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Abstract

In this paper, we describe how to apply image-to-image

translation techniques to medical blood smear data to gen-

erate new data samples and meaningfully increase small

datasets. Specifically, given the segmentation mask of the

microscopy image, we are able to generate photorealistic

images of blood cells which are further used alongside real

data during the network training for segmentation and ob-

ject detection tasks. This image data generation approach

is based on conditional generative adversarial networks

which have proven capabilities to high-quality image syn-

thesis. In addition to synthesizing blood images, we syn-

thesize segmentation mask as well which leads to a diverse

variety of generated samples. The effectiveness of the tech-

nique is thoroughly analyzed and quantified through a num-

ber of experiments on a manually collected and annotated

dataset of blood smear taken under a microscope.

1. Introduction

Deep learning based methods have had a great success

on a number of typical visual perception tasks such as clas-

sification, segmentation, and object detection. While there

are a number of important reasons that have made this

progress possible, one of them is the availability of large-

scale datasets. On the contrary to the traditional computer

vision tasks, not much effort has been put to the creation of

large-scale medical image datasets. There are several rea-

sons these datasets are hard to create.

First of all, there is a limited number of data annotators

available. In contrast to traditional image annotation (e.g.

class label, segmentation mask, bounding box) where fairly

any person is able to perform the annotation, medical data

requires a specialized professional—often with an advanced

medical degree—to perform a reliable annotation.

Secondly, medical data sharing is not a straightforward

process. In order to democratize medical dataset, an agree-

ment from a number of involved parties such as patients,

Figure 1. Image translation example. First row: real segmentation

mask (left) and corresponding blood image (right). Second row:

synthetic segmentation mask (left) and synthesized image (right).

doctors, hospitals, and data users should be reached. Ad-

ditionally, it requires a detailed guideline on what grounds

and for what purposes the data can be utilized.

Lastly, different hospitals and countries around the world

might use different medical protocols, devices, or mecha-

nisms. Thus, this data could not be easily transferable, re-

quiring special managing to standardize it for the creation

of a large-scale dataset.

All the of aforementioned reasons greatly increase the

cost of the annotation while overall making a large-scale

medical dataset creation extremely time and resource con-

suming. Fortunately, with the advent of the Generative Ad-

versarial Networks (GANs) [12] a powerful image synthesis

has become possible. Recently, Wang et al. have proposed a

model named pix2pixHD [32] that performs high-resolution

photorealistic image generation given the instance segmen-

tation mask of the scene. Since the segmentation masks are

easy to be manipulated, this method allows interactive ob-

ject manipulation leading to numerous new samples.

In this paper, we focus on generating new training sam-

ples of blood images taken with a microscope. For this

purpose, we propose an efficient system that generates red
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Figure 2. The overview of the proposed method. First, all blood cell shape instances are extracted and saved to a database (a). Meanwhile,

pix2pixHD framework is trained to translate segmentation mask to blood cell images (b). During the inference stage, synthetic segmentation

mask is created (c) and fed to the generator network to produce the realistic blood cell image (d).

blood cell images via incorporating conditional GAN and

synthetic segmentation mask. The GAN is trained to gener-

ate photorealistic blood images conditioned on synthetic in-

stance segmentation masks of blood cells. These synthetic

segmentation masks are automatically produced by a cell

segmentation mask generator. Specifically, the shapes of

cells are sampled from an exemplar database and their spa-

tial distribution follows an adhesive nature of blood cells.

We have manually collected microscope blood images

and prepared an instance-level cell segmentation masks of

the images to build a dataset. In our framework, the dataset

is used both to train the GAN to perform translation of a

segmentation mask to a blood image and to build the cell

shape exemplar database.

