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Abstract

Advancements in machine learning and deep learning

techniques have led to the development of sophisticated

and accurate face recognition systems. However, for the

past few years, researchers are exploring the vulnerabili-

ties of these systems towards digital attacks. Creation of

digitally altered images has become an easy task with the

availability of various image editing tools and mobile ap-

plication such as Snapchat. Morphing based digital attacks

are used to elude and gain the identity of legitimate users

by fooling the deep networks. In this research, partial face

tampering attack is proposed, where facial regions are re-

placed or morphed to generate tampered samples. Face ver-

ification experiments performed using two state-of-the-art

face recognition systems, VGG-Face and OpenFace on the

CMU- MultiPIE dataset indicates the vulnerability of these

systems towards the attack. Further, a Partial Face Tamper-

ing Detection (PFTD) network is proposed for the detection

of the proposed attack. The network captures the inconsis-

tencies among the original and tampered images by com-

bining the raw and high-frequency information of the input

images for the detection of tampered images. The proposed

network surpasses the performance of the existing baseline

deep neural networks for tampered image detection.

1. Introduction

Face recognition systems are used in a wide range of ap-

plications ranging from e-payments, automatic border con-

trol access through e-pass and surveillance. The advance-

ment in machine learning and deep learning techniques with

the wide availability of training data have led to the devel-

opment of sophisticated deep learning algorithms for face

recognition [4, 26, 30, 40]. However, the vulnerability of

deep face recognition systems towards digital attacks is a

major concern. With the advancement of sophisticated and

easy to use image editing tools and mobile applications such

as Snapchat, creating digitally altered images has become

an easy task.

Digital attacks are of various types including morphing

Figure 1. Guess which of the images in the second and third row

are original or tampered? Hint: Top row contains the source im-

ages used to create the tampered images.

based attacks, retouching based attacks, and adversarial at-

tacks. In morphing based attacks, a new face image is gen-

erated using the information available from multiple source

face images of different subjects to elude own identity or

gain the identity of others. In the literature, researchers have

shown the vulnerability of face recognition systems towards

morphing based digital attacks [1, 10, 18, 21, 22, 33, 34].

However, due to morphing, the visual appearance of the im-

ages changes to some extent. Retouching on the other hand

affects the performance of recognition systems by chang-

ing the geometric properties of the face image which in

turn changes the visual appearance of the images [5, 6].

In learning based adversarial attacks, adversaries in the

form of visually imperceptible noise are added to the in-

put images to deteriorate the performance of deep networks

[7, 14, 15, 29, 38]. However, such attacks require knowl-

edge of the model to attack.

Figure 1 shows some samples of digitally altered images

generated by partial replacement and morphing of facial re-



gions. Figure 1 illustrates that it is quite difficult to differ-

entiate among the original and tampered images. Therefore,

the images of the same subjects can be easily identified by

humans due to the similarity in the visual appearance of the

original and tampered images. However, it is asserted that

morphing and replacement of specific parts of human face

with other subjects could present new challenges to face

recognition systems. This may exploit vulnerabilities in the

learned parameters if certain parts of the face are weighted

over the others.

This research focuses on answering the question: “are

existing deep face recognition systems robust towards mi-

nuscule changes in facial regions?” In this research, a par-

tial face tampering attack is proposed by partially replac-

ing and morphing of facial regions. The proposed attack

does not require the knowledge of the system to attack, and

the visual appearance of the tampered images remains un-

changed. The first aim is to analyze the robustness of exist-

ing deep face recognition systems towards minute changes

in facial regions imperceptible to human eye. Secondly, a

novel tampered image detection network termed as Partial

Face Tampering Detection (PFTD) is proposed for detect-

ing the proposed attack. The network uses a combination of

RGB image and high pass filtered version of the input im-

age to detect the tampered images. The main contributions

of this research are summarized below:

• Generation of partial face tampered samples using re-

placement and morphing of facial parts;

• Performance analysis of OpenFace [4] and VGG-Face

[30] models through face verification experiments;

• Proposing a Partial Face Tampering Detection (PFTD)

network for the detection of the proposed partial face

tampering attack.

• Experiments for detection of unseen digital attacks are

also performed to showcase the effectiveness of PFTD

network.

