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Abstract

While deep learning is a valuable tool for solving many

tough problems in computer vision, the success of deep learn-

ing models is typically determined by: (i) availability of suf-

ficient training data, (ii) access to extensive computational

resources, and (iii) expertise in selecting the right model and

hyperparameters for the selected task. Often, the availabil-

ity of data is the hard part due to compliance, legal, and

privacy constraints. Cryptographic techniques such as fully

homomorphic encryption (FHE) offer a potential solution

by enabling processing on encrypted data. While prior work

has been done on using FHE for inferencing, training a

deep neural network in the encrypted domain is an extremely

challenging task due to the computational complexity of the

operations involved. In this paper, we evaluate the feasibility

of training neural networks on encrypted data in a com-

pletely non-interactive way. Our proposed system uses the

open-source FHE toolkit HElib to implement a Stochastic

Gradient Descent (SGD)-based training of a neural net-

work. We show that encrypted training can be made more

computationally efficient by (i) simplifying the network with

minimal degradation of accuracy, (ii) choosing appropriate

data representation and resolution, and (iii) packing the data

elements within the ciphertext in a smart way so as to mini-

mize the number of operations and facilitate parallelization

of FHE computations. Based on the above optimizations,

we demonstrate that it is possible to achieve more than 50×
speed up while training a fully-connected neural network

on the MNIST dataset while achieving reasonable accuracy

(96%). Though the cost of training a complex deep learn-

ing model from scratch on encrypted data is still very high,

this work establishes a solid baseline and paves the way for

relatively simpler tasks such as fine-tuning of deep learning

models based on encrypted data to be implemented in the

near future.

1. Introduction

Deep neural networks are a powerful tool with a wide

range of applications, from speech to vision and much more.

Solutions that use deep neural networks consists of two main

phases, namely training and inference: After appropriate

datasets are identified and curated, a network architecture is

established, and then the identified corpus of data is used to

train it, i.e., to learn the weights for the network. Once the

network weights are stable and provide meaningful results

for the application at hand, the network can be used for

inferencing, where it renders predictions on new data. While

the training time may run into days, inferencing is expected

to be fast.

There are many scenarios where the data needed for train-

ing deep neural networks is extremely sensitive. For exam-

ple, credit card transaction information is available with the

credit card company but not for external developers. Sim-

ilarly healthcare data related to patients is available in a

hospital but not for a researcher to find patterns in the data

for understanding cancer progression. Moreover, privacy

concerns (such as the new European data privacy regulation

GDPR) may restrict the availability of data. The data owner

may often lack the knowledge and proficiency to build deep

learning models on their own to derive the benefits from

their data. On the other hand, confidentiality and privacy

constraints prevent sharing of the data with external service

providers.

Cryptographic techniques for fully homomorphic encryp-

tion (FHE) offer an appealing approach for resolving the

conundrum between usefulness and sensitivity of data. How-

ever, the current wisdom is that such techniques are too slow

to handle the training of commonly used deep neural net-

work models. The original proposal of fully homomorphic

encryption was touted as a revolutionary technology [11],

with potential far-reaching implications to cloud computing

and beyond. Though only a theoretical plausibility result at

first, the last decade saw major algorithmic improvements

(e.g., [6, 5, 13]), resulting in many research prototypes that

implement this technology and attempt to use it in different

settings (e.g., [4, 12, 17, 8, 14, 19], among others).
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In this work, we propose using FHE to enable training

neural network models on encrypted data. This would allow

the users to encrypt the data using their private (secret) key

and share the encrypted data to the service provider. The

service provider can train the model without ever seeing

the underlying data. Since the resulting model will also be

encrypted, the service provider learns nothing about the data

or the learned model parameters. Moreover, the resulting

model is useful only to the users with access to the private

key (used for encrypting the training data) and cannot be

shared with anyone else. Thus, the proposed approach is

applicable to scenarios where the data owner wishes to out-

source the deep learning computations to an external service

provider, who has the expertise (e.g., suitable model archi-

tecture) and computational resources to execute the learning

task, while ensuring that the service provider does not derive

any undue benefits from the data or the model.