Once the network is trained, we automatically generate

diverse instance segmentation masks on run (see Figure 1),

and create a defined number of various data samples which

are further used as an additional training data for segmen-

tation and object detection tasks. These generated samples

serve as a powerful data augmentation technique that could

boost the performance of relevant tasks. This pipeline effec-

tively produces new training samples, alleviating the heavy

lifting of creating a large dataset. Extensive experiments

are conducted to show the effectiveness of the proposed

method on the segmentation and detection tasks. The graph-

ical summary of the algorithm is presented in Figure 2.

This paper is structured in the following way. In Sec-

tion 2, we cover the related works which similarly have uti-

lized GANs for medical data generation. Then, Section 3

describes the dataset creation. Section 4 specifies a proce-

dure for a synthetic instance segmentation mask generation

as well as details on the utilized GAN model. Lastly, a num-

ber of experiments and discussion are presented in Section 5

followed by conclusion and future plan (Section 6).

2. Related Work

The use of GANs with medical image data is not

new [38, 17, 33]. GANs have demonstrated promising re-

sults with a medical data in a number of tasks such as seg-

mentation [18, 35, 21, 30, 36, 39], detection [26, 3, 8, 27,

31], and image synthesis [11, 34, 4, 2, 24].

Since existing medical datasets are often limited in size,

several works have examined the use of GANs for data aug-

mentation purposes to increase the number of training sam-

ples. For instance, Calimeri et al. [6] have concluded the

possibility of employing synthetically generated MRI for

inexpensive and fast data augmentation. Furthermore, Han

et al. [14] have studied the effect of synthetic data on brain

metastases detection task in MRI. In addition, several other

works have observed an improved performance on segmen-

tation of various data sources such as MRI [22, 28], CT [5],

and X-ray [23].

Similar conclusions of favorable use of GANs as data

augmentation technique have been observed for classifica-

tion of CT images [10] and liver lesion classification [9].



Figure 3. Samples from the dataset: blood cell images (first row) and corresponding instance segmentation masks (second row).

While there are many works targeting MRI, CT, and X-

ray image data, blood smear images taken with a micro-

scope have got less attention. Thus, in this paper, we ex-

plore the use of GANs for blood image synthesis and study

the effect of utilizing GANs as a data augmentation method

for segmentation and object detection tasks.

3. Dataset

In order to obtain the dataset with Red Blood Cells

(RBCs), we have collected blood from 100 patients and pre-

pared stained peripheral blood smear slides. It is important

to mention that the slides, as well as imaging, have been

completed utilizing Noul’s miLabTM (Noul Co., Ltd., Yon-

gin, South Korea) blood cell diagnostics platform [1]. The

miLabTM platform is composed of two parts. First of all, it

is a tubing-free lab on a chip where patients’ blood is placed

and slides are prepared. This chip automatically performs

biochemical reactions needed to prepare consistent quality

peripheral blood smears. Secondly, it is a device where the

images of the slides are taken automatically. At the mo-

ment of image collection, the optical system1 of the device

was represented by a brightfield microscope taking images

under 40x magnification.

After obtaining slide images, we have manually selected

100 images to ensure every image is distinctive to diversify

the dataset. This results in a great variation of a number of

RBCs per image, their shape, and color values (see Table 1).

For example, the largest cells could reach 71×87 resolution,

while the smallest could be of several pixels (i.e. partially

visible cells on the border of the image). Every image is

of 1920 × 1200 resolution in RGB format. The dataset is

randomly split into training and testing sets as 60 and 40
images respectively.

The annotation technique of the dataset is inspired by the

2015 MICCAI Gland Segmentation Challenge [29]. Specif-

1The platform specifications is subject to change.

Mean Std

RBCs per image 669 149
RBC shape 46× 46 5× 5
Colors (in RGB) 154× 151× 162 20× 17× 21

Table 1. Statistics of red blood cells in the train set.

ically, given a microscope image with blood smear, we aim

to create an instance segmentation mask which would al-

low us to extract every single cell in a given image. For

this purpose, qualified professionals manually draw precise

segmentation mask for each RBC.

