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Abstract

We propose an end-to-end trainable image compression

framework with a multi-scale and context-adaptive entropy

model, especially for low bitrate compression. Due to the

success of autoregressive priors in probabilistic generative

model, the complementary combination of autoregressive

and hierarchical priors can estimate the distribution of each

latent representation accurately. Based on this combina-

tion, we firstly propose a multi-scale masked convolutional

network as our autoregressive model. Secondly, for the sig-

nificant computational penalty of generative model, we fo-

cus on decoded representations covered by receptive field,

and skip full zero latents in arithmetic codec. At last, ac-

cording to the low-rate compression’s constraint in CLIC-

2019, we use a method to maximize MS-SSIM by allocating

bitrate for each image.

1. Introduction

Recently, artificial neural networks have emerged as a

promising direction and achieved many breakthroughs. Im-

age compression is a fundamental and well-studied tech-

nique in past decades. The key challenge is to control trade-

off between two competing costs: entropy of discretized

representation (rate) and error arising from quantization

(distortion). Models related to autoencoder [2, 3, 9, 4],

RNN [10], and GAN [1, 8] were proposed to achieve joint

optimization of rate and distortion. These methods have got

great success, and some of them have surpassed successful

codecs such as JPEG, JPEG2000, and BPG.

In the rate-distortion optimization R+λ·D, where λ acts

as a balance between the rate (R) and the distortion (D). For

the distortion, MSE (Mean Square Error) / PSNR is widely

used. Nowadays it can also be measured with Multi-Scale

Structural SIMilarity (MS-SSIM), especially in deep learn-

ing methods. According to information theory, the rate can

∗zhoujing@cn.fujitsu.com

be estimated by an entropy model. Because the actual distri-

butions of latent representations are unknown, the entropy

model should learn to estimate probabilistic distribution. So

the most important part is a trainable and accurate entropy

model, which can represent the rate explicitly. To predict

probability model for each representation, Ballé et al. [3]

, Theis et al. [9], Mentzer et al. [6] proposed novel and

input-adaptive frameworks for entropy model.

Our proposed framework is based on Minnen et al. [7]

to exploit an accurate probabilistic structure for latents. We

mainly focus on an entropy model with complementary

combination of autoregressive and hierarchical priors. Each

representation is modeled with a Gaussian distribution, and

all parameters of the distribution are predicted one by one.

Then two methods are presented by considering the trade-

off between performance and speed. The first one is to re-

duce redundant computation. The second is to ignore full

zero feature maps in latents while using arithmetic codec.

At last, considering the bitrate constraint, a method of bit

allocation for each image is employed to pursue better per-

formance on MS-SSIM.

2. The proposed framework

The whole framework is shown in Figure 1, which can

be briefly divided into two parts. The first one is an asym-

metric autoencoder network. It transforms original image x

from pixel-level to high-level representations with Encoder

and reconstructs them back to x̃ with Decoder. The second

is an Entropy Model, which mainly contains a hyper au-

toencoder and an autoregressive model with three masked

convolutional layers. The Entropy Parameters is made up

of several 1 × 1 convolutional layers as Minnen et al. [7].

A Factorized Entropy Model is used for ẑ, which is a fixed

and fully factorized prior proposed by Ballé et al. [3]. As-

suming a Gaussian distributed probability mass function for

ŷ, the parameters of µ and σ are predicted which are used in

arithmetic codec (AE and AD). Latent representations with

real-value are quantized (Q) to create ŷ and ẑ in evaluation,
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Figure 1. Our framework. Conv: Convolution layer. 128 × 3 × 3, 128: number of feature map, 3 × 3: kernel height × width. ↓ 2:

downsampling with stride 2; ↑ 2: upsampling with stride 2. Masked Conv 3 × 3: Masked convolution with 3 × 3 kernel [11]. Deconv:

Deconvolutional layer. GDN: Generalized Divisive Normalization; IGDN: Inverse GDN [2]. Q: Quantization; AE: Arithmetic Encoder;

AD: Arithmetic Decoder.

which can be compressed into bitstream.

2.1. Entropy model

In our proposed framework, the side information from

hyper prior and context model plays an important role in en-

tropy model. We improve the entropy model’s performance

from two aspects.

The first aspect is to extract multi-scale and extended

feature maps from intermediate layers in Encoder, and big-

ger inputs are convoluted with larger kernels. Assuming x’s

shape is H×W ×C, the first extended feature maps are ob-

tained via a 9×9 ↓ 8 convolution with a H
2
×W

2
×128 input.