Our main contributions in this paper are three fold:

• To the best of our knowledge, this is the first paper

to attempt training a deep neural network in a non-

interactive way on data encrypted using fully homomor-

phic encryption. Given that this is a hitherto unexplored

problem setting, our primary objective is to identify the

critical bottlenecks and establish a solid baseline.

• In the context of distributed neural network training,

several studies have shown that errors introduced due to

fixed point encodings are tolerable. However, none of

these studies perform the complete training process in

the fixed-point domain. They typically employ floating

point operations for some intermediate computations

and truncate them. While such tricks are possible in

interactive protocols previously attempted in the lit-

erature, is not feasible for non-interactive training ad-

dressed in our work. In the absence of careful parameter

selection for data encoding, the errors can quickly ac-

cumulate (over multiple layers and training iterations)

and prevent convergence. Thus, our second contribu-

tion is to demonstrate that it is possible to fully train a

neural network in the fixed-point domain and achieve

convergence and reasonable accuracy. Without this re-

sult, non-interactive FHE training is not possible at all.

At the same time, this result is independent of FHE,

and may have its own applications (e.g., more efficient

training of neural networks in plaintext).

• Our final contribution relates to speeding up FHE com-

putations through smart implementation of ciphertext

packing. While ciphertext packing is a well-known

technique in FHE, we use it intelligently in this work

both to minimize the number of bootstrapping opera-

tions required and to enable the parallelization of com-

putations at each neuron, thereby providing significant

reduction in the computational complexity.

2. Related Work

While privacy-preserving machine learning has been stud-

ied for nearly twenty years [21, 1], not much work has been

done on specifically using homomorphic encryption in the

context of neural networks. The only noteworthy prior work

that we found using non-interactive homomorphic encryp-

tion for neural networks is the Crypto-Nets work of Gilad-

Bachrach et al. [14]. That work demonstrated a carefully-

designed neural network that can run the inference phase

on encrypted data, with 99% accuracy on the MNIST op-

tical character recognition tasks, achieving amortized rate

of almost 60,000 predictions/hour. More recently, protocols

for secure face matching [3] and secure k-nearest neighbor

search [27] have been proposed based on fully homomorphic

encryption.

There has been more work about using homomorphic en-

cryption in conjunction with interactive secure-computation

protocols in the context of neural networks. An early work

along these lines is due to Barni et al. and Orlandi et al.

[2, 25], that combined additively-homomorphic encryption

with an interactive protocol, and were able to run the infer-

ence part of a small network in about ten seconds. Many

more interactive protocols for the inference phase were sug-

gested recently, including SecureML of Mohassel and Zhang

[23], MiniONN of Liu et al. [22], Chameleon of Riazi et al.

[26], and GAZEELE of Juvekar et al. [28]. The last of these

can perform the inference phase of MNIST as fast as 30ms,

and the CIFAR-10 benchmark in just 13 seconds.

All these works address only the inference phase of using

the network, none of them addresses the training phase. In

fact we were not able to find any prior work that deals with

private training of neural networks. Presumably, this is due

to the perception that trying to train homomorphically will

be so slow as to render it unusable. Furthermore, training

complex machine learning models sometimes requires con-

ditionals (comparison and selection), which until recently

were considered infeasible using only homomorphic encryp-

tion [7]. In the current work, we take the first step toward

dispelling the slowness perception, showing that even non-

interactive homomorphic encryption can be used for training,

in some restricted cases.

Some prior work described how to preform training

and inference for other types of models on encrypted data,

specifically linear-regression models [24] and even logistic-

regression models [29, 15, 19, 18, 10].

2.1. Fully Homomorphic Encryption

Nearly all contemporary FHE schemes come with two

components: The basic underlying scheme is somewhat

homomorphic (SWHE), where the parameters are set de-

pending on the complexity of the required homomorphic

operations, and the resulting instance can only support com-

putations up to that complexity. The reason is that ciphertexts



are “noisy”, with the noise growing throughout the compu-

tation, and once the noise grows beyond some (parameter-

dependent) threshold the ciphertext can no longer be de-

crypted. This can be solved using Gentry’s bootstrapping

technique (at the cost of relying on circular security). In this

technique the scheme is augmented with a recryption oper-

ation to “refresh” the ciphertext and reduce its noise level.

