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Abstract

Generative Adversarial Networks (GANs) are one of the

well-known models to generate synthetic data including im-

ages, especially for research communities that cannot use

original sensitive datasets because they are not publicly ac-

cessible. One of the main challenges in this area is to pre-

serve the privacy of individuals who participate in the train-

ing of the GAN models. To address this challenge, we intro-

duce a Differentially Private Conditional GAN (DP-CGAN)

training framework based on a new clipping and perturba-

tion strategy, which improves the performance of the model

while preserving privacy of the training dataset. DP-CGAN

generates both synthetic data and corresponding labels and

leverages the recently introduced Rényi differential privacy

accountant to track the spent privacy budget. The experi-

mental results show that DP-CGAN can generate visually

and empirically promising results on the MNIST dataset

with a single-digit epsilon parameter in differential privacy.

1. Introduction

Recent studies have shown that deep neural networks

(DNNs) can achieve state-of-the-art performance in vari-

ous applications such as image recognition [25, 30], nat-

ural language processing [9], speech recognition [26, 20]

and complex video games [41, 34]. It has not only achieved

exceptional accuracy in different tasks but also surpassed

human-level performance in some of them [41, 24]. DNNs

have also been leveraged in health-related studies ranging

from medical images [22, 39, 38, 21, 4] to human genome

analyses [3, 29, 45].

Generative Adversarial Networks (GANs) [19] form a

well-researched class of generative models [27, 5, 31, 6].

They can learn the distribution of the training data and gen-

erate synthetic data with a distribution very similar to the

distribution of the training data. GAN models are particu-

larly used by research communities to generate the synthetic

datasets in cases where they cannot directly access sensi-

tive datasets. However, using sensitive data to train GAN

models raises privacy concerns for participating individu-

als. Indeed, recent works show that most machine learning

models, including GAN models, are vulnerable to a slew of

attacks (from model inversion attacks to membership infer-

ence attacks) that can expose significant information about

training data [40, 23, 17, 46].

Differential Privacy (DP) [10, 11] is a common technique

to protect the privacy of ML models trained on sensitive

data. However, in spite of its popularity, there have been

very few recent studies on training GANs in a differentially

private way [43, 18, 44, 7, 8]. The standard procedure lever-

aged by these recent studies to enforce DP is to first clip the

l2 norm of the gradients of the sum of the discriminator’s

loss on real and fake data and then add Gaussian noise to the

clipped gradients. To keep track of the privacy budget, they

typically use the Moment Accountant (MA) technique [1].

One of the limitations of these recent works is that they fo-

cus exclusively on generating synthetic data (e.g., images)

without corresponding labels – an aspect that renders the

synthetically generated data useless for supervised learn-

ing applications. More importantly, training high quality

GANs with a single digit epsilon parameter (for differential

privacy) has been absent so far even for the simplest of all

tasks: generating MNIST-like digits.

In this work, we propose a Differentially Private Con-

ditional GAN (DP-CGAN) training framework, which can

preserve the privacy of conditional GAN models using

DP [10, 11]. The main idea in DP-CGAN is that it clips the

gradients of discriminator loss on real and fake data sepa-

rately, which allows the designer to better control the sensi-

tivity of the model to real (sensitive) data. Moreover, DP-

CGAN can generate not only synthetic data but also corre-

sponding labels. Further, DP-CGAN employs the newly in-

troduced Rényi Differential Privacy (RDP) Accountant [32]



to track the privacy budget. In comparison to the classical

MA technique, RDP accounting provides a tighter bound on

the privacy budget, allowing for the addition of less noise

without compromising the privacy guarantees.

DP-CGAN framework has three main components: con-

ditional generator network, differentially private discrimi-

nator network, and privacy accountant. At each step of the

training process, the discriminator network is trained in a

differentially private manner in which the gradients of loss

on real and fake data are clipped separately. Afterwards, the

sum of these two set of clipped gradients are computed and

noised by adding Gaussian noise to them. Then, the privacy

accountant, which is based on the RDP accountant [32], is

updated by accumulating the spent privacy budget at each

step. Next, the generator network is trained with a non-

private optimizer. At any given point in time, if the privacy

budget exceeds the target one, the training process is halted

and the conditional generator network is ready for the cre-

ation of synthetic data and labels.

We make the following contributions in this work:

• We propose DP-CGAN based on a new gradient clip-

ping and noising procedure, which improves the per-

formance compared to the standard procedure to pre-

serve privacy. To the best of our knowledge, DP-

CGAN is the first differentially private GAN frame-

work than can generate both the synthetic data and cor-

responding labels with promising results. It leverages

the recently introduced RDP accountant and Tensor-

Flow Privacy1 package (by Google) to keep track of

the privacy budget.