The remaining paper is organized as follows: Section 2

presents the related work, Section 3 discusses the proposed

partial face tampering attack with its effect on OpenFace

and VGG-Face. Section 4 gives the details of the proposed

Partial Face Tampering Detection network with results and

analysis. Finally, Section 5 concludes the paper.

2. Related Work

In the literature, vulnerability of deep learning algo-

rithms towards adversarial attacks [3, 7, 28, 29, 38] and

deep face recognition systems towards face morphing or

swapping [1, 9, 34] are highlighted by several researchers.

In 2017, Agarwal et al. [1] have shown the effect of

morphed face images on Commercial-Off-The-Shelf Sys-

tem (COTS) by creating a novel SWAPPED-Digital Attack

Video Face Database using Snapchat. Further, the authors

proposed a weighted local magnitude patterns with Sup-

port Vector Machine (SVM) classifier for the detection of

morph faces. Scherhag et al. [34] investigated the vul-

nerabilities of biometric systems towards morphed face at-

tacks. Other work on the detection of morph faces includes

[24, 31]. Raghavendra et al. [31] proposed a feature level

fusion approach of two pre-trained CNN networks for the

detection of digital and print-scanned morphed face images.

Recently, Ferrara et al. [11] have shown the effect of mor-

phing on COTS and proposed a technique to demorph the

morphed face image.

Apart from the analysis and detection of morphing based

attacks, several algorithms have been proposed for the de-

tection of adversarial attacks. Goswami et al. [15] proposed

a selective dropout approach to detect adversarial samples.

Lu et al. [25] proposed a Radial Basis Function SVM clas-

sifier to detect adversarial samples. Metzen et al. [27] pro-

posed to augment a subnetwork trained for classifying ad-

versarial samples to a targeted network. Goel et al. [12]

have implemented the adversarial examples generation and

detection algorithms and prepared a toolbox called Smart-

box. Other works for the detection of adversarial samples

include [2, 17, 19, 23]. A detailed survey of attacks and

defense mechanism is given in [3, 35].

3. Proposed Attack

This section describes the proposed partial face tamper-

ing attack. The effect of the proposed attack on the per-

formance of face recognition algorithms is evaluated with

OpenFace [4] and VGG-Face [30] networks. Analysis is

performed with respect to the deterioration in the perfor-

mance of a face recognition system i.e., degradation in the

verification accuracy of the system. Section 3.1 describes

the partial face tampering attack, Section 3.2 presents the

database and protocol, and Section 3.3 shows the effect of

the proposed attack.

3.1. Partial Face Tampering Attack

Two different approaches are followed for generating

tampered samples using partial face tampering attack. The

first approach is referred as Replacement of Facial Regions

(RFR) and the second approach as Morphing of Facial Re-

gions (MFR). The details of the approaches are given below.

Replacement of Facial Regions:

In this approach, three different facial regions namely, eyes,

mouth, and nose of an input image are replaced with the

corresponding regions of another image (termed as source

image) to generate the tampered samples. Each tampered

sample contains one tampered region. Let Ii be the input

image of subject i and Ij be the source image of subject j.



Input Image Source Image

Eye Replaced Mouth Replaced Nose Replaced

(a) Replacement of Facial Regions

Eye Morphed Mouth Morphed Nose Morphed

Input Image Source Image

(b) Morphing of Facial Regions

Figure 2. Sample images representing (a) Replacement of Facial

Regions, (b) Morphing of Facial Regions.

RFR approach can be expressed as:

Ii,k = Ij,k (1)

where, Ii,k is the kth region of subject i and Ij,k is the

kth region of subject j. In order to replace the facial re-

gions, Viola-Jones face detector [39] is used to locate eyes,

mouth, and nose regions. Bounding box corresponding to

the located regions are used to crop the facial regions from

the source image and replaced with the input image. Fur-

ther, edges of the replaced regions are smoothen out using

Gaussian filtering. Figure 2(a) shows some samples gen-

erated using RFR approach. Three different categories of

tampered images are created using the RFR approach: (i)

eye full part, (ii) mouth full part, and (iii) nose full part,

representing the replacement of eyes, mouth, and nose re-

gions respectively.

