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Abstract

The traditional image compressors, e.g., BPG and

H.266, have achieved great image and video compres-

sion quality. Recently, Convolutional Neural Network has

been used widely in image compression. We proposed an

attention-based convolutional neural network for low bit-

rate compression to post-process the output of traditional

image compression decoder. Across the experimental re-

sults on validation sets, the post-processing module trained

by MAE and MS-SSIM losses yields the highest PSNR of

32.10 on average at the bit-rate of 0.15.

1. Introduction

Uncompressed image and video data require massive

storage capacity and transmission bandwidth. For a long

time, people are dreaming about a powerful compression

method to greatly elevate the convenience of transmission

and storage of applications and database. TBs or even PBs

of data are consumed in the daily mobile network, most of

which are videos and images. It is urgent to develop both

practical and swift image and video compression technique

to solve this problem. Typically, a traditional image com-

pression method , like JPEG [24] or JPEG2000[8], should

go through DCT or wavelet transform, quantization, coding,

entropy encoding, and decoding. While PNG [5], and WebP

[10] are widely used in daily life, people are still not very

satisfied with the contemporary compression quality level.

With the rise of deep learning, neural network has become

a commonly used tool in various areas, mostly concerned

with computer vision and natural language processing. Im-

age compression, of course, has been successfully experi-

mented that deep neural networks are effective in most sit-

uations. For example, autoencoder based neural network

compression framework uses convolutional neural network

stack to replace default feature extraction approaches on the
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traditional pipeline. GANs [11], are generally used to im-

prove the MOS (mean opinion score). However, it will re-

sult in very low metric values in terms of PSNR and MS-

SSIM if GANs are used.

Our approach is to provide a fully convolutional neural

network which is built upon attention mechanism to opti-

mize the output of the traditional decoder, like BPG [4] and

H.266 [1]. We found that the fixed threshold of the qual-

ity parameter can be further promoted by convolutional in

both PSNR and MS-SSIM. One advantage of a fully con-

volutional neural network is that the input size of images

can be arbitrary. The convolutional layer is also an expert

in extracting features from the image.

This paper is structured as follows: Section 2 covers re-

lated works in the area of image compression. The speci-

fication of our proposed method is discussed in Section 3.

Section 4 shows the experimental results of the comparison

between our methods and others. Finally, Section 5 con-

cludes the characteristics of image compression techniques

of previous sections as well as future work.

2. Related work

As mentioned in the last chapter, image compression

has gone through several generations. From traditional

compression techniques like JPEG, JPEG2000, to recent

adaptive image compression approach [19] proposed by

Waveone, image compression evolves many research fields

progress. Here are some related works:

2.1. Traditional Image Compression Techniques

JPEG is a widely used image format using 2D Fourier

Discrete Cosine (DCT) Transform. It is also the founda-

tion of most popular H.264 [25] video compression for-

mat. However, JPEG 2000 uses the wavelet transform to

beat up JPEG for its higher quality in the same level of

Bit Per Pixel (BPP). However, the lack of its application

and slow encoding and decoding speed hinder its popular-

ity. Google presented WebP in 2010 in order to substitute
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Figure 1. The proposed framework.

JPEG or PNG on the internet. The Predicting Module in

the MacroBlocking of WebP sends the predicted output to

the DCT transform, thus compressing the image in a more

effective way. People tend to find a better way of image

compression from video compression techniques. WebP

can be seen as the key-frame compression of WebM [3].

BPG is derived from HEVC [20] (a.k.a the second part of

H.265). It gives a higher dynamic range and a better com-

pression ratio. H.266, i.e., Versatile Video Coding (VVC)

[14] proposed by JVET group, is beyond H.265 and desire

to have a preferable performance than any other traditional

image/video compression methods.

2.2. Deep Neural Networks

Recent blossom of neural network in computer vision is

highly attracted to researchers. Not only the convolutional

layer but also recurrent structure may benefit image com-

pression. GAN applications of image compression should

be both perceptual and rational, but not be loyal to the

source image.

• CNN and RNN:

In 2015, Toderici et al. [22] proposed a creative ar-

chitecture composed of convolutional and deconvolu-

tional LSTM recurrent network. In order to get arbi-

trary size of input images, Toderici et al. [23] improved

their framework into an RNN based end-to-end net-

work. With the popularity and practicability of autoen-

coder, Theis et al. [21] proposed compressive autoen-

coder with an upper-bound the discrete entropy rate

loss for continuous relaxation. Jiang et al. [15] pre-

sented a fully convolutional end-to-end compression

framework to work with residual and get the recon-

structed image as similar to the groudtruth. Maleki et

al. [2] proposed BlockCNN for artifact removal and

achieved results with better quality on the enhanced

images.

• GAN:

Only a few works are GAN based. Rippel et al. pro-

posed a real-time adaptive image compression method

[19] but the key is that target and reconstruction are no

longer treated separately. They fine-tuned their GAN

to decide when they propagated confusion signal, and

when to train the discriminator. Galteri et al. [9] pre-

sented a GAN based network with SSIM loss to get a

better artifact removal result. Lomnitz et al. [18] pro-

posed Compression-GAN to re-generate human faces

in rather low szies while with high MOS score.