This drawing process consists in putting a color on ev-

ery single pixel belonging to a blood cell. Color values are

selected by the user from a predefined list of color values.

In order to be able to extract every single blood cell with-

out an overlap with others, any touching cells have different

segmentation mask colors assigned to it, hence, no touching

cells having the same color.

While this dataset also includes annotation for other

blood cells and noise (e.g. dust), in this paper, we primarily

focus on RBCs. The representative images and correspond-

ing instance segmentation masks are shown in Figure 3.

4. Methodology

The creation of new samples is composed of two stages:

synthetic mask generation and translating generated mask

to a photorealistic image of blood cells. The graphical vi-

sualization of the whole pipeline during training and testing

phases are shown in Figure 2.

4.1. Synthetic mask generation

In order to generate new and meaningful photorealistic

samples of the blood cells, we first need to produce syn-

thetic instance segmentation masks in which the blood cells

have unique shapes and location distribution. For this pur-

pose, we have designed a synthetic segmentation mask gen-



erator that combines sampled cell shapes and their distri-

butions to produce synthetic segmentation masks. More

formally, we formulate a synthetic segmentation mask as

a set of sampled cell shapes which are located at their cor-

responding locations on the background:

{(s1, l1), (s2, l2), ..., (sn, ln), background}, (1)

where si denotes the shape of the cell and li determines the

location of the cell. The total number of cells n in an image

is drawn from a normal distribution as n ∼ Norm(µn, σn),
where µn and σn are determined from the statistics of train-

ing data (see Table 1).

4.1.1 Cell shape sampling

To model the natural variety and similarity of blood cell

shapes, we perform exemplar-based cell shape sampling. It

is composed of the training and testing stages.

During the training stage, segmented boundaries of each

cell in the training data are accumulated to build the cell

shape database. In practice, considering that the instance

segmentation of each cell is provided from the dataset, we

extract every single cell shape from each instance segmen-

tation mask in the train set. Then, all cell shapes are con-

verted to a binary (i.e. foreground and background) repre-

sentation and are stored as a list of images (i.e. our cell

shape database). This database serves as a blood cell shape

supplier during the inference stage.

In the inference stage (i.e. generating new samples), the

cell shape sampler iteratively selects random cell shape si
from the database and puts it on the instance segmenta-

tion mask which is composed of numerous cells. Moreover,

whenever we pick si from the database, a set of probabilis-

tic augmentations are applied to diversify the appearance,

thus, creating previously unseen cells. The augmentation

includes rotation, scale, horizontal and vertical flipping.

4.1.2 Cell distribution sampling

The most straightforward way to locate the sampled cell

shapes in the synthetic segmentation mask is simply to it-

eratively sample the coordinates at random and place the

cell shape masks at the sampled location if the place is not

occupied. However, such an approach results in a nonreal-

istic cell distribution. Specifically, this leads to a uniform

random distribution of cells all over the image with many

cells being placed solo without touching other cells. In re-

ality, due to cell adhesion [13], cells tend to stick to each

other, consequently, forming clusters.

Therefore, in order to generate the segmentation masks

which incorporate the aforementioned aspect, our cell dis-

tribution algorithm sequentially samples the appropriate lo-

cation of each cell from the probability density function de-

fined on the 2D discrete space. The location of i-th cell li is

20 cells 100 cells 400 cells

Randomly distributed 500 cells Proposed method with 500 cells

Figure 4. Synthetic mask generation. (Top) intermediate segmen-

tation and probability maps of the algorithms. (Bottom) compares

the final result of random placement and the proposed method.

sampled from the probability map P(i) as:

li ∼ P(i), (2)

where each pixel value in P(i) denotes the probability of

being selected as a location of a cell’s center at time step

i. P(i) is initially uniform during the sampling of the first

ninit cells, but changes its landscape as i increases in order

to simulate inherent cell adhesion. We have modeled this

evolving nature of P(i) as a Markov random process.