Morphing of Facial Regions:

In this approach, eyes, mouth, and nose regions of an input

image are morphed with the source image. For morphing of

the facial regions, two different blending proportions, 0.4

Figure 3. Genuine and imposter score distribution of OpenFace

on Replacement of Facial Parts (RFR). (a) Score distribution of

original probe images. (b-d) Score distribution of eyes, mouth,

and nose replaced probe images respectively.

and 0.5 are used. Blending proportion refers to the percent-

age of features of the source image blended with the input

image. Similar to the RFR approach, let Ii be the input

image of subject i and Ij be the source image of subject

j. Morphing of Facial Regions (MFR) approach can be ex-

pressed as:

Ii,k = λIi,k + (1− λ)Ij,k (2)

where, Ii,k is the kth region of subject i and Ij,k is the

kth region of subject j. λ is the parameter to control the

blending proportion. Figure 2(b) shows some samples gen-

erated using MFR approach. Using this approach, six dif-

ferent categories of tampered images are created, namely,

(i) eye morph 0.4, (ii) mouth morph 0.4, (iii) nose morph

0.4, (iv) eye morph 0.5, (v) mouth morph 0.5, and (vi) nose

morph 0.5, representing morphing of eyes, mouth, and nose

regions using 0.4 and 0.5 blending proportions respectively.

3.2. Database and Protocol

Experiments are performed on the CMU Multi-PIE [16]

dataset. The dataset contains more than 75,000 images of

337 subjects. A subset of 226 subjects with 5 images per

subject is used, out of which 4 are used to generate the tam-

pered images and the remaining one image is used as the

gallery image. The subset contains only frontal face images

without glasses and proper illumination. As mentioned ear-

lier, nine different categories of tampered images are gener-

ated using RFR and MFR approach. Each of the nine cate-

gories contain 904 (226×4) images.

Images are divided into gallery and 10 different probe

sets. The gallery contains original images with a single im-



Table 1. Verification performance of OpenFace and VGG-Face in presence of visually similar tampered face images generated using RFR

and MFR approach. The values indicate Genuine Accept Rate (%) at 1% False Accept Rate. MFR-0.4 represent results on images generated

using 0.4 blending proportion and MFR-0.5 using 0.5 blending proportion.

Model
RFR MFR-0.4 MFR-0.5

Original Eye Mouth Nose Eye Mouth Nose Eye Mouth Nose

OpenFace 85.91 34.89 17.05 27.00 48.64 66.32 52.97 34.46 45.10 42.02

VGG-Face 99.97 53.59 94.97 66.90 92.02 99.77 97.53 70.91 99.60 90.98

Figure 4. Genuine and imposter score distribution of OpenFace

on Morphing of Facial Regions (MFR) with 0.5 blending propor-

tion. (a) Score distribution of original probe images. (b-d) Score

distribution of eyes, mouth, and nose morphed probe images re-

spectively.

age per subject. Each probe set contains tampered images

of a specific category resulting in nine different probe sets

with an additional probe set containing the original coun-

terpart of the tampered images. Each image in the probe set

is matched with all the images in the gallery. The result-

ing score matrix of size 904×226 is used to determine the

verification performance.

3.3. Effect of the Proposed Attack on Face Recog­
nition

OpenFace and VGG-Face networks are utilized to de-

termine the verification performance in the presence of

tampered face images generated using RFR and MFR ap-

proaches. Features are extracted using the pre-trained mod-

els of the aforementioned deep networks, and Euclidean dis-

tance is computed between the probe and gallery images

to generate the score matrix. Table 1 summarizes the ef-

fect of tampered face images on OpenFace and VGG-Face

networks. As shown in Table 1, at 1% False Accept Rate

(FAR), the Genuine Accept Rate (GAR) drops by approx-

(a)

(b)

Figure 5. ROC plot of (a) OpenFace (b) VGG-Face, under the ef-

fect of Replacement of Facial Regions and Partial Morphing tam-

pering artifacts.

imately 51%, 68%, and 58% corresponding to the replace-

ment of eyes, mouth, and nose regions respectively using
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Figure 6. Proposed Partial Face Tampering Detection (PFTD) network. The RGB stream captures the inconsistencies like contrast differ-

ence and the high pass filter stream captures the local inconsistencies in the eyes, mouth, and nose regions.