• We provide preliminary experimental results showing

that DP-CGAN can generate good visual and empiri-

cal results on MNIST dataset with single-digit epsilon

parameter. This suggests that our work can be viewed

as the first stepping stone towards training high quality

GANs with strong DP guarantees.

• We use the differnetially private conditional genera-

tive model to create synthetic data and labels which

are used (together) in the training of machine learning

models. We test the accuracy of the learned models on

real data and show that they perform well. We get an

area under the ROC (AUROC) of 87.57% using DP-

CGANs compared to 92.17% if we were to train the

classifier directly on real data.

The remainder of the paper is organized as follows: Sec-

tion 2 provides a background on GAN, CGAN, and dif-

ferential privacy. Section 3 overviews the previous related

work in the area of preserving the privacy of deep learning

models. Section 4 describes the DP-CGAN framework in

1https://github.com/tensorflow/privacy

detail. Section 5 provides the experimental results and Sec-

tion 6 concludes the paper with a brief conclusion.

2. Preliminaries

In this section, we review Generative Adversarial Net-

works(GAN), Conditional Generative Adversarial Net-

works(CGAN) and differential privacy concepts used in

DP-CGAN.

2.1. GAN and CGAN

Nowadays, there is a great interest in using generative

models to create synthetic data that looks like the original

one. Generative Adversarial Network(GAN) proposed by

Goodfellow et. al [19] is one the primary methods to learn

generative models for images. GANs consist of two main

components: a generator and a discriminator. The genera-

tor takes noise as input and generates synthetic data by cap-

turing the original data distribution while the discriminator

takes the synthetic data (generator’s output) as well as orig-

inal data (training set) and learns to discriminate between

the real (training) and fake (synthetic) data distribution. The

discriminator returns two possible values as output which is

the assigned score to a test sample representing whether it

is real or fake data. The generator and discriminator always

try hard to be as accurate as possible and the more the gen-

erator improves the quality of the fake data, it gets harder

for discriminator to distinguish the difference between the

original and fake data. These two components always play

a game and are trained simultaneously.

Suppose pz(z) is the probability distribution that random

noise z is taken from, G(z) is the generator network that

takes the random noise z as input and D(x) is the discrim-

inator network that takes the generator’s output as well as

the input data x taken form the distribution pdata(x). The

game that the generator and discriminator play to achieve a

trade-off, encapsulates in the following objective function,

V (D,G), of a minimax game:

min
G

max
D

V (D,G) =

Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))]

(1)

Conditional GAN [33] is an extension of GAN in which

both generator and discriminator are conditioned on some

side information, “y” that can be any kind of extra infor-

mation like class labels or data from other modalities. The

objective function of a minimax game for CGAN is as the

following:

min
G

max
D

V (D,G) =

Ex∼pdata(x)[log(D(x|y))] + Ez∼pz(z)[log(1 −
D(G(z|y))))]

(2)



2.2. Differential Privacy

Differential privacy [10, 11] is a mathematical frame-

work to express the level of privacy preservation of

individuals in a statistical databases. It provides strong

privacy guarantees for algorithms on aggregate databases.

Intuitively, in differential privacy, the user should learn

about population as a whole but not about particular

individual. In other words, if we replace individual I
with another random member of the population, the user

should learn the same thing about the dataset in presence

or absence of individual I . Differential privacy has become

an actual standard in data protection in both academia and

industry [35] (Apple [2], Google [42] and US Census [37]).

Definition 1. (differential privacy) A randomized mech-

anism M over a set of databases D, satisfies (ǫ, δ)-
differential privacy if for any two adjacent databases d, d

′

∈
D, with only one different sample, and for any subset of

output S ∈ R, the following inequality holds:

Pr[M(d) ∈ S] ≤ eǫPr[M(d′) ∈ S] + δ (3)

In pure differential privacy, δ = 0 and the additive

term δ does not exist while in approximate differential pri-

vacy [10], δ is used for approximation in the cases that pure

differential privacy is broken. δ is the probability that pri-

vacy loss is not bounded by ǫ and its optimal value is smaller

than 1
|d| (inverse of the database size).

Differential privacy is resistant to post-processing.

That is, any arbitrary randomized mapping of an (ǫ, δ)-
differentially private algorithm, is differentially private as

well.

Theorem 1. (post-processing) Given a randomized al-

gorithm M : D −→ R that is (ǫ, δ)-differentially pri-

vate and an arbitrary randomized mapping f : R −→ R
′

,

f ◦M : D −→ R
′

is (ǫ, δ)-differentially private.