P(i) =











uniform, i ≤ ninit

1
ninit

∑ninit

j=1 z(lj), i = ninit + 1

(1− ai)P(i− 1) + aiz(li−1), i > ninit + 1

(3)

Specifically, this explains that the probability map P(i) in-

crementally changes as accumulating the function z(·) to its

previous state. The excitation function z(li) is calculated by

applying a 2D Gaussian function with σ = σx = σy around

the sampled cell center li and reverting the values within

the cellsize around it. This is done to impose low probabil-

ity within boundaries of already allocated cells to prevent

a cell being placed at the occupied location. The amount

of increment is controlled by the normalizing coefficient ai,
which is in the form of a harmonic progression of i. (i.e.

ai = 1/i). At any time stamp, P(i) always maintains the

‘sum to unity’ property.

In practice, during the cell placement on the synthetic

mask, at any time the cell is placed on the canvas, a spe-

cific color is assigned to it to satisfy the condition that no

touching cells have the same color. If such constraint is im-

possible to maintain—many touching cells or all predefined



colors are used—the coordinate sampling is repeated. Since

every touching cell has a different color, produced synthetic

mask can be treated as an instance segmentation mask with

a possibility to extract every single cell.

This synthetic mask generation process, as well as the

comparison of randomly distributed cells against the pro-

posed strategy, is visually described in Figure 4.

4.2. Synthetic blood image generation

For the purpose of synthesizing photorealistic blood cell

image given the instance segmentation mask, we have uti-

lized a recent pix2pixHD framework proposed by Wang et

al. [32]. This framework is capable of high-resolution pho-

torealistic image generation while allowing for easy syn-

thetic image manipulation by modifying the input segmen-

tation mask, hence, generating more unseen data points.

For our scenario, the pix2pixHD framework is composed

of Generator G which tries to translate segmentation mask

to a photorealistic blood cell image. At the same time, two

multi-scale Discriminators D = (D1, D2) are trying to dis-

tinguish real images from the generated ones. The full train-

ing objective of the network is the following:

min
G

(

(

max
D1,D2

∑

k=1,2

LGAN(G,Dk)
)

+ λFM

∑

k=1,2

LFM(G,Dk)

+λPR LPR(G(x,E(x)), y)

)

,

(4)

where:

• LGAN(G,Dk) is the adversarial loss defined as:

E(x,y)[logDk(x, y)]+Ex[log(1−Dk(x,G(x,E(x)))],
(5)

• LFM(G,Dk) is the feature matching loss that aims to

stabilize training and produce more visually appealing

results at multiple scales. It is defined as:

E(x,y)

T
∑

i=1

1

Ni

[||D
(i)
k (x, y)−D

(i)
k (x,G(x,E(x)))||1], (6)

• LPR(G(x), y) is the perceptual reconstruction loss that

takes into account VGG network’s i-th layer F (i) with

Mi elements, aiming to further improve the perfor-

mance of high-quality image generation:

N
∑

i=1

1

Mi

[||F (i)(y)− F
(i)(G(x,E(x)))||1] (7)

As suggested in [32], we incorporate feature encoder net-

work E and combine its output with original input x to be

able to manipulate image synthesis style easily. This en-

coder network follows a standard encoder-decoder design

with image x as an input and instance-wise pooled features

as an output.

During the inference stage, we feed synthetically gener-

ated mask to the generator to obtain a synthetic image of

blood cells. The style of the output image is influenced by

randomly sampling features from one of 10 clusters which

are created by running K-means clustering on the outputs of

the encoder E supplied with the training images.

For a detailed description of the losses, feature encod-

ing, and clustering please refer to the original paper [32].

Implementation details, as well as training procedures, are

described in Section 5.1.

5. Experiments and Results

In this section, first, we cover specific details on param-

eters and training strategy for blood cell images synthesis.