The augmented scheme is thus fully homomorphic(FHE),

meaning that a single instance with fixed parameters can

handle arbitrary computations. But FHE is expensive, as the

computation must be peppered with expensive recryption

operations. So, it is often cheaper to settle for a SWHE

scheme with larger parameters (that admit larger noise).

Indeed, with very few exceptions, almost all prior at-

tempts at practical use of HE used only the SWHE com-

ponent, fixing the target computation and then choosing

parameters that can handle that computation and no more.

But SWHE has its limits: as the complexity of the function

grows, the SWHE parameters become prohibitively large. In

this work, we set out to investigate the practical feasibility

of using FHE to compute a complex non-linear optimization

function such as neural network training.

3. Proposed Solution

In this section, we describe the deep learning model and

the components of the solution needed to implement model

learning in the encrypted domain using fully homomorphic

encryption. In this work, we primarily focus on supervised

deep learning, where the broad objective is to learn a non-

linear mapping between the inputs (training samples) and the

outputs (class labels of the training samples). The learning

scenario considered in this work is illustrated in Figure 1.

Suppose that a data owner having access to private training

data would like to outsource the model learning to a service

provider, while preserving the confidentiality of the training

data. The data (including class labels) is encrypted is by the

data owner and shared with the service provider, who defines

the model architecture (denoted by function gθ(.)). The goal

is learn the parameters (θ) in order to minimize a pre-defined

loss function L. The service provider learns the model in

the encrypted domain and returns the model architecture

along with the encrypted model parameters to the data owner.

The data owner can decrypt the model parameters and use

them for inferencing. Alternatively, the service provider

may retain the encrypted model parameters and use them to

perform inferencing on the encrypted test (query) samples

provided by the data owner. In the latter scenario, the service

provider returns the encrypted inference result to the data

owner, who can decrypt the result.

3.1. Deep Learning Model

Deep learning models are typically implemented as multi-

layer neural networks, which allows higher-level abstract

features to be computed as non-linear functions of lower-

level features (starting with the raw data). Figure 2 shows a

typical neural network with two hidden layers. The output

of each node in the network (also known as a neuron) is

computed by applying a non-linear activation function to the

weighted average of its inputs, which includes a bias term

that always emits value 1. The output vector of neurons in

layer ℓ (ℓ = 1, 2, · · · , L) is obtained as:

aℓ = f(W ℓaℓ−1), (1)

where f is the activation function, W ℓ is the weight matrix

of layer ℓ, and L is the total number of layers in the network.

Given the training data {xi, yi}
N
i=1

, the goal is to learn

the parameters (weight matrices) in order to minimize a pre-

defined loss function L. This is a non-linear optimization

problem, which is typically solved using variants of gradi-

ent descent. Gradient descent starts with a random set of

parameters, computes the gradient of the loss function L at

each step, and updates the parameters so as to decrease the

gradient. In this work, we use the well-known stochastic

gradient descent (SGD) algorithm [30], where the gradients

are averaged over a small (randomly sampled without re-

placement) subset (mini-batch) of the whole training dataset.

One full iteration over the entire training set is referred to

as the epoch. The above gradient update step is repeated

until convergence to a local optimum or until the maximum

number of epochs is reached. The update rule for SGD for

weight matrix W ℓ is

W ℓ := W ℓ − α
∂LB

∂W ℓ

, (2)

where LB is the loss function computed over the mini-batch

B and α is the learning rate. The error or loss value at the

output layer is computed based on the forward pass, while

backpropagation is used to propagate this error back through

the network.

3.2. Homomorphic Implementation of Deep Learn-
ing

We use the open-source fully homomorphic encryption

library called HElib [16] as our primary toolkit to implement

the model learning procedure. Devising a homomorphic

computation of this procedure brings up many challenges.