2.3. Traditional and DNN Fused

Traditional compression techniques have their advantage

of fast encoding/decoding speed, and without plenty of data

to train. Liu et al. [17] combined JPEG with a deep neu-

ral network to ease the storage and data communication

overhead. Chen et al. [7] presented a CNN-optimized im-

age compression with uncertainty based resource alloca-

tion. They used a CNN based method to predict the prob-

ability distribution of syntax element and boost the perfor-

mance of in-loop filtering with a novel convolutional net-

work that incorporates dense connections and identity skip

connections. Their team gained the first prize of the 2018

CVPR compression workshop.

3. Method

In this study, we develop our codec based on the Versatile

Video Coding (VVC) [14], which is the codec developed

based on H.266 structure. In addition, we designed a post-

processing method, which is based on convolutional neural

network to improve coding performance. An overview of

the image compression framework is depicted in Fig. 1.

The proposed framework mainly consists of two parts: tra-

ditional codec and post-processing. The network structure

used in the post-processing stage is shown in Fig. 2. The

network is composed of 30 residual blocks, each of which

contains channel attention (CA) and spatial attention (SA)

mechanisms [6].



Figure 2. Attention Residual Block.

Given a set of compressed images {Xi} and their corre-

sponding ground truth images {Yi}, we use mean absolute

error (MAE) as the loss function:

L(Θ) =
1

N

N∑

i=1

|f(Xi; Θ)−Yi| (1)

where Θ is the network parameters. f is the mapping func-

tion. N is the number of training samples.

After 10 thousand iterations, we used a combination of

both MAE and MS-SSIM as our losses to elevate MS-SSIM

score. The MS-SSIM can be presented as:

LMS−SSIM = [LM (X,Y )]αM

M∏

J=1

[CJ(X,Y )]βj [SJ(X,Y )]γJ

(2)

where X,Y are the pixels of the image. The SSIM for-

mula is based on three comparison measurements between

the samples of X and Y : luminance L, contrast C and struc-

ture S. The MS-SSIM is changing the image scale with the

coefficient M. Therefore, the whole loss function is:

L = λLMS−SSIM + L(Θ) (3)

where λ is set to 1

20
in our experiment.

4. Experiment

This section describes datasets that we used, the main

training procedure and hyper-parameter settings.

4.1. Datasets

Since we have evaluated the size and distribution of the

provided training set, we choose DIV2K dataset [13] as our

main training data. Moreover, the provided training set con-

tains two part of data, mobile and professional. To fit better

the mobile training set, we choose DPED dataset [12]. We

equally mixed two datasets together as our main training

data. For training, we randomly crop 64 × 64, 128 × 128
and 256× 256 patches from 90% of these images as inputs

to the traditional encoder in a fixed quality parameter. We

only use rotation as augmentation. Then, after decoding all

the output of the encoder, we sent the decoded result to the

network for training. For testing and validation, we used the

other 10%.

Approachs PSNR MS-SSIM BPP

BPG 31.47 0.94824 0.144

BPG+Post 32.01 0.95712 0.148

H.266 31.72 0.96097 0.149

H.266 + Post 32.09 0.96104 0.147

H.266 + Post + Rotation 32.10 0.96124 0.149
Table 1. Evaluation results on CLIC 2019 validation dataset

4.2. Procedure

It is indispensable to test several traditional compressors

as we aimed to develop a post-processing network. BPG

and H.266 image compressor stand out in terms of PSNR

and MS-SSIM metrics, so we choose them as the baseline

of the test. The experiment was carried out in 3 phases. For

the first phase, we searched a range of quality parameters for

the encoder to compress images to an average of 0.15 bpp.

The bpp is different due to the fact that the fixed quality

parameter can not always get the exact size of image. We

have to mix the adjacent quality parameter output to get the

closest result. After that, the decoder gets the outputs of

binary data as neural networks inputs. At the third phase,

we tested the different crop sizes of inputs to choose the best

fit. We adapted EDSR+’s [16] method to rotate the image

in every 90 degrees, and we put every rotated image to the

model to get the average of inferenced outputs to improve

the PSNR and MS-SSIM indices.

4.3. Implementation details

The learning rates for the network was set to 1e−4. We

use the Adam and set β1 = 0, β2 = 0.999. All the experi-

ments are conducted on a P5000 GPU with Intel 7600 CPU.

We have set the limit to 12GB RAM according to the rule

of the competition. We set the λ of the loss function to 0.05.

The total decoding time on this machine is one and half an

hour on the whole validation set. The rotation version of the

post-process takes about six hours.

4.4. Results

In order to get the max of 0.15 bpp limitation, we have

to mix results from different quality parameters. We choose

BPG and H.266 as baselines. For BPG, we mixed quality

parameters at 40 and 41; As for H.266, we mixed quality pa-

rameters at 35, 36 and 37 for different configure setting. As

shown in Table 1, it can be seen the post-processing module

improves the PSNR and MS-SSIM metrics for both algo-

rithms. The EDSR’s rotation trick elevates about 1 percent

of PSNR and 0.2 percent of MS-SSIM. We have submitted

as the name of ColorBlust as our final result.

5. Conclusion

In this work, we have presented a post-processing fully

convolutional neural network for the decoder to improve its



objective evaluation metrics. The post-processing perfor-

mance is mainly depended on the quality of the front-end

traditional compressor. A post-processing network has tar-

geted to optimize PSNR or MS-SSIM. The convolutional

neural network maybe slow for elevating image quality but

it is worthwhile for promoting PSNR for 0.64 dB. In fact,

the more reliable the front-end compressor is, the higher

quality we can get. In future work, it would be interested to

explore a more effective network and make a convolutional

neural network into traditional encoder to optimize its per-

formance.
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