A routine approach to privatizing the output of a real-

valued function f : D −→ R is to add noise with variance in

the scale of f ’s sensitivity, Sf , to the output. The sensitivity

of a function f is defined as the maximum absolute distance

|f(d) − f(d
′

)| (d and d
′

are adjacent databases). In formal

notion:

Sf ≡ max
d∼d

′

|f(d)− f(d
′

)|, (4)

Gaussian noise is one of the popular kinds of noise em-

ployed in differential privacy, in which f(d) is perturbed

by Gaussian noise N(0, Sf
2.σ2). That is:

M(d) ≡ f(d) +N(0, Sf
2.σ2) (5)

Composability is one of the interesting properties of dif-

feretnial privacy that makes it possible to combine multi-

ple differentially private mechanisms into one. A standard

analysis implies the composition of k mechanisms that each

of them are (ǫ, δ)-differentially private, is at least (kǫ, kδ)-
differentially private [10, 11, 12]. One of the possible

ways of accounting differential privacy in composition of

additive-noise mechanisms is to use Moment Account tech-

nique introduced by Abadi et. al [1], which provides strong

estimates of privacy loss compared to various versions of

composition theorem [10, 12, 28, 15, 16] including strong

composition theorem [16]. RDP accountant [32] is a new

approach based on a new definition of privacy, Rényi differ-

ential privacy, which provides a tighter bound for privacy

loss in comparison with Moment Accountant.

3. Related Work

Some previous studies have proposed approaches to ad-

dressing the problem of preserving privacy in Deep Learn-

ing. Shokri et al. [40] developed a distributed approach in

which multiple parties train a model on their local training

set independently. Then, each party selects a set of key pa-

rameters, and shares them with the other parties. Although

this method has high training accuracy without sharing the

input parameters, Abadi et al. [1] showed that the overall

privacy loss for each party exceeds several thousands on

MNIST dataset using Moment Accountant technique they

introduced.

Moment accountant mechanism [1] can be used to track

the overall spent privacy budget, (ǫ, δ), for composing

Gaussian Mechanisms with random sampling (e.g. train-

ing process in Stochastic Gradient Descent). This method

provides a much tighter estimation for privacy loss com-

pared to standard composition theorem [13]. It computes

the log moments of the random variable indicating privacy

loss and then calculates the tail bound using moments bound

and standard Markov inequality. The result is privacy loss

estimation in terms of differential privacy. In addition to

Moment Accountant technique, Abadi et al. [1] proposed

a method to make the Stochastic Gradient Descent(SGD)

process differentially private.

Private Aggregation of Teacher Ensembles (PATE) [36]

is a framework that leverages the moment accountant mech-

anism to trace the privacy leakage of knowledge transfer

task using differential privacy. It presents a differentially

private semi-supervised learning method in which the train-

ing data is split into multiple disjoint sets and the teacher

models are trained independently. The teacher ensemble

predicts the labels after perturbing counts of teachers’ votes

by Laplace noise while the student model is trained on pub-

lic data as well as labeled data from the teacher model

and can be published publicly. Although this method out-

performs Shokri et al. [40] work in terms of both accu-

racy and privacy, it assumes the model has access to public

data which may not be the case in practice. Moreover, the

teacher ensemble just responds to the queries for which the

consensus among teachers is sufficiently high.



Some other previous researches focused on preserving

privacy of GANs in particular. DPGAN method [43], en-

forces differential privacy during the training process of the

discriminator by adding Gaussian noise to the gradient of

Wasserstein distance in WGAN algorithm and uses post-

processing theorem to guarantee differential privacy for the

generator. However, it is unclear how the overall privacy

budget is accounted, the results do not look promising even

on MNIST dataset and there is no methodology for creating

labels for synthetic images.

Similar to DPGAN method, PATE-GAN approach [44]

enforces privacy by making the discriminator differentially

private. In PATE-GAN, the discriminator is replaced with

modified version of PATE [36] in which the student model

allows back-propagation to the generator and there is no

need to have access to public training data. It employs the

generated data to train different classifiers and evaluate the

quality of generated data by testing these classifiers on real

test data. The limitation of PATE-GAN is that it assigns bi-

nary labels for synthetic data, and therefore, it is not appli-

cable for multi-label datasets. Moreover, the datasets used

to evaluate the model are small. The other work is a DP-

GAN framework for time series, continuous, and discrete

data [18]. This framework is alike the previous DPGAN

work [43] except it employs moments accountant approach

to account the privacy budget and clips the discriminator

gradients while reducing the clipping parameter over time

(adaptive clipping).

