1

Masked 128×3×3 Conv 128×1×1

Table 1. Parameters of Context Model and Entropy Parameter.

“Masked” corresponds to masked convolution as in [4].

With the independence of networks, an absolute function

is added before the entropy model for σ. For the value of

σ mainly stands for the variance of data, and a positive in-

put will provide a better representation. Furthermore, we

use three layers instead of one layer for the Context Model.

With this modification, the receptive field of the convolu-

tion layer increase from 3x3 to 7x7 which contains more

information from the quantized latents to better predict the

latents’ probability. The hyperprior is similar to [3] with the

channel number increase to 192.

2.4. Weighted layer

After analyzing the time consuming of the whole net-

work, we find that the autoregressive network takes most of

the time. It needs to code the latents pixel by pixel, and

takes a lot of time if the size of bottleneck becomes large.

To solve this problem, one intuitional method is to re-

duce the bottlenecks by decreasing the number of feature

maps. However, if we cut the number of feature maps

directly through a convolution layer, the quality of recon-

structed image will turn worse correspondingly. Therefore,

we propose to add a weighted layer before the convolution

layer. It is used to provide a weight to different channels to

selectively enhance the useful features and surpass useless

ones. With this selection, we can maintain more important

information when facing to dimensionality reduction.

The structure of weighted layer is shown in Figure 5. We

first use a global average pooling layer to generate channel-

wise statistics. Then two convolution layers are used to bet-

ter learning the nonlinear interaction between channels.

Figure 5. Structure of weighted layer.

3. Experiment

We use the dataset from Challenge on Learned Image

Compression (CLIC), and extra collect about 5000 high

quality images to maintain the diversity of training dataset,

making the total size of the dataset around 7000. We use

two kinds of common distortion measures, Mean Square

Error (MSE) and perceptual metric MS-SSIM to train the

network with the loss function:

Loss = R+ λ×D (3)

where D is the distortion measured as ‖x− x̃‖2 for MSE or

MS-SSIM defined in [10], R is the entropy of latents ŷ and

ẑ. λ controls the tradeoff between rate and distortion.

To demonstrate the effect of our models intuitively, we

analyze the improvement of different sections trained with

MSE. The “Original” means the network we implement

based on Minnen’s [5] work. The “Separate Entropy”,

“Multi-scale Encoder” and “Residual Decoder” means the

network added with the named portion step by step.
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methods bitrate PSNR MS-SSIM

Original 0.149 31.03 0.956

Separate Entropy 0.149 31.29 0.958

Multi-scale Encoder 0.149 31.69 0.96

Residual Decoder 0.149 31.72 0.96

Table 2. Performance of the different models.

From Table 2, we can observe that the added network can

exactly enhance the compression quality with a consider-

able improvement, especially for the Multi-scale Encoder.

However, comparing to the “Original”, the complexity of

proposed network added with the whole portions enhances

correspondingly. Table 3 shows the increase of time.

methods Encoder (%) Decoder (%)

Original 100 100

Proposed 145 115

Table 3. Comparison of computational complexity.

methods bitrate PSNR MS-SSIM

BPG 0.149 30.84 0.948

Proposed + MSE 0.149 31.72 0.96

Proposed + MS-SSIM 0.149 29.60 0.974

Table 4. Evaluation results of CLIC 2019 on validation dataset.

We provide a comparison of our approaches and BPG

on validation dataset under the CLIC requirements. From

Table 4, we can see that when trained with MSE, the pro-

posed approach can surpass the BPG in both PSNR and

MS-SSIM, outperforming the traditional method. When the

model is trained with MS-SSIM, the perceptual score is sig-

nificantly enhanced (0.948 → 0.974).

Figure 6. Evaluation on the Kodak image dataset using MS-SSIM.

To make a more direct comparison, Figure 6 shows RD

curves for Kodak using MS-SSIM. The score of MS-SSIM

is formulated as −10log10(1 − MS-SSIM). We can see

our method achieves a state-of-the-art performance.

Moreover, we use eight models to compress the images

separately, and select the most appropriate model for ev-

ery image. The average bitrate of those models range from

0.131 to 0.172. Table 5 shows a comparison of one fixed

model and eight selected models. We can see that, with the

selected models, we can make a better allocation and con-

straint of the bits to match the demand of CLIC.

methods bitrate PSNR MS-SSIM

Fixed model 0.146 28.32 0.970

Selected models (Hyper) 0.150 28.36 0.972

Table 5. Evaluation results of CLIC 2019 on test dataset.

4. Conclusion

In this study, we present a novel autoencoder for low

bit-rate image compression. With the multi-scale encoder,

the features of input image is fully extracted. The obtained

latent representation can be reconstructed by residual de-

coder. The separate entropy model provides a closer pre-

diction of the prior probability for latent representation. Our

experiments compared with other methods shows that this

approach has achieved a state-of-the-art performance in im-

age compression. In future work, a more effective compres-

sion network with higher evaluation scores and less compu-

tational load will be exploited.
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[3] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick

Johnston. Variational image compression with a scale hyperprior. arXiv

preprint arXiv:1802.01436, 2018.

[4] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and

Luc Van Gool. Conditional probability models for deep image compression. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4394–4402, 2018.
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