OpenFace. VGG-Face shows a similar sharp drop in GAR

corresponding to the replacement of facial parts. The gen-

uine and imposter score distributions are shown in Figure

3. It is observed that the overlap increases by replacing the

the facial regions. This, in turn, results in the sharp drop in

GAR. It is asserted that since eyes, mouth, and nose are the

most important and discriminative regions used by the face

recognition algorithms [37, 42], therefore tampering these

regions causes degradation in the performance.

Similar to the replacement of facial regions, morph-

ing of facial regions also degrades the verification perfor-

mance of the networks. The drop in verification perfor-

mance increases with increasing blending proportion. For

instance, the performance of OpenFace drops from 85.91%

to 48.64%, 66.32%, and 52.97% corresponding to the mor-

phing of eyes, mouth, and nose regions respectively us-

ing MFR-0.4 approach. The performance further drops to

34.46%, 45.10%, and 42.02% respectively using MFR-0.5

approach. However, the drop in GAR is not as significant

as the replacement of facial regions. The reason being the

presence of partial features of the genuine identity. The drop

in verification performance indicates that minor changes in

facial regions could mislead the existing systems and pose

new challenges to the recognition systems. Figure 4 shows

the genuine and imposter score distribution of OpenFace on

MFR using 0.5 blending proportion. The increase in over-

lap between genuine and imposter score distribution empha-

sizes the degradation in the performance of the existing sys-

tems. Figure 5 shows the Receiver Operating Characteristic

(ROC) Curve of OpenFace and VGG-Face under the effect

of RFR and MFR tampering artifacts. The drop in GAR in-

dicates that deep models are not robust to visually similar

tampered face images generated using RFR and MFR ap-

proaches. It is, therefore, necessary to detect such attacks.

4. Detection of Partial Face Tampering Attack

The previous section shows that partial face tampering

attack can degrade the performance of deep networks. This

demands the necessity of a defense network for detecting

such attacks to make the face recognition systems more ro-

bust towards tampering attacks. Therefore, a Partial Face

Tampering Detection (PFTD) network is proposed for the

detection of tampered samples. The performance of the

proposed PFTD network is evaluated for detecting partial

face tampering attack and compared with the existing deep

models. Further, the robustness of PFTD network is eval-

uated for detecting unseen tampering attacks. Section 4.1

gives the details of the proposed PFTD network, Section

4.2 presents the implementation details, Section 4.3 discuss

the experimental details and analysis, Section 4.4 shows the

ablation study and Section 4.5 evaluates the robustness of

the proposed PFTD network.

4.1. Proposed Partial Face Tampering Detection
Network

The proposed PFTD network uses a combination of raw

input and high pass filtered version of the input image for

the detection of tampered images. The network has two

streams namely, RGB stream and high pass filter stream.

The RGB stream helps to capture the inconsistencies at the

boundaries of the tampered regions or the contrast differ-

ence introduced in the image. On the other hand, the high

pass filter stream captures the inconsistencies in the local re-

gions such as eyes, mouth, and nose regions. The intuition

behind using the high pass filter stream is that the artifacts

introduced by the smoothing operations are better captured

in the residual domain [32].

Figure 6 shows the proposed PFTD network. In the pro-

posed network, VGG-Face is adopted by removing the top



layers within the two-stream network. As shown in Figure

6, weights are shared among the convolutional layers of the

two streams. Two dense layers are added corresponding to

each stream. The final layers of the two streams are added

and followed by a common dense layer. During training, the

first few layers of the VGG-Face network are frozen and the

remaining layers along with the fully-connected layers are

updated.

Let X be the training set with n number of images.

X = {X1,X2, ....Xn} (3)

where, each Xi belongs to one of the two classes, namely,

C1 representing the Original class and C2 representing the

Tampered class. Tampered class contains images created

using RFR and MFR approaches. Let XRGB

i
be the input

to the RGB stream and X
HPF

i
be the input to the high pass

filter stream. The output score of an input image Xi is rep-

resented as:

P (Cj |Xi) = f(XRGB

i ,XHPF

i ,W, b) (4)

where, P (Cj |Xi) is the probability of predicting image Xi

to class Cj . W is the weight matrix and b is the bias. The

network is trained with the following loss function:

Ltot = Lc + δLm (5)

where, Lc is the cross-entropy loss and Lm is the mean

squared error. δ is a constant and set as 2 during the ex-

periments. Lc is mathematically represented as:

Lc = −ylog(P ) + (1− y)log(1− P ) (6)

where, y is the binary indicator if class label Cj is the cor-

rect classification for input image Xi and P is the proba-

bility of predicting Xi to Cj . Lm is mathematically repre-

sented as:

Lm =
1

n

n∑

i=1

(yi − ŷi) (7)

where, yi is the true class and ŷi is the predicted class.