Later, the majority of this section describes various exper-

iments on segmentation and object detection tasks with a

focus on the effect of the use of synthetic images during

training on the performance of the networks.

5.1. Synthetic blood image generation

In order to decide the number on cells to be placed on

the synthetic mask, we sample the number from a normal

distribution with a mean and standard deviation taken from

the dataset statistics (see Table 1 “RBC count per image”

row). In the case of the probability map creation, during the

synthetic mask generation, the standard deviation value σ
of 2D Gaussian distribution is related to half width at half

maximum (HWHM)2 value. Specifically, we want HWHM

value to be equal to cellsize. Hence, we can derive that

σ = cellsize/
√
2 ln 2, where cellsize = 46 (taken from

Table 1). Initially, when a synthetic segmentation mask is

empty, ninit = 20 cells are placed at random without con-

sidering the probability map.

The training of the pix2pixHD is performed in two stages

due to the GPU memory constraint. In the first stage, the im-

ages are downsized to 1024 × 640 and global generator G,

discriminators D, and feature encoder E are trained simul-

taneously for 120 epochs. Then, feature encoder E is used

to precompute image features of the training data. In the

second stage, the training of G and D is performed using

full-resolution images (i.e. 1920× 1200) for additional 120
epochs. After training is completed, 10 clusters are created

using encoded features for each semantic category. These

clusters are used to simulate different blood cells style lead-

ing to the diversification of generated images.

In all experiments, we have utilized original pix2pixHD

2It is half of the distance between points on the curve at which the

function reaches half its maximum value.



Figure 5. Generated samples on test set: segmentation masks (first row), ground truth (second row), and generated blood cells (third row).

Figure 6. Example of different styles of the synthesized blood cell image.

network with several modifications. For instance, the num-

ber of filters in the first convolutional layer of G, D, and E
are set to 16. The primary goal for such channel tuning is to

fit the model within the GPU memory capacity. Horizontal

and vertical flipping are utilized as data augmentation.

The pix2pixHD network is trained with a train set solely.

Figure 5 shows network outputs on the test set images,

hence, we can compare synthesized and corresponding real

images. Certainly, the network is able to learn shapes, color,

and boundaries of the blood cells given their segmenta-

tion mask and generally to produce realistic blood images.

Noticeably, when synthetic and real images are compared

one-to-one, they do not necessarily have the same colors

and intensities values. Furthermore, due to the feature en-

coding which influences the style of individual cells, syn-

thetic images often have excessive noize embedded to gen-

erated blood cells (see Figure 5 (last column)). While the

style is selected at random during the synthesis stage, we

could manually define the cluster where features are sam-

pled from. For example, Figure 6 shows different styles of

the generated blood cell image given the segmentation mask

from the first column of the Figure 5.

The output results of the whole pipeline including syn-

thetic mask generation and blood image synthesis can be

seen in Figure 7. Noticeably, the proposed method is able

to generate synthetic segmentation mask which holds cell

adhesion rule (i.e. intercellular forces make cells group

with each other). Furthermore, utilizing these synthetic seg-

mentation masks as an input to the blood image generator,

the results in realistic blood images of a different style (e.g.

color and intensity values, noise level).

Unoptimized Python implementation of synthetic mask

generation on average takes 60 seconds (using Intel Xeon)

per mask and it is heavily dependent on the number of cells

to be placed on the mask. The image generation takes on

average 0.5 seconds per image (using GeForce 1080Ti).

Therefore, in the current implementation form, proposed

augmentation method better not be used for a real-time data

augmentation, but rather for an offline technique to increase

the training samples.

5.2. Segmentation

For this task, we have utilized FCN-8s [20] model. Loss

function is formulated as 1−DSC, where DSC stands for



Figure 7. Examples of generated synthetic mask (left) and corre-

sponding synthesized blood cell images (right).

a Dice score that is defined as:

DSC =
2|p · t|

|p|2 + |t|2
, (8)

where it is stated as vector operation over binary vectors p
and t corresponding to the network prediction and corre-

sponding target (i.e. ground truth) respectively.