Here we briefly discuss some of them.

Implementing the basic homomorphic operation: Most

of the operations in model learning are linear, involving addi-

tions and multiplications. The current version of HElib that

we use supports addition and multiplication operations of

arbitrary numbers in binary representation, using encryption

of the individual bits. This means that we use the underlying

homomorphic encryption scheme with native plaintext space
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Figure 1. A typical scenario for model learning based on encrypted data.

Figure 2. A typical neural network with two hidden layers. Here, the

black circles denote bias nodes that always emits value 1. Weight

matrices W ℓ determine the contribution of each input signal to the

activation function at a node.

modulo 2, which we use to encrypt the bits of the input.

While computing the addition and multiplication operations

homomorphically is mostly a matter of implementing text-

book routines (e.g., carry look ahead for addition), in this

context we are extremely sensitive to the computation depth,

which is not typical in other implementations. Therefore,

several optimizations are required to efficiently implement

these operations and these optimization tricks are described

in [9].

Two key steps in the algorithm require computing “com-

plex” functions (such as exponentiation, etc.). These two

steps are (i) computation of the activation function f and

its derivative, and (ii) computation of the loss function L
and its derivative. The “natural” approaches for computing

these functions homomorphically, are either to approximate

them by low-degree polynomials (e.g., using their Taylor

expansion), or by pre-computing them in a table and per-

forming homomorphic table lookup. Namely, for a function

f that we need to compute, we pre-compute (in the clear) a

table Tf such that Tf [x] = f(x) for every x in some range.

Subsequently, given the encryptions of the (bits of) x, we

perform homomorphic table lookup to get the (bits of) value

Tf [x]. Following Crawford et al. [10], we adopt the sec-

ond approach here. This is faster and shallower when it is

applicable, but it can only be used to get a low-precision

approximation of these functions. In order to avoid the use

of too many table lookups, we will use sigmoid activation

function and quadratic loss function, which have simpler

derivatives.

Parameters and Bootstrapping: We adopted the param-

eter setting used in [10], which means that the “produc-

tion version” of our solution uses the cyclotomic ring

Z[X]/(Φm(X)), with m = 215 − 1, corresponding to lat-

tices of dimension φ(m) = 27000. This native plaintext

space yields 1800 plaintext slots, each holding a bit. (Each

slot can actually hold an element of GF (215), but we only

use the slots to hold bits in our implementation). The other

parameters are chosen so as to get security level of about 80

bits, and this parameter setting allows bootstrapping, so we

can evaluate the deep circuits that are required for training.

Most of our development and testing was done on a toy

setting of parameters, with m = 210 − 1 (corresponding

to lattices of dimension φ(m) = 600). For that setting we

have only 60 plaintext slots per ciphertext (each capable of

holding an element of GF (210), but only used to hold a

single bit).

3.3. Data Representation and Encoding

All the operations in the proposed solution are applied to

integers in binary representation (i.e., using encryption of

the individual bits).



Input & Output: We use 8-bit signed integer representa-

tion for the inputs to the network. The outputs of the network

are the weight matrices and each element in the weight ma-

trix is represented as a 16-bit signed integer. To deal with

negative integers, we use the 2s-complement representation

wherever necessary.

Ciphertext packing: We set the mini-batch size during

training to be the same as the number of slots in the plaintext

space. Note that for our final implementation, m = 215 − 1
and the number of slots is 1800. The ciphertexts are rep-

resented as 2-dimensional arrays, i.e., encryptedInput[i][0]

contains the encryption of the least significant bits of all the

1800 numbers in the i-th dimension of the input. Similarly,

encryptedInput[i][7] contains the encryptions of the most

significant bits.

Matrix Multiplication: One of the critical and time-

consuming operations in the encrypted domain, especially

in the context of mini-batch SGD, is matrix multiplication.