Cross-entropy loss performs well for classification task and

mean squared error give more penalty to the incorrect out-

puts due to the squared term. Therefore, a combination of

the two loss functions is used to train the network.

4.2. Implementation Details

During training of the proposed PFTD network, the last

five convolutional layers of the two streams followed by the

dense layers are trained with RMSprop optimizer, and the

learning rate is set to 0.00005. The network is trained for 50

epochs with a batch size of 128. ReLU activation function

[41] is used in the dense layers. Further, experiments are

performed on Tensorflow with Nvidia GTX 1080Ti GPU.

Table 2. Mean classification accuracy (%) of the existing and pro-

posed models for the task of detecting partial face tampering at-

tack.

Models
Classification

Accuracy

Existing

VGG16 [36] 54.06 ±0.01

VGG-Face [30] 71.44 ±0.02

OpenFace [4] 63.00 ±0.02

Fine-tuned

VGG16 70.33 ±0.05

VGG-Face 81.78 ±0.06

OpenFace 79.44 ±0.03

Proposed

RGB stream 87.61 ±0.02

High pass filter stream 82.00 ±0.02

PFTD 91.44 ±0.01

4.3. Experimental Details and Analysis

For experimental evaluation, five-fold cross-validation is

performed with four folds for training and one fold for test-

ing. The training set contains a total of 1440 images with

720 images belonging to the ‘original’ class and rest 720

to the ‘tampered’ class. ‘Tampered’ class contains an equal

proportion of all nine variations of tampered images men-

tioned in section 3.1. For evaluating the performance of

the existing deep networks, pre-trained models of VGG16

[36], VGG-Face [30], and OpenFace [4] are used. Fea-

tures extracted using these pre-trained deep models are used

to train a Support Vector Machine (SVM) [8]. First three

rows of Table 2 shows the mean classification accuracy with

the standard deviation of the five folds using the aforemen-

tioned deep models. From Table 2, it is observed that exist-

ing deep models do not perform well in detecting tampered

images. Among the existing models, VGG-Face performs

best. Further, existing models are fine-tuned on tampered

samples generated using RFR and MFR approaches. It is

observed from Table 2 that fine-tuning of the existing mod-

els enhances the performance. For instance, the classifica-

tion accuracy increases by 16.27%, 10.34%, and 16.44%

using fine-tuned VGG16, VGG-Face, and OpenFace mod-

els respectively. Fine-tuning helps the network to learn the

tampering specific discriminative features to distinguish the

tampered images from the original ones.

The performance of the proposed network is shown in

the last row of Table 2. Further experiments are performed

by ablating the high pass filter stream and ablating the RGB

stream. Seventh and eighth rows of Table 2 shows the re-

sults for the same. It is observed that the proposed PFTD

network improves the performance by 3.83% over the RGB

stream and 9.44% over the high pass filter stream. As men-

tioned earlier, RGB stream helps to capture the contrast

difference or the inconsistencies at the boundaries of the

tampered regions. On the other hand, the high pass filter

stream captures the local inconsistency in the eyes, mouth,

and nose regions. It is asserted that training using the pro-



(a) (b)

Figure 7. Score distribution of the original and tampered images using fine-tuned VGG-Face and proposed networks. (a) Fine-tuned

VGG-Face and (b) Proposed.

Table 3. Confusion matrix (%) summarizing the results of the pro-

posed model for the task of detecting adversarial face part tamper-

ing attack.

P
re

d
ic

te
d

Models
Ground Truth

Tampered Original

RGB

stream

Tampered 82.78 7.56

Original 17.22 92.44

High-pass

filter stream

Tampered 80.44 16.44

Original 19.56 83.56

PFTD
Tampered 89.67 6.78

Original 10.33 93.22

posed PFTD network captures the combined features which

in turn help to further improve the performance of the net-

work. Figure 7 shows the original and tampered score distri-

bution of the fine-tuned VGG-Face and the proposed model.