The Dice score is used as an evaluation metric as well.

The model is trained from scratch without any pretraining

or transfer learning until the training loss is converged and

no improvement is observed on the test set. The best scoring

weights on the test set are selected for reporting results.

Table 2 demonstrates the quantitative results with differ-

ent data used as training instances. For instance, “RD” col-

umn represents results where the network is only trained

with real data (RD). Similarly, in the “SD” case, exclu-

sively synthetic data (SD) is used for the training. In both

of these cases, the number of training samples is inten-

tionally set equal to 60 samples. The remaining columns

“RD+aug”, “RD+SD”, and “RD+SD+aug” represent results

where training set is composed of real data with augmenta-

tions, real data mixed with synthetic data, and augmented

real and synthetic data respectively. The data augmenta-

tion includes horizontal and vertical flips, Gaussian blur,

sharpening, embossing, Gaussian noise, color channel in-

version, brightness change (addition and multiplication),

contrast normalization, and grayscale augmentation applied

randomly. For these scenarios, the number of training sam-

ples is identical and equals 960 samples. We would like to

note that in every scenario as well as tasks, the test set is

immutable, consists of 40 images from the original dataset,

Methods \Tasks Segmentation task. Metric: Dice score.

RD SD RD+aug RD+SD RD+SD+aug

FCN [20] 0.961 0.848 0.962 0.948 0.964

Detection task. Metric: AP.

Faster R-CNN [25] 0.781 0.852 0.985 0.986 0.993

Detection from segmentation. Metric: AP.

DCAN [7] 0.853 0.749 0.885 0.848 0.895

Table 2. Quantitative evaluation on various tasks. Column names

represent combination of data used for training of the networks:

real data(RD), synthetic data(SD), and augmentations (aug).

and it never includes synthetic images.

FCN is a powerful model capable of reaching a high dice

score of 0.961 by utilizing real data exclusively without any

augmentations. Though, when the real data is replaced with

synthetic one, the network reaches a substantially lower

score of 0.848. This could imply that the real data has richer

semantic information compared to the completely synthetic

images that tend to approximate the real data.

Real data augmentation slightly helps to boost perfor-

mance by about 0.1 percent points. However, utilizing syn-

thetic data as an augmentation method alongside real data

actually harms the performance of the model decreasing the

score by roughly 1%. Lastly, if the real and synthetic data

is trained with augmentations together, the maximum score

of 0.964 is reached.

To sum up, this experiment implies that the use of gen-

erated synthetic blood cell images is beneficial to the per-

formance of the network in this particular circumstances.

The similar conclusions have been observed in the previous

works [22, 28, 5, 23] as well.

5.3. Detection

For this task we have utilized Faster R-CNN [25] based

on ResNet-101 [15] feature extractor. The model is pre-

trained on Visual Genome [19], and we have fine-tuned

the model with blood cell data sets mentioned in Table 2.

For this task average precision (AP) is used as an evalua-

tion metric. The implementation of the network is provided

by [37].

Faster R-CNN is a heavy network which requires lots

of training data. Hence, utilizing only limited real data for

training results in a relatively low AP score of 0.781 (see Ta-

ble 2). Surprisingly, the network performs better (about 9%
relative improvement) when synthetic data alone is used for

training while every other factor is kept equal. While this

is counter-intuitive, it could be explained by the fact that, in

order to produce synthetic blood images, we produce syn-

thetic segmentation masks which comprise of blood cells

shapes derived from a whole training set. This results in

new cell shape distribution for each synthetic image. Fur-

thermore, when the cell shape is placed on the segmenta-

tion mask, we additionally apply augmentations for each



cell shape which leads to even more diverse samples com-

pared to the real training set.