Since computation of dot products is not straightforward due

to the way in which the inputs are packed in a ciphertext,

we adopt the following simple approach for matrix mul-

tiplication in the encrypted domain. Suppose A = [aij ]
and B = [bjk] are two matrices, where i = 1, · · · , di,
j = 1, · · · , dj and k = 1, · · · , dk. Let C = [cik] be the

product of A and B. Then,

ci· =

dj∑

j=1

αijbj·, (3)

where ci· is a ciphertext packing all the elements in the

ith row of C, αij is a ciphertext containing the encryption

of value aij in all the slots, and bj· is a ciphertext packing

all the elements in the jth row of B. Thus, each matrix

multiplication involves di × dj ciphertext multiplications.

While there are more efficient methods of ciphertext pack-

ing such as diagonal order packing for generic matrix mul-

tiplication tasks, those methods are not suitable for neural

network learning. This is because multiple matrix multipli-

cations have to be executed sequentially during the forward

and backward training passes, and sophisticated packing ap-

proaches require expensive re-ordering of elements within

a ciphertext after each network layer. This eventually leads

to more bootstrapping operations, which further slows down

the FHE computations.

4. Results

In this section, we describe the dataset used in our ex-

periment as well as the results in terms of accuracy and

timing.

4.1. Dataset and Neural Network Parameter Selec-
tion

We conduct experiments on the standard MNIST bench-

mark dataset [20] for handwritten digit recognition consist-

ing of 60,000 training examples and 10,000 test examples.

Each example is a 28 × 28 gray-level image, with digits

located at the center of the image. The architecture of the

neural network used in this work is shown in Figure 4, which

is simply a 3-layer fully connected network with sigmoid

activation function. We normalize all the samples (both

training and test) by subtracting the average and dividing by

the standard deviation of training samples. This normalized

image is finally vectorized to obtain a d0-dimensional repre-

sentation, which forms the input to the neural network, i.e,

xi ∈ Rd0 .

Since the objective is to classify the input as one of 10

possible digits within [“0”-“9”], we set the size of the out-

put layer as 10. The desired output is represented as a

10-dimensional vector yi = [yi,0, · · · , yi,9], with value

yi,j = 1 if the sample belongs to jth class and 0 otherwise.

We use a quadratic loss function at the output during training,

i.e., L = (||aL − yi||
2)/2. During inferencing, the input

sample is assigned to the class whose corresponding neuron

has the highest activation.

We consider two different sets of parameters for the above

3-layer neural network. Firstly, we present the full 784-

dimensional (28× 28) input to the neural network (denoted

as NN1), which contained 128 and 32 neurons in the two

hidden layers. Consequently, the number of parameters to be

learned is 104, 938 (= (128×785)+(32×129)+(10×33)).
Since learning such a large number of parameters is currently

beyond the reach of most FHE schemes, we also consider

a much smaller network (denoted as NN2) with d0 = 64,

and containing 32 and 16 neurons in the two hidden layers

(see Figure 4). This is achieved by cropping only the central

24× 24 pixels of each image and rescaling the image by a

factor of (1/3) using bicubic interpolation to obtain a 8× 8
pixel representation. Figure 3 shows some examples of the

raw and processed MNIST images. For the latter network,

the number of parameters to be learned is only 2, 778 (=
(32× 65) + (16× 33) + (10× 17).

The weights of the network are randomly initialized by

sampling from a Gaussian distribution with zero mean and

a standard deviation of 0.1. Though quadratic loss function

and sigmoid activation function may not be optimal choices

for the selected application, we nevertheless employ them

to avoid the need for complex table lookups during back-

propagation. Note that the sigmoid activation function is

given by f(z) = (1 + exp(−z))−1 and its derivative can

be easily computed as f ′(z) = f(z)(1− f(z)), without the

need for any rational divisions. Similarly, the derivative of

the quadratic loss function is simply (aL − yi). Thus, the

entire training process requires the computation of only one



Figure 3. Samples from the MNIST training dataset (a) (28 × 28) pixel representation before any preprocessing and (b) (8 × 8) pixel

representation after cropping and rescaling (displayed with the same size as the top row for comparison).

nn.Sequential{

[input -> (1) -> ... -> (7) -> output]

(1): nn.Reshape(64)