From Figure 7, it is observed that the proposed model re-

duces the overlap among the original and tampered classes

and separates the two classes.

Confusion matrix of the RGB stream, high pass filter

stream and proposed models is shown in Table 3. It is ob-

served that the proposed network decreases both the False

Reject Rate (FRR) and False Accept Rate (FAR). For in-

stance, the proposed network decreases FRR by 6.89% and

9.23% while FAR by 0.78% and 9.66% from the RGB

stream and high pass filter stream. Some misclassified im-

ages of both the classes are shown in Figure 8. The im-

proved performance of the proposed network indicates its

suitability towards the detection of the partial face tamper-

ing attack.

(a)

(b)

Figure 8. Sample images misclassified by the proposed Partial

Face Tampering Detection network. (a) Original images classified

as tampered. (b) Tampered images classified as original.

4.4. Ablation Study

To evaluate the effectiveness of the multi-loss function

used to train the proposed PFTD network, two different ab-

lation studies are performed. In the first experiment, the

network is trained only with the cross-entropy loss and the

performance of the network is evaluated. In the second ex-

periment, the network is trained with mean squared error.

Experiments with cross-entropy loss and mean squared er-

ror gives a classification accuracy of 90.61% and 89.88%

respectively. In order words the classification accuracy de-

grades by 0.83% and 1.56% respectively as compared to

the multi-loss function. This justifies the effectiveness of

the combined loss function for the problem statement.

4.5. Robustness Analysis

In a real-world scenario, it is not pragmatic to assume

knowledge about the type of tampering performed on an im-

age. Therefore, the defense network must be robust towards

unknown tampering attacks. In order to evaluate the per-



Table 4. Classification accuracy (%) of the proposed and fine-

tuned VGG-Face models in detecting unknown tampering attacks

(i.e., on DeepFake database [20]).

Models Low Quality High Quality

Fine-tuned VGG-Face 77.69 52.20

Proposed 93.69 71.17

formance of the proposed PFTD network, experiments are

performed on the DeepFake database [20]. The database

contains 640 tampered videos generated using Generative

Adversarial Network (GAN) [13]. Among the 620 videos,

320 are of high quality and the rest 320 are of low quality.

Experiments are performed on both types of videos using

the PFTD network trained on the tampered samples gener-

ated using the RFR and MFR approaches. For experimental

purpose, videos are converted to frames. The performance

of the proposed PFTD network is compared with the best

performing baseline fine-tuned model (i.e., VGG-Face) as

shown in Table 2. Table 4 summarizes the result on unseen

attack. From Table 4, it is observed that the proposed PFTD

network performs equally well for low quality unseen attack

videos. For high quality videos, the performance of both ex-

isting and PFTD is reduced, with PFTD performing better

than fine-tuned VGG-Face. This indicates the robustness of

the proposed network towards unknown tampering attacks.

5. Conclusion

Deep learning based face recognition systems are sus-

ceptible to digital attacks. In this research, partial face tam-

pering attack is proposed, and the effect is evaluated on two

state-of-the-art face recognition systems. The proposed at-

tack replaces or morph facial regions of an input image with

the source image. The images of same subjects are easily

identified by humans. However, it is experimentally ob-

served that existing deep face recognition systems are not

able to identify the images of same subjects when the pro-

posed partial face tampering attack is applied on the im-

ages. This in turn degrades the verification performance of

the existing face recognition algorithms. The answer to the

question asked in Figure 1 is given in Figure 9. As shown in

the Figure 9, red rectangular boxes indicates the tampered

regions.

Further, a Partial Face Tampering Detection network is

proposed for the task of detecting the proposed attack, and

the performance is compared with the baseline algorithms.

The proposed network uses a combination of RGB input

and a high pass filtered version of the input image to cap-

ture the inconsistencies among the original and tampered

images. The proposed network enhances the detection per-

formance by 20% and 9.66% from the best performing pre-

trained and fine-tuned model respectively. In the future, the

aim is to detect the tampered regions to develop robust al-

gorithms for mitigation.

Figure 9. Images marked with red rectangular box are the tam-

pered images with the replaced region inside the box.
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