With an input of H
4
× W

4
×128, the second extended feature

maps are obtained via a 7× 7 ↓ 4 convolution. The last one

can be obtained in the same manner. By fusing these fea-

ture maps with latents y, the input to the Hyper-Encoder is

obtained. Since more features are added, the number of fea-

ture map z is increased to 192, compared with ŷ (128). As

the outputs of Hyper Decoder represents the distribution of

ŷ roughly, such fusion is beneficial to probability estimation

in higher precision.

The second aspect is the autoregressive model. As shown

in Figure 2 (a), all points are encoded/decoded in scan order

(indicated by the arrow) one by one. To decode the current

point (colored with red), only previously decoded points can

be used. We propose a multi-scale context model, which

contains 3 parallel masked convolutional layers shown in

Figure 2 (b). The available information used is the previous

decoded points, and the un-decoded ones are masked with

zero. Combining with these 3 masked layers, the scope can

be divided into 3 rings in Figure 2 (a). The first ring is

colored with green, the second colored with yellow and the

third blue. With three kernels centered on the current point,

all kernels are effective in the first ring; two kernels (7 × 7
and 5× 5) in the second ring; only 7× 7 kernel in the third.

With such multi-scale convolutional layers, the influence of

points in the closer ring is amplified.

(a) Scheme of context model (b) Masks with different kernels

Figure 2. Multi-scale context model

With the predicted parameters of µ and σ, the discrete

representation’s probability is calculated with Eq 1, where

N (µ, σ2) represents the assumed Gaussian distribution.

p(ŷ|ẑ) =
∏

i

(N (µi, σ
2

i ) ∗ µi(−
1

2
,
1

2
))(ŷi) (1)

So the total bitrate contains two parts: rate Rŷ for rep-

resentation ŷ and rate Rẑ for side information from hyper-

prior ẑ, as shown in Eq 2.

R =
∑

(−log2(p(ŷ|ẑ))
︸ ︷︷ ︸

Rŷ

+
∑

−log2(p(ẑ))
︸ ︷︷ ︸

Rẑ

(2)
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2.2. Adjust quantization error

The quantization, such as round function, is not appli-

cable in the end-to-end training, because of the problem of

zero gradient. To solve it, we adopt the method of noise-

based relaxation proposed by Ballé et al.[2] in training.

Another problem for the quantization is that it introduces

error, which will decrease the performance of reconstruc-

tion. As in Eq 1, the whole framework is trained to min-

imize the difference between ŷ and µ. The predicted µ in

continuous value can supplement some information to the

discrete ŷ. Concatenating ŷ and µ as the input of the De-

coder can adjust quantization error to some extent.

3. Experiments

3.1. Training method

We train our network with more than 6000 images. Our

dataset mainly contains three parts: training datasets pro-

vided by CLIC, DIV2K, and Flicker2K dataset [5]. We ran-

domly crop patches of 256x256 from the full resolution im-

ages for each batch while training.

In the rate-distortion optimization, the full loss function

is shown in Eq 3. We train our model from scratch in three

stages progressively from high bitrate to low bitrate. Firstly,

MSE: ‖x− x̃‖2 is used as the distortion (D). A stable model

is trained with bigger λ, which performs well in PSNR.

Secondly, we switch to MS-SSIM: D = 1 − LMS-SSIM .

We train the model for better performance in the metric of

MS-SSIM. Finally, w1 · (|ŷ − µ|) is added to the loss func-

tion, which is beneficial to adjusting the quantization error,

where w1 is 0.2.

Loss = R+ λ ·D (3)

In the MS-SSIM metric, the image is scaled five times by

a factor of 2. Then five SSIM values can be obtained. The

MS-SSIM is the sum of five weighted SSIMs. We train the

models with two different weights: default [0.0448, 0.2856,

0.3001, 0.2363, 0.1333], and average [1.0, 1.0, 1.0, 1.0,

1.0]. After training, we evaluate these two models’ perfor-

mance on validation dataset of CLIC, and the results are

shown in Table 1. We can find that the average weights

perform better on PSNR, but worse on MS-SSIM. Because

the default weights are both used in the training and eval-

uation, the default weights’ MS-SSIM value is higher. We

also think there exists a trade-off between MS-SSIM and

PSNR by viewing this result.

Weights MS-SSIM PSNR BPP

Average 0.9743 30.13 0.148

Default 0.9751 29.75 0.149

Table 1. Evaluation results on CLIC validation dataset

3.2. Speed up autoregressive model

Due to the autoregressive network’s inherent serial

scheme, it’s time consuming from practical standpoint es-

pecially for big input. Current popular acceleration tech-

niques are in the way of parallelization, which is not suit-

able in our scheme. To accelerate our model, two methods

are proposed.

The first method is reducing unnecessary computation in

the context model. Assuming ŷ’s shape is h × w × c, it

means there are c feature maps, and each shape is h × w.