(2): nn.Linear(64->32)

(3): nn.Sigmoid

(4): nn.Linear(32->16)

(5): nn.Sigmoid

(6): nn.Linear(16->10)

(7): nn.Sigmoid

}

Figure 4. Neural network architecture (NN2) used for MNIST

dataset with 64 inputs. Cropping of boundary pixels and rescaling

using bicubic interpolation are used to reduce the original MNIST

images to (8 × 8) pixels. The cropping and rescaling operations

are performed in the plaintext domain and the 64 inputs are then

encrypted using the FHE scheme.

complex function, namely, the sigmoid function, which is

implemented as a 8-bit table lookup as described in Section

3.2. However, it must be noted that the data owner needs to

encrypt the look-up table required by the service provider.

Therefore, in principle, other activation functions such as

ReLU can indeed be implemented using lookup tables in the

encrypted learning context.

4.2. Classification Accuracy

Both the networks (NN1 and NN2) described in the pre-

vious section are trained using mini-batch SGD with a batch

size of 60 samples. When these networks are trained for

50 epochs using full floating point operations, they achieve

an overall classification accuracy of 97.8% (for NN1) and

96.4% (for NN2). The evolution of test accuracy over mul-

tiple epochs is shown in Figure 5. This shows that reason-

able classification accuracy can be achieved on the MNIST

dataset with much fewer number of parameters.

Next, to estimate the classification accuracy of the pro-

posed FHE-NIT solution, we quantize all the values into

fixed-point signed integers. As described earlier, 8-bit rep-
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Figure 5. Classification accuracy of the proposed neural networks

on the MNIST test dataset.

resentations are used for all the input and loss values, while

16-bit representations are used for the weights and gradients.

It can be observed from Figure 5 that the above quantized

network (trained in the plaintext domain) can achieve a clas-

sification accuracy of 96%. Finally, we verify the gradient

computations in the encrypted domain for a single mini-

batch of data. Using the exact same weight initializations

and sample set in both the plaintext and encrypted domains,

we confirmed that the computations performed in both the

domains are identical. Thus, it can be claimed that the clas-

sification accuracy of the model learned using homomorphi-

cally encrypted data will be the same as that of the quantized

version of NN2, which is 96%.



4.3. Computational Complexity

Testing of encrypted domain processing was done on

an Intel Xeon E5-2698 v3 (which is a Haswell processor),

with two sockets and sixteen cores per socket, running at

2.30GHz. The machine has 250GB of main memory, the

compiler was GCC version 7.2.1, and we used NTL version

10.5.0 and GnuMP version 6.0.

We primarily worked with the cyclotomic ring

Z[X]/Φm(X) with m = 210 − 1 = 1023 (so φ(m) = 600)

for most of the development tasks. Since these parameters

do not provide sufficient security, we also attempted to com-

pare the time complexity when m = 215 − 1 = 32767
(so φ(m) = 27000), which corresponds to about 80 bits of

security.

The computational complexity of executing the SGD al-

gorithm (including both the forward path and back propaga-

tion) in the FHE domain based on one mini-batch of size 60

training samples is summarized in Table 1. There are four

main factors that decide the computational complexity of the

training algorithm in the encrypted domain.

• Size of the neural network: As described in Section

4.1, we consider two different neural networks, namely,

NN1 and NN2. While the full-scale network NN1 has

954 nodes (784 + 128 + 32 + 10), the reduced-scale

network NN2 has only 122 nodes (64 + 32 + 16 + 10).

From the first two rows of Table 1, we observe that

reducing the network size speeds up the computations

by approximately a factor of 4.

• Ciphertext packing: We consider two different ap-

proaches for ciphertext packing. In the naive ap-

proach, we packed different dimensions of a input

sample/weight vector into a single ciphertext. In the

optimized approach, we packed the same dimension

of multiple input samples into a single ciphertext and

replicate each weight parameter into all the slots of a

weight vector. Our experiments indicate that the op-

timized packing technique reduces the computational

time by a factor of 1.5 on a single threaded machine

(see rows 2 and 3 of Table 1). For example, training

(one mini-batch) the reduced network NN2 using the

optimized packing takes 9 hours and 24 minutes on a

single-threaded machine, compared to approximately

14 hours required by the naive approach.