Unlike DPGAN method [43], our proposed method

leverages RDP accountant technique to follow the con-

sumed privacy budget, (ǫ, δ) and generates not only syn-

thetic data but also the labels using a Conditional GAN

model. In contrast to PATE-GAN [44] which generates

only binary labels, our model generates multi-class labels.

Finally, in DPGAN frameworks [43, 18] the discrimina-

tor gradients are clipped and perturbed by adding Gaussian

noise to gradients of the discriminator loss, while in our

framework, Gaussian noise is added to the accumulation

of clipped gradients of discriminator loss on real data and

clipped gradients of discriminator loss on fake data.

4. Our Approach

As mentioned before, DP-CGAN can generate the syn-

thetic data as well as the corresponding labels while pre-

serve privacy of training samples. To this end, the DP-

CGAN makes the training process private by injecting ran-

dom Gaussian noise into the optimization process of the dis-

criminator network. Based on post-processing theorem[14]

making the generative network differentially private re-

sults in having a differentially private generator too. DP-

CGAN tracks the spent privacy loss using RDP account-

ing technique[ényi], which provides tighter estimation on

privacy loss in comparison with moment accountant tech-

nique. The training procedure stops if the spent privacy

budget (ǫ, δ) goes beyond the target ones.

DP-CGAN makes the optimization process of discrimi-

nator loss (discriminator training) differentially private by

computing the per-example gradients of the discriminator

loss on both real and fake data, clipping the per-example

gradients on real data and fake data separately, summing

up two sets of the clipped gradients, perturbing the clipped

gradients by adding Gaussian noise N(0, σ2C2), σ is noise

multiplier and C is clipping value, to them, and finally ap-

plying the perturbed gradients.

Algorithm 1 outlines the training process of DP-CGAN.

According to the algorithm, the model updates the discrim-

inator network and the generator network as long as the

number of iterations is less than maximum iteration count

and the spent privacy budget is less than the target ǫ. At

each step, it minimizes the discriminator loss function by

computing the discriminator gradients of loss on real data

and clipping them by L2-norm (lines 9-12 ), computing

the discriminator gradients of loss on fake data(lines 13-

15 ) and clipping them by L2-norm, compute the overall

clipped gradients of discriminator by adding these two sets

of clipped gradients, adding Gaussian noise to them and tak-

ing average over all the perturbed clipped per-example gra-

dients in the batch(line 16-17), and finally applying the gra-

dients (line 18). The model tracks the spent privacy budget

by accumulating the spent privacy budget and updating the

RDP accountant every time that noise is injected into the

model(line 20). Then, the generator the gradients of gen-

erator loss are computed and applied so that the generator

network gets trained(line 21-25). The last step is to check

the overall spent privacy budget so far. If the spent ǫ or the

spent δ has exceeded the target values, training is stopped,

otherwise it continues (line 26-27).

5. Experimental Results

We compare the performance of DP-CGAN to CGAN

with no privacy and CGAN trained with standard differen-

tially private approach.The CGAN architecture used in all

models is a vanilla CGAN in which both generator and dis-

criminator consist of two fully connected layers.The gener-

ator takes random noise sample z and the corresponding la-

bel y as inputs while the discriminator inputs are real train-

ing sample x and its label y. Figure 1 depicts the generator

and discriminator architecture of the vanilla CGAN.

Differentially private CGAN models use the new privacy

package of TensorFlow Privacy (by Google), a python li-

brary that includes the implementation of few differentially

private optimizers as well as the privacy accountants to keep

track of the privacy loss. They leverage differentially pri-

vate Gradient Descent as optimizer and RDP accountant as

privacy accountant from this package.

The dataset used used in the evaluation is MNIST hand-



Algorithm 1: DP-CGAN

1 Examples {x1, x2, ..., xN}, labels {y1, y2, ..., yN},
target epsilon ǫ, target delta δ, noise scale σ, clip norm

bound C, learning rate lr, batch size bs
2 Differentially private Generator that generates

synthetic data and labels

3 should terminate = False
4 while (step ≤ max step & ! should terminate) do

5 - Sample random batch (Xt, Y t) of size bs with

probability bs/N from data distribution pdata(X)

6 - Sample noise batch Zt of size bs from noise prior

pz(z)
/* Update the Discriminator Network */

7 d loss real←− log(D(Xt))
8 d loss fake←− log(1−D(G(Zt)))
9 Compute per-example gradients of

discriminator loss on real data Xt and clip

them

10 for i ∈Xt do

11 Compute

gradd real
t ←− ∇θdd loss real(θd

t, Xi)