The max receptive field for our context model is 7 × 7. So

cropping 7 × 7 × c centered on the point to be decoded is

enough. With this operation, the computation is decreased

from h×w× c to 7× 7× c each time. In addition, there is

no performance penalty because no information is lost.

The second one is about arithmetic codec. As an intu-

ition, better performance can be obtained if there are more

feature maps in the bottleneck. After several trials, 128 fea-

ture maps for ŷ are proved to be the best choice for low-rate

compression. Looking into these 128 feature maps, almost

half of them are full-zero. We employ c bits to indicate

whether the feature map is full-zero or not and skip points

of full-zero feature map while using entropy codec. So ex-

tra 128/8 bytes are consumed to store these flags. The pseu-

docode of selective arithmetic codec is illustrated as below.

Algorithm: selective arithmetic codec

Input: feature map of ŷ[h,w, c]
Output: bitstream

1: flags = zeros(c)

2: for i in range(c)

3: if sum(|ŷ[:, :, i]|) > 0
4: flags[i] = 1

5: else:

6: flags[i] = 0

7: for h idx in range(h)

8: for w idx in range(w)

9: for ch idx in range(c)

10: if flags[ch idx)] == 1

11: arithmetic-codec(ŷ[h idx,w idx,ch idx])

The decoding is tested under docker environment with

2 CPU cores, and the processor is Intel i7-4790K CPU,

4.00GHz. Three images of different shapes are chosen from

CLIC 2019 test dataset. From Table 2, although entropy in-

creases by a very small margin, our method save time a lot

without performance degradation, especially for large im-

ages (more than 96% decoding time).

3.3. Bit allocation under limited bitrate

The task of the CLIC is to maximize metrics such as

PSNR, MS-SSIM under given bitrate, and total test dataset

is seen as a target. It’s hard for a model trained with a single

λ to satisfy this constraint for a random dataset. So multi-

ple models with different bitrates are needed. To maximum
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Method Image size Decoding time(s) MS-SSIM PSNR Entropy(byte)

Before

365*512 50 0.9687 34.61 2763

1448*972 2868 0.9571 27.23 53478

2000*2000 22275 0.9753 29.27 98865

After

365*512 10(↓ 80%) 0.9687 34.61 2778(↑ 5.4× 10−3)

1448*972 93(↓ 96.76%) 0.9571 27.23 53493(↑ 2.8× 10−4)

2000*2000 259(↓ 98.84%) 0.9753 29.27 98879(↑ 1.4× 10−4)

Table 2. Performance comparison of our acceleration method

performance of the whole test dataset, a knapsack solver is

used to allocate each image with appropriate bitstream from

these models.

3.4. Performance

Figure 3. Comparison of Rate-Distortion curves on Kodak

We evaluate compression performance on the public Ko-

dak dataset, and rate-distortion curves are shown in Figure

3. To improve legibility, the MS-SSIM scores are in dB:

MS-SSIMdB = −10 · log10(1−MS-SSIM). As far as

we know, our method proves to be the state-of-the-art com-

pared with other baseline methods.

Model number Rate range MS-SSIM PSNR BPP

1 0.148 0.9721 28.51 0.148

6(JointSSIM) [0.135, 0.163] 0.9729 28.54 0.150

8(Joint) [0.120, 0.180] 0.9733 28.54 0.150

8 [0.120, 0.267] 0.9739 28.50 0.150

Table 3. Results on CLIC 2019 test dataset

As total bitrate should be no more than 0.15 bpp for

CLIC’s low-rate task, evaluation results for the test dataset

are shown in Table 3. The Model number represents the

number of model used with different bitrates. For the Rate

range, e.g., [0.135, 0.613], 0.163 represents the biggest bpp

evaluated on the test dataset and 0.135 represents the low-

est. For a single bitrate model, the best performance of MS-

SSIM is 0.9721 with 0.148 bpp. With bit allocation method,

the value of MS-SSIM can be improved if there is a larger

range of bitrate. Our submitted versions are ’JointSSIM’

and ’Joint’. For ’Joint’ team, it achieves the second place in

MS-SSIM and third place in MOS. We further enlarge the

range of bit rate, e.g., [0.120, 0.267], and it performs the

best in Table 3.

4. Conclusion

In this paper, we propose an end-to-end image compres-

sion framework, which can be seen as an extended work of

Minnen et al.[7]. We implement our code based on the open

source code provided by Johannes Ballé at https://

github.com/tensorflow/compression. Firstly,

we propose a multi-scale and context-adaptive entropy

model. Secondly, methods are proposed to accelerate in en-

tropy codec. Lastly, we use a method for bitrate allocation

to maximize MS-SSIM. In the future, we will focus more

on speeding up our model with improved performance.
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