Contrarily to the segmentation task, augmentation pro-

vides a drastic improvement (about 26%) to the general-

ization capabilities of the model for the cell detection task.

Similarly, a noticeable improvement is observed if synthetic

data is used alongside the real data. Lastly, using real and

synthetic data with augmentations provides even further im-

provement (about 1%) to the performance compared to the

one without synthetic images.

Overall, this experiment shows a marginal benefit of syn-

thetic data on the detection task when used alongside real

data. Utilization of synthetic data during the training per-

forms on par with traditional data augmentation techniques

and could be used alongside real data and augmentations to

maximize the model performance.

5.4. Detection from segmentation

While Faster R-CNN model has shown a great perfor-

mance on the cell detection task, this model is computation-

ally expensive to be implemented on point-of-care medical

devices which usually require a fast and efficient computa-

tion on the edge. Therefore, in this section, we want to test

a detection from the segmentation approach to have more

freedom of designing less resource intensive models.

In order to implement a method which is light-weight

and fast, while maintaining satisfactory detection score, we

utilize an idea proposed by Chen et al. [7]. Specifically,

the segmentation network is modified to predict objectness

(i.e. traditional segmentation mask) as well as contours (i.e.

boundary) of the blood cells. These two predictions are fur-

ther processed to isolate individual cells from each other

which simplify the detection problem to a blob detection on

the binary image. Therefore, this method is suitable for the

detection task and can be evaluated with average precision

(AP) score as in the previous experiment.

Similarly to the segmentation task described in Sec-

tion 5.2, we have utilized FCN network but with the modi-

fied head to output objectness and contour predictions. The

network is trained from scratch, with a loss which is simply

a sum of objectness and contour losses. The best perform-

ing (defined by the AP score) model on a test set is selected

for results stated in this paper.

The evaluation results are stated in Table 2. Since this

method relies on segmentation, the detection performance

generally follows the trend of segmentation prediction from

Section 5.2. For example, utilizing only synthetic data

harms the performance of the network by 0.104 AP score.

Also, the use of data augmentation helps to marginally

boost to the network performance. Finally, using real and

synthetic data with augmentations helps to reach the high-

est AP score of 0.895. When this approach is compared

to Faster R-CNN model, only in the case the real data is

used for training, this method is able to achieve better per-

formance. However, in every other scenario, Faster R-CNN

outperforms this approach by a large margin.

While with this approach we have not succeeded to out-

perform powerful Faster R-CNN model, we confirm the

possibility of achieving blood cell detection from the seg-

mentation mask. The quality of detection is directly re-

lated to the quality of predicted segmentation mask. There-

fore, we believe that the detection performance could be

greatly increased by utilizing more recent neural networks

such as [16] for more accurate medical image segmentation.

6. Conclusion

In this paper, we have developed a method to synthesize

photorealistic microscopy blood images by utilizing condi-

tional generative adversarial networks. These synthetic im-

ages are used alongside real data to meaningfully increase

small datasets. The effect of such data augmentation tech-

nique is studied through a number of experiments on sev-

eral tasks. While the use of synthetic images is shown to be

marginally beneficial for the segmentation task, the perfor-

mance on a detection task demonstrates a slightly stronger

relative improvement.

To sum up, based on the experiments we have performed,

for our specific strategy and algorithm design, the use of

GANs as a synthetic data generator and further utilization of

generated samples as an augmentation technique is usually

beneficial for the model performance. However, the addi-

tional overhead which comes from designing GAN model,

long and unstable training, heavy computational require-

ments, and other challenges might not justify the marginal

improvement to the overall performance for a specific task.

In the current version, the proposed method is limited

to generating microscopy red blood cell images. In future

work, we plan to extend this method to synthesize other

blood cells such as white blood cells, and platelets. Ad-

ditionally, we would like to be able to synthesize parasite-

infected cells —red blood cells with a visible parasite inside

them —which would be beneficial for identification of var-

ious diseases such as malaria.
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