12 gradd real
t = gradd real

t/max(1, ||gradd real||2
C

)
Compute per-example gradients of

discriminator loss on fake data Zt and clip

them

13 for i ∈ Zt do

14 Compute

gradd fake
t ←− ∇θdd loss fake(θd

t, Zi)

15 gradd fake
t =

gradd fake
t/max(1,

||gradd fake||2
C

)
16 Compute the overall gradients of discriminator

and add Gaussian Noise to them

17 gradd
t ←−

1
bs

∑
gradd real

t + gradd fake
t +N(0, σ2C2I)

18 Take the gradient Descent step for

discriminator

19 θdt+1 ←− SGD(grads dt, θdt, lr))
/* Update RDP Accountant */

20 Accumulate the spent privacy budget using

RDP Accountant

/* Update the Generator Network */

21 g loss←− log(1−D(G(Zt)))
22 Compute gradients of generator loss

23 Compute grad gt ←− ∇θgg loss(θg
t, Zi)

24 Take the gradient Descent step for generator

25 θg
t+1 ←− ADAM(grad gt, θg

t)
26 if spent epsilon > ǫ OR spent delta > δ then

/* Running out of privacy budget */

27 should terminate = True

Figure 1: Vanilla CGAN Generator and Discriminator Ar-

chitecture

written dataset containing 60k training samples and 10k

test samples. In the experiments, batch size is set to 600,

δ = 10−5 and learning rate is set by an adapative approach

in which the initial learning rate is 0.15, it is decreased to

0.052 in iteration 10K and is fixed on 0.052 for the rest iter-

ations.

We trained Logistic Regression and Multi-Layer Percep-

tron classifiers using the synthetic data and labels gener-

ated by the models and tested the classifier on real test data.

Closer performance of the classifier trained on synthetic

data generated by differntially private models and on real

data indicates that the model has captured the real data dis-

tribution better. We measured the performance of the clas-

sifier using the Area under ROC curve metric (AuROC). In

the evaluation process, the generative model takes the 60k

MNIST training data and the labels as input and generates

60k synthetic labeled data.Then, the classifier is trained on

the generated data. Finally, performance of the trained clas-

sifier is evaluated on the 10k test data using AuROC metric.

Table 1. lists the results of AuROC for the three models

as well as the case in which classifiers are trained on real

data. According to the table, the AuROC of DP-CGAN is

higher than CGAN trained with basic differentially private

method, indicating that new clipping and perturbing tech-

nique used in DP-CGAN improves the performance. On

the other hand, the AuROC of DP-CGAN is about 5% lower

than that for real data and this is the price we pay to have

privacy.

Real CGAN DP-CGAN CGAN

with

basic DP

LR 92.17% 91.10% 87.57% 83.42%
MLP 97.60% 91.06% 88.16% 83.29%

Table 1: Comparing AuROC for Logistic Regression(LR)

and Multi-Layer Perceptron(MLP), which are trained on

real data, data generated by CGAN (non-private), DP-

CGAN and CGAN with basic differentially private ap-

proach using ǫ = 9.6 , and δ = 10−5



We also visualized the images generated by the models

(Figure 2) . In the figure, the most left column shows the

results for DP-CGAN, the left column represents the results

for CGAN with no privacy, and the right column depicts

the synthetic images generated by CGAN with basic dif-

ferentially private approach. According to the figure, the

quality of the images generated by DP-CGAN is better than

CGAN with basic differentially private approach but worse

than CGAN with no privacy.

((a)) ((b)) ((c))

Figure 2: (a) DP-CGAN, (b) CGAN with no privacy, (c)

CGAN with basic differentially private approach

6. Conclusion

In this research, we proposed DP-CGAN framework that

is a differentially private GAN model capable of generating

both synthetic data and corresponding labels. The main idea

behind DP-CGAN is that it clips the gradients of discrim-

inator loss on real and fake data separately, sums up two

sets of gradients, and adds Gaussian noise to the sum. DP-

CGAN employs RDP account technique to track the spent

privacy budget. The experimental results showed that DP-

CGAN improves the performance compared to basic DP-

CGAN and generates promising results on MNIST dataset.

The architectures we used for the generator and discrim-

inator are rather simple. We are going to consider deep

CGAN architectures with multiple convolutional layers to

improve the quality of the synthetic data while spending the

same privacy budget as we did for vanilla CGAN. More-

over, our results are still preliminary and we are going to

show high quality differentially private CGANs on more

challenging datasets such as CIFAR100 and CelebA/B. Fi-

nally, our preliminary results are very promising and we can

extend our methodology to tackle the mentioned challenges.
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