With optimized packing, almost 80% of the computa-

tional time is consumed by the three matrix multiplica-

tion tasks, namely, computation of the weight average

input to a layer (requires multiplication of the input to a

layer with its corresponding weight matrix), loss propa-

gation to the previous layer (requires multiplication of

the loss at the previous layer with the weight matrix),

and the gradient computation. Furthermore, one com-

plete mini-batch requires 6 bootstrapping operations

(one after each layer during both the forward pass and

backpropagation).

• Number of threads: Multi-threading was very effec-

tive in reducing the computation time because it is well-

known that the weight updates in SGD are independent.

In other words, it is possible to process each neuron

independently and in parallel. Even within a single neu-

ron, the multiplication operations across multiple input

dimensions can be parallelized. From Table 2, it can

be observed that by parallelizing computations within

a single neuron across multiple threads, it is possible

to achieve almost linear speedup. Specifically, with 30
threads we observed about a 15× speed-up (see rows 2

and 4 of Table 1), which means that the execution of one

mini-batch would take only 40 minutes for m = 1023.

Note that such a linear speed-up is not possible without

the optimized ciphertext packing technique. The naive

packing approach speeded-up the computation by only

a factor of two even with 30 threads (see rows 3 and 5

of Table 1).

• Security parameter: For m = 1023, a single thread

execution of one mini-batch of size 60 training samples,

required approximately 9 hours and 24 minutes. It was

also observed that when m = 32767, almost all the

operations slowed down by approximately 40-60 times

on a single threaded machine. However, it must be

noted that m = 32767 can accommodate 1, 800 slots

as compared to 60 slots for m = 1023. Thus, it is

possible to compensate for the increased computational

complexity by packing more input samples into a single

ciphertext and reducing the number of batches to be

processed.

Further improvements: We consider the results above as

an encouraging start. We would like to emphasize that this is

just a first attempt, and many other avenues of optimizations

are still available. In particular, we only started exploring

the options for batching/packing. We currently batch the

inputs, but maintain a separate ciphertext for each weight in

the network.

5. Conclusions and Future Work

Due to privacy and compliance requirements, users with

large amounts of data can not make use of deep learning

methods available as a service. We have made the first at-

tempt to build a fully homomorphic deep learning service

for training. The selection of representation, scaling, and key

strength impacts both the accuracy and computational com-

plexity of learning. After properly choosing our parameters,

we demonstrate the results on MNIST dataset. It must be



Table 1. Computational time taken for executing one complete mini-batch (containing 60 training samples) of the SGD algorithm in the

FHE domain with m = 1023.

S. No. Network Size Ciphertext Packing Method No. of CPU Threads Computational Time

1 NN1 Optimized 1 ≈ 1.5 days

2 NN2 Optimized 1 9 hours 24 minutes

3 NN2 Naive 1 ≈ 14 hours

4 NN2 Optimized 30 40 minutes

5 NN2 Naive 30 ≈ 6.5 hours

Table 2. Time taken (in seconds) to process one neuron at the first

layer.

# threads: 1 4 8 16 30

m = 1023 213 60 33 20 14

m = 32767 - - - - 919

highlighted that the current implementation of FHE training

is still extremely slow for practical use. We estimate that

training in the encrypted domain is still about four or five

orders of magnitude slower than training in the plaintext

domain.

It is worth mentioning that implementation of the pro-

posed system is based on HElib, authored by the inventors

of FHE and the entire system was carefully developed after

in-depth consultation with the pioneers of FHE technology.

Because of these reasons, the system is likely to serve as

a credible baseline for the research community to calibrate

their related contributions. Our baseline implementation,

which we can share with the community, is expected to fos-

ter further research and innovation among the researchers

interested in problems jointly spanning pattern recognition

and cryptography. In summary, we believe we have created

the alphabet and words for learning in encrypted domain for

others to write their